

SILICON CARBIDE PRESSURE SENSORS FOR VENUS ENVIRONMENT

R. S. Okojie¹, D. Lukco², R. D. Meredith¹, L. M. Nakley¹, and K. Phillips³ ¹NASA Glenn Research Center, Cleveland, OH 44135; *robert.s.okojie@nasa.gov*, (216)433-6522

²Vantage Partners, LLC, NASA Glenn Research Center, Cleveland OH, ³Sierra Lobo Corporation, NASA Glenn Research Center, Cleveland OH.

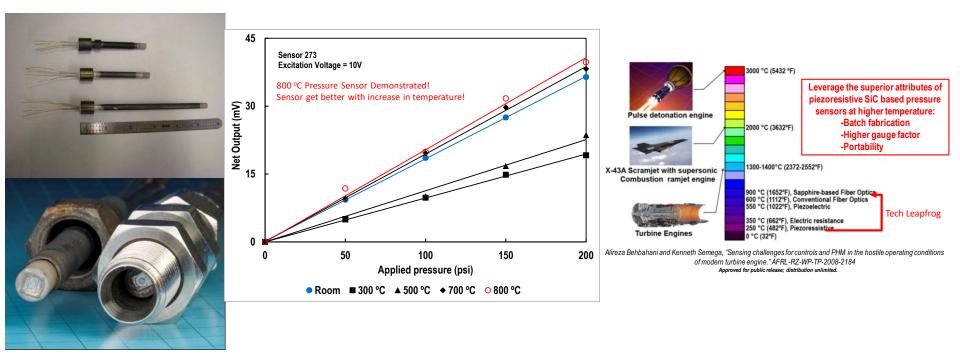
Primary Sponsor: NASA Transformational Tools and Technologies Project of the ARMD Task Support: Long Life In-Situ Solar System Explorer (LLISSE) of SMD

Motivation

Interest in Venus has been stimulated by the ongoing debate about Earth's planetary evolution, particularly in regards to its climate, and NASA has proposed a flagship mission to Venus to be launched in the near future. Quantifying how the Venus evolution ran its course will greatly aid researchers trying to model Earth's climate dynamics.

Objective

To determine the long-term robustness and survivability of semiencapsulated piezoresistive silicon carbide pressure sensors in a simulated Venus atmosphere where pressure ~90 bar, temperature ~ 465 °C, and aggressive reactive chemistry (SO₂, COS, etc). This is with the goal of infusion into future Venus science missions



Legacy SiC Pressure Sensors for Aero-Engine Applications Demonstrated at 800 °C!

