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Motivation for the Investigation

• Need high quality thermophysical 
properties of high-temperature materials.

• These properties are critical for developing 
accurate models with predictive capability
– Casting

– Welding

– Additive Manufacturing

• Measurements will improve manufacturing 
of propulsion components, leading to 
higher performance and higher reliability.

• More efficient and more reliable 
production of metallic parts for 
exploration, commercial, and industrial 
applications using these alloys.

References:  
1. http://www.technalysis.com/casting_software.aspx
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A model of a casting process1



Nickel-Based Superalloy Overview

• Superalloys are key materials for 
– Turbopumps in chemical rockets
– Components in jet engines for commercial and 

military applications
– Development of advanced space hardware

• Demands for higher thrust, thrust to weight 
ratio, and fuel efficiency
– Push engine operating temperatures and stresses 

higher
– Thermal barrier coating design optimized

• Historical development
– The first commercial nickel-based alloy development was 

done by the British in the early 1940s including Nimonic-
75 and Nimonic-80 alloys

– Conventional casting alloys continued to improve in terms 
of temperature capability over the next several decades

– Directional solidification and single crystal casting have 
allowed further improvements

References:  
2.    https://www.grc.nasa.gov/WWW/StructuresMaterials/AdvMet/research/turbine_blades.html

L. Langston and S. Jan, "Gems of turbine efficiency", ASME, Mechanical Engineering; New York 136 (9) (2014) pp 76-77.
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Historical improvement in blade performance2



Approach
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• Samples were arc melted 
at MSFC

• Processed in the 
electrostatic levitator at 
MSFC

• Data was analyzed by 
Tufts University
– Sample evaporation

– Density

– Surface Tension

– Viscosity
A levitated sample in the MSFC 

electrostatic levitator.



Collaborations

MSFC Electrostatic Levitation (ESL) 
Laboratory
• Michael SanSoucie
• Jan Rogers
• Paul Craven
• Trudy Allen
• Glenn Fountain
• Curtis Bahr
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Glenn working on the ESL Lab’s Main Chamber

Professor Matson at MSFC

Tufts University
• Postdoc Xiao Xiao
• PhD student Jannatun Nawer
• BS student Molly Pleskus
• Professor Douglas Matson



ESL Hardware
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• Electrostatic levitator
• High vacuum (~10-7 torr)
• 200W Nd:YAG heating laser
• Pyrometer for temperature 

measurement
• High-speed camera

– 30fps @ 512x512 for density
– 1000fps @ 512x512 for 

surface tension & viscosity

• Small sample size
(~40 mg, ~2 mm DIA)
– Spherical shape
– Evaporation tracking required

MSFC electrostatic levitator



ESL Processing Conditions
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Measurement of Density
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Typical thermal cycle – rapid cooling after laser is turned off
- Pyrometer monitors temperature from superheated to undercooled condition
- Video monitors sample shape with 2-D image used to indicate 3D volume
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Key points to verify
- Does overall mass change? (yes, impacts density)
- Does this cause a composition shift? (no)



Total Evaporation
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Langmuir Equation

Total loss in ESL
δm = 3.4% overall

all constituents
δm,i < 1% in ESL

negligible
shift in
composition

Predicted total mass loss as a function of time at temperature
- At high temperature, mass is lost faster
- Analysis requires tracking of each chemical species



Observed composition shift negligible
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Element

Initial

Composition 

(%)

MAT-1254

Arc melted (%)

Mat 1256

Processed in 

ESL (%)

Mat 1257

Processed in 

ESL (%)

Al 5.69 6.31 5.98 6.04

Co 10 10.2 9.82 9.04

Cr 6.5 3.72 2.34 2.88

Ti 0.86 0.77 0.75 0.69

ASTM E 1097-12 Direct current plasma emission spectroscopy
Luvak Inc., Boyleston MA 01505



Model Results Tracking Each Constituent
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Pre arc melting:                35.69 mg

Post arc melt mass:          35.63 mg

Post ESL mass:                34.48 mg

Observed Evaporation:    1.15 mg

Predicted Evaporation:    0.84 mg

All constituents vary by less than 

1% from their initial composition

Aluminum does not evaporate!



Correction for Evaporation
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Langmuir Equation

ρuncorrected = -0.8707±0.0798 (T-Tm) + 8146.1±4.0
ρcorrected = -0.8460±0.0690 (T-Tm) + 8115.2±4.0
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Evaporation has a significant 
influence on the accuracy of the 
measurement but only a small 
influence on precision.

This is because much of the 
evaporation occurs before the 
test is run during pre-melt 
processing.



Density
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Damping Analysis

Viscosity

Pulsed Oscillation Testing
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FFT Analysis

Surface Tension
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𝜇 = -0.0298 (T-Tm) + 10.207
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Viscosity Results
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𝜇 = -0.0499 (T-Tm) + 14.889
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Surface Tension Results
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σ = -0.0032 (T-Tm) + 1.77121.60
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Conclusions
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• Due to small sample sizes
– Samples are nearly spherical for better quality raw data.

– Evaporation must be tracked since sample size changes
• this impacts density, surface tension and viscosity measurement.

– Tracking of individual species shows composition shifts during testing 
are insignificant.

• Density evaluations show high technique accuracy when 
corrected for evaporative losses during pre-processing; 
precision is only slightly improved.

• More work is required to obtain an understanding of the 
statistics for reporting surface tension and viscosity results as 
a function of temperature.



Future Work
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• Expand the range of alloys investigated by initiating 
study of Additive Manufacturing alloys.

• Experiments on the Japan Aerospace eXploration
Agency (JAXA) Electrostatic Levitation Furnace (ELF) 
to investigate and manage statistical error to improve 
both accuracy and precision of each measurement.

• Continue to develop new techniques to track 
evaporation to minimize and control the potential for 
composition shifts during processing.
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