Marshall Space Flight Center Electrostatic Levitation Laboratory

Thermophysical Properties of Nickel-Based Superalloys

Michael P. SanSoucie Jan R. Rogers NASA Marshall Space Flight Center (MSFC), Huntsville, AL

> Xiao Xiao Jannatun Nawer Molly Pleskus Douglas M. Matson Tufts University, Medford, MA

Twentieth Symposium on Thermophysical Properties Boulder, C0 June 24-29, 2018

Motivation for the Investigation

A model of a casting process¹

- Need high quality thermophysical properties of high-temperature materials.
- These properties are critical for developing accurate models with predictive capability
 - Casting
 - Welding
 - Additive Manufacturing
- Measurements will improve manufacturing of propulsion components, leading to higher performance and higher reliability.
- More efficient and more reliable production of metallic parts for exploration, commercial, and industrial applications using these alloys.

Nickel-Based Superalloy Overview

Historical improvement in blade performance²

- Superalloys are key materials for
 - Turbopumps in chemical rockets
 - Components in jet engines for commercial and military applications
 - Development of advanced space hardware
- Demands for higher thrust, thrust to weight ratio, and fuel efficiency
 - Push engine operating temperatures and stresses higher
 - Thermal barrier coating design optimized
- Historical development
 - The first commercial nickel-based alloy development was done by the British in the early 1940s including Nimonic-75 and Nimonic-80 alloys
 - Conventional casting alloys continued to improve in terms of temperature capability over the next several decades
 - Directional solidification and single crystal casting have allowed further improvements

References:

https://www.grc.nasa.gov/WWW/StructuresMaterials/AdvMet/research/turbine_blades.html
L. Langston and S. Jan, "Gems of turbine efficiency", ASME, Mechanical Engineering; New York 136 (9) (2014) pp 76-77.

Approach

- Samples were arc melted at MSFC
- Processed in the electrostatic levitator at MSFC
- Data was analyzed by Tufts University
 - Sample evaporation
 - Density
 - Surface Tension
 - Viscosity

A levitated sample in the MSFC electrostatic levitator.

Collaborations

Glenn working on the ESL Lab's Main Chamber

Tufts University

- Postdoc Xiao Xiao
- PhD student Jannatun Nawer
- BS student Molly Pleskus
- Professor Douglas Matson

MSFC Electrostatic Levitation (ESL) Laboratory

- Michael SanSoucie
- Jan Rogers
- Paul Craven
- Trudy Allen
- Glenn Fountain
- Curtis Bahr

Professor Matson at MSFC

ESL Hardware

MSFC electrostatic levitator

- Electrostatic levitator
- High vacuum (~10⁻⁷ torr)
- 200W Nd:YAG heating laser
- Pyrometer for temperature measurement
- High-speed camera
 - 30fps @ 512x512 for density
 - 1000fps @ 512x512 for surface tension & viscosity
- Small sample size (~40 mg, ~2 mm DIA)
 - Spherical shape
 - Evaporation tracking required

ESL Processing Conditions

Measurement of Density

Typical thermal cycle – rapid cooling after laser is turned off

- Pyrometer monitors temperature from superheated to undercooled condition
- Video monitors sample shape with 2-D image used to indicate 3D volume

 $\delta_m = \sum_{i=1}^n \left\{ \int_0^t \frac{\alpha_i \left(\gamma_i c_i P_{v,i} - P_{\text{ref}} \right) A_i}{\sqrt{2 \pi M_i R T}} dt \right\}$

Does this cause a composition shift? (no)

Total Evaporation

Langmuir Equation

$$\delta_m = \sum_{i=1}^n \left\{ \int_0^t \frac{\alpha_i \left(\gamma_i c_i P_{v,i} - \mathbf{P}_{ref} \right) A_i}{\sqrt{2 \pi M_i R T}} dt \right\}$$

Total loss in ESL $\delta_m = 3.4\%$ overall

all constituents $\delta_{m,i}$ < 1% in ESL

negligible shift in composition

Predicted total mass loss as a function of time at temperature

- At high temperature, mass is lost faster
- Analysis requires tracking of each chemical species

Observed composition shift negligible

ASTM E 1097-12 Direct current plasma emission spectroscopy Luvak Inc., Boyleston MA 01505

Element	Initial Composition (%)	MAT-1254 Arc melted (%)	Mat 1256 Processed in ESL (%)	Mat 1257 Processed in ESL (%)
Al	5.69	6.31	5.98	6.04
Со	10	10.2	9.82	9.04
Cr	6.5	3.72	2.34	2.88
Ti	0.86	0.77	0.75	0.69

Model Results Tracking Each Constituent

Pre arc melting:	35.69 mg
Post arc melt mass:	35.63 mg
Post ESL mass:	34.48 mg

Observed Evaporation: 1.15 mg Predicted Evaporation: 0.84 mg

2000.00

All constituents vary by less than 1% from their initial composition

Aluminum does not evaporate!

——Temp (K)

¹¹

Correction for Evaporation

Raw data

Corrected for

evaporation

100

Langmuir Equation

8300

8200

8100

8000

7900

-100

Density (kg/m³)

$$\delta_m = \sum_{i=1}^n \left\{ \int_0^t \frac{\alpha_i \left(\gamma_i c_i P_{v,i} - \mathbf{P}_{ref} \right) A_i}{\sqrt{2 \pi M_i R T}} dt \right\}$$

Evaporation has a significant influence on the accuracy of the measurement but only a small influence on precision.

This is because much of the evaporation occurs before the test is run during pre-melt 150 processing.

$$\begin{aligned} \rho_{uncorrected} &= -0.8707 \pm 0.0798 \ (T-Tm) + 8146.1 \pm 4.0 \\ \rho_{corrected} &= -0.8460 \pm 0.0690 \ (T-T_m) + 8115.2 \pm 4.0 \end{aligned}$$

50

0

ΔT (K)

-50

CMSX 10

Density

Pulsed Oscillation Testing

Viscosity Results

Surface Tension Results

Conclusions

- Due to small sample sizes
 - Samples are nearly spherical for better quality raw data.
 - Evaporation must be tracked since sample size changes
 - this impacts density, surface tension and viscosity measurement.
 - Tracking of individual species shows composition shifts during testing are insignificant.
- Density evaluations show high technique accuracy when corrected for evaporative losses during pre-processing; precision is only slightly improved.
- More work is required to obtain an understanding of the statistics for reporting surface tension and viscosity results as a function of temperature.

Future Work

- Expand the range of alloys investigated by initiating study of *Additive Manufacturing* alloys.
- Experiments on the Japan Aerospace eXploration Agency (JAXA) Electrostatic Levitation Furnace (ELF) to investigate and manage statistical error to improve both accuracy and precision of each measurement.
- Continue to develop new techniques to track evaporation to minimize and control the potential for composition shifts during processing.

Acknowledgments

- NASA Space Life and Physical Sciences Research and Applications (SLPSRA)
- NASA Grant NNX17AH41G at Tufts
- NASA Grant NNX16AB59G at Tufts
- Assistance running the experiments
 - Trudy Allen and Glenn Fountain at MSFC
 - Stan Barlow and Sangho Jeon at Tufts