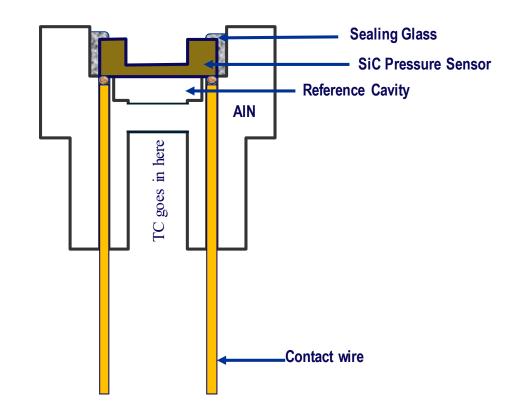
NASA SiC Pressure Sensors

Net Output vs. Static Pressure


Technology Enabling Space

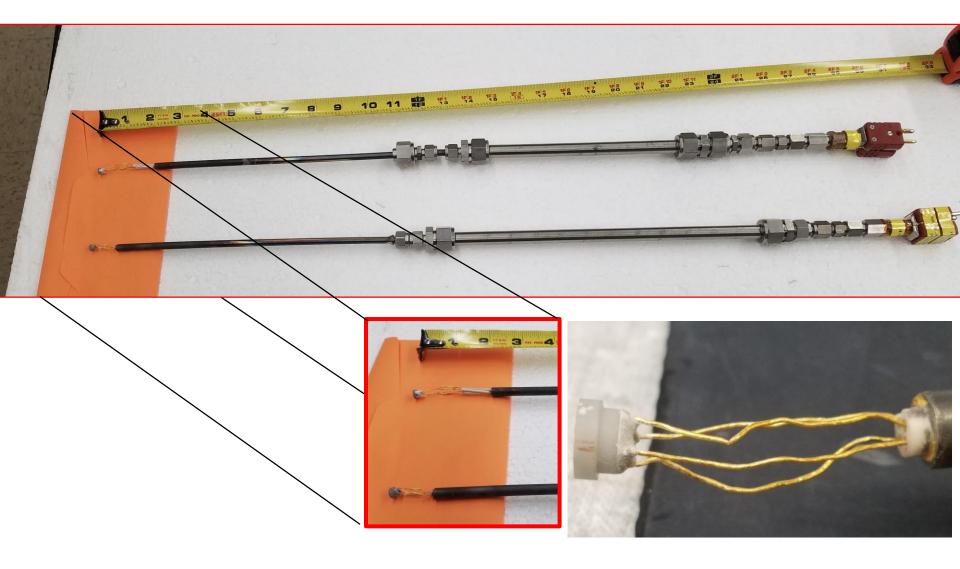
Infusion into Venus missions require material and structural considerations to survive the chemistry and high pressure

Glenn Extreme Environment Rig (GEER)



Simulated Venus Atmospheric Conditions

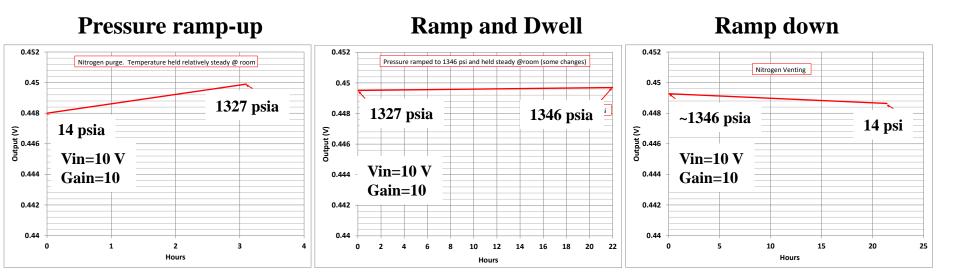
Temperature: $460 \,^{\circ}\text{C}$ +/- $10 \,^{\circ}\text{C}$ Pressure: $1356 \,\text{psia}$ +/- $20 \,\text{psia}$ Chemistry: "Venus atmosphere" $96.5\% \,^{\circ}\text{CO}_2$, $3.5\% \,^{\circ}\text{N}_2$, $180 \,\text{ppm} \,^{\circ}\text{SO}_2$, $12 \,\text{ppm}$ CO, 51 ppm COS, 2 ppm H₂S, 0.5 ppm HCl, 2.5 ppb HF Range: SO_2 concentration range 100-200 ppm



Plug-In Type SiC Absolute Pressure Sensor

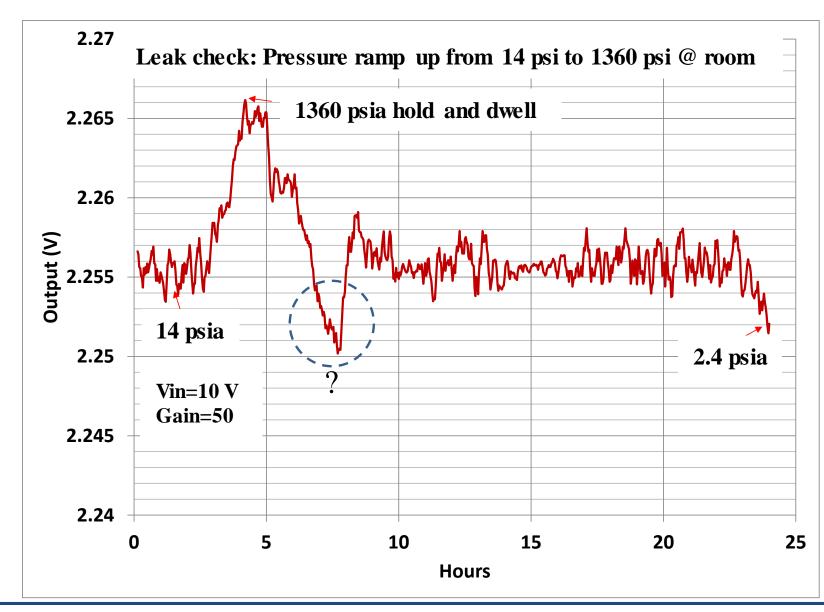
Plug-In Type SiC Pressure Sensor Extension for Insertion into GEER

