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Motivation for the Investigation

A model of a casting process?!

References:

1.

http://www.technalysis.com/casting_software.aspx

Need high quality thermophysical
properties of high-temperature materials.

These properties are critical for developing
accurate models with predictive capability
— Casting
— Welding
— Additive Manufacturing

Measurements will improve manufacturing
of propulsion components, leading to
higher performance and higher reliability.

More efficient and more reliable
production of metallic parts for
exploration, commercial, and industrial
applications using these alloys.



Nickel-Based Superalloy Overview

Historical improvement in blade performance?

References:
2. https://www.grc.nasa.gov/WWW/StructuresMaterials/AdvMet/research/turbine_blades.html

Superalloys are key materials for
— Turbopumps in chemical rockets
— Components in jet engines for commercial and
military applications
— Development of advanced space hardware

Demands for higher thrust, thrust to weight
ratio, and fuel efficiency

— Push engine operating temperatures and stresses
higher

— Thermal barrier coating design optimized

Historical development

— The first commercial nickel-based alloy development was
done by the British in the early 1940s including Nimonic-
75 and Nimonic-80 alloys

— Conventional casting alloys continued to improve in terms
of temperature capability over the next several decades

— Directional solidification and single crystal casting have
allowed further improvements

L. Langston and S. Jan, "Gems of turbine efficiency", ASME, Mechanical Engineering; New York 136 (9) (2014) pp 76-77.



Approach

 Samples were arc melted
at MSFC

* Processed in the

electrostatic levitator at
MSFC

* Data was analyzed by
Tufts University
— Sample evaporation
— Density
— Surface Tension
— Viscosity

A levitated sample in the MSFC
electrostatic levitator.



Collaborations
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ESL Hardware

* Electrostatic levitator
e High vacuum (~107 torr)
e 200W Nd:YAG heating laser

* Pyrometer for temperature
measurement

* High-speed camera
— 30fps @ 512x512 for density

— 1000fps @ 512x512 for
surface tension & viscosity

* Small sample size

el (~40 mg, ~2 mm DIA)

MSFC electrostatic levitator — Spherica| Shape

— Evaporation tracking required
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Measurement of Density

Typical thermal cycle - rapid cooling after laser is turned off
- Pyrometer monitors temperature from superheated to undercooled condition
- Video monitors sample shape with 2-D image used to indicate 3D volume
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Total Evaporation

Langmuir Equation S :Zn:{
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Predicted total mass loss as a function of time at temperature
- At high temperature, mass is lost faster
- Analysis requires tracking of each chemical species



Observed composition shift negligible

ASTM E 1097-12

Direct current plasma emission spectroscopy

Luvak Inc., Boyleston MA 01505

Inltla}l_ MAT-1254 Mat 1256_ Mat 1257_
Element Composition Arc melted (%) Processed in Processed in
(%) ESL (%) ESL (%)
Al 5.69 6.31 5.98 6.04
Co 10 10.2 9.82 9.04
Cr 6.5 3.72 2.34 2.88
Ti 0.86 0.77 0.75 0.69
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Model Results Tracking Each Constituent

Pre arc melting: 35.69 mg
Post arc melt mass: 35.63 mg
Post ESL mass: 34.48 mg
Observed Evaporation: 1.15mg
Predicted Evaporation: 0.84 mg
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All constituents vary by less than
1% from their initial composition

Aluminum does not evaporate!
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Correction for Evaporation

Langmuir Equation S = C r Q; ( 7 G P, Pref)A\ dt
ToEY J22MRT
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Density
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Pulsed Oscillation Testing
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Viscosity Results
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Surface tension (N/m)

Surface tension (N/m)

Surface Tension Results
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Conclusions
G I

 Due to small sample sizes
— Samples are nearly spherical for better quality raw data.

— Evaporation must be tracked since sample size changes
* this impacts density, surface tension and viscosity measurement.

— Tracking of individual species shows composition shifts during testing
are insignificant.
* Density evaluations show high technique accuracy when
corrected for evaporative losses during pre-processing;
precision is only slightly improved.

* More work is required to obtain an understanding of the
statistics for reporting surface tension and viscosity results as
a function of temperature.
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Future Work

 Expand the range of alloys investigated by initiating
study of Additive Manufacturing alloys.

 Experiments on the Japan Aerospace eXploration
Agency (JAXA) Electrostatic Levitation Furnace (ELF)
to investigate and manage statistical error to improve
both accuracy and precision of each measurement.

e Continue to develop new techniques to track
evaporation to minimize and control the potential for
composition shifts during processing.
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