GEER Test Conditions

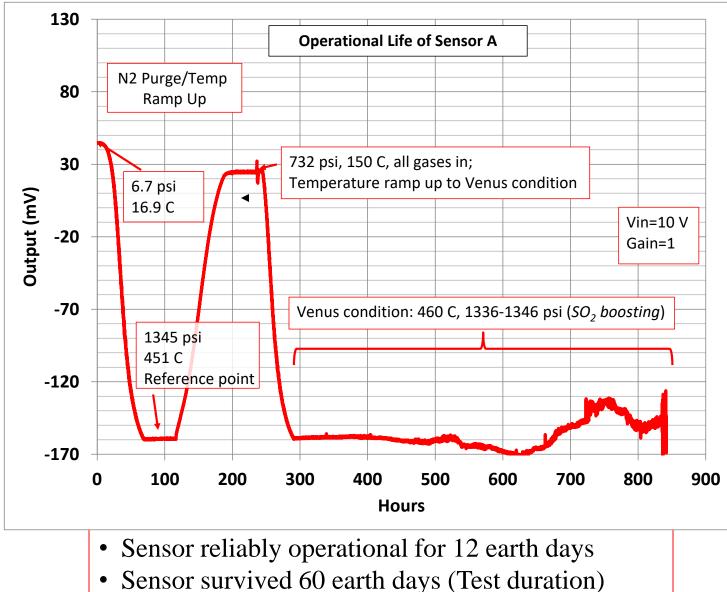


	Vessel leak checked to 1400 psia at ambient temperature with high purity nitrogen. Next, the vessel will be purged of residual air and nitrogen by performing three pressure/vacuum cycles. The vessel will be left under vacuum after the last purge cycle in preparation for the specialty gas fill. Constituents of Venus atmosphere will be delivered to the vessel at ambient
	temperature starting with the vessel at negative pressure. The fill process will begin with CO ₂ which will continue to flow continuously as the remaining specialty gas are filled. Specialty gases will be filled in the following order: Inlet valve closed to isolate the gas mixture within the vessel. Vessel temperature set point set to 456 C and the heaters will increase at 7 C/hr until the set point is
Shutdown	reached. Upon completion of test, the vessel temperature set point will be reduced to 150 C. During cool down, the gas mixture will remain inside the vessel. Once the average gas temperature reaches 150 C, the mixture will be vented and the vessel will be thoroughly purged with dry nitrogen. The heaters will maintain an average internal temperature of 150 C during venting and purging. Once the purge is complete, the heaters will be turned off allowing the vessel to cool to ambient temperature. A small amount of nitrogen will be left inside the vessel during the final cool down to maintain positive pressure inside the vessel.

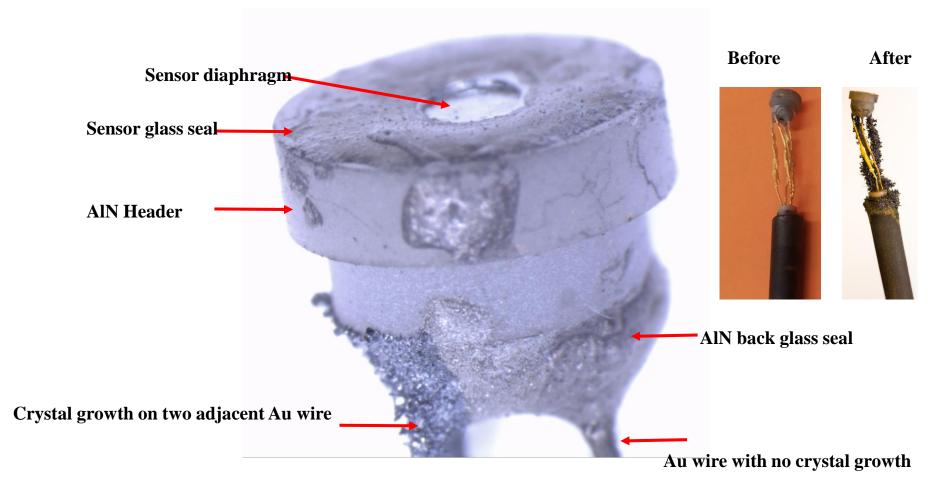
Room Temperature SiC Pressure Response in GEER Chamber


(Purge and Vent Steps at room temp)

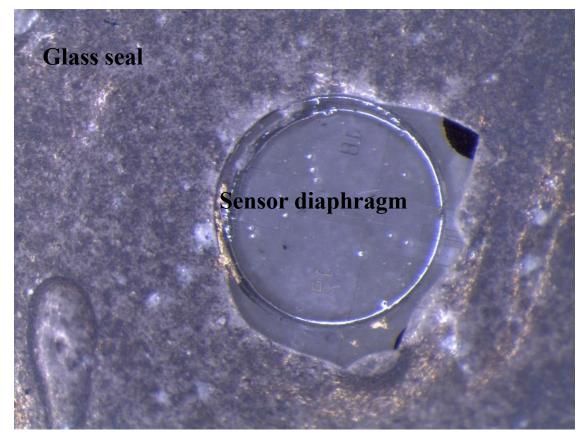
Sensitivity~0.21 µV/psi


SiC Pressure Sensor Response during GEER Chamber

SiC Pressure Sensor Operational Life in GEER

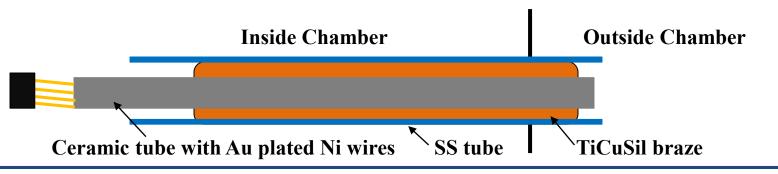


Post GEER Chamber Analysis


Post GEER Chamber Analysis

Post GEER Chamber Analysis

Sensor Top View



- Sealing Glass and sensor remained intact
- AIN header intact
- No loss of reference cavity

Key Observations

Two reaction paths:

- 1. TiCuSil braze material between ceramic tube and stainless steel tube
 - Cu and Ag sulfide crystals grow outward and eventually over the Au wires terminals.
 - Touching of the crystal between wires would result in shunt resistance.
- 2. Au-plated Ni wire in individual ceramic tube holes
 - Ni diffuses out of Au plating and reacts with SO₂ to form nickel sulfide.
 - Continued consumption of the Ni will result in gradual increase in resistance and sensor output

Materials Tested in Simulated Venus Atmosphere

Devices	Materials	Outcome
Electronics Packaging	Pb	PbS
	Al_2O_3	No reaction
Insulation	CaO	$CaSO_3$, $CaSO_4$
SiC Electronics	Pt	PtS; fibers when present as thin film
	Pt (in the presence of Au)	PtS spheres
	Au	No reaction, but mobile
	Ir	No reaction, but mobile
	SiC	No reaction
	SiO_2	No reaction
Feedthrough Materials	Cu	Cu ₂ S crystals
	Ni	NiS crystals
	CuBe	Cu ₂ S crystals; Cl found on surface
SiC Pressure Sensor	Kovar (Ni-Co-Fe)	NiS, Fe _x O _y
	AIN	No reaction
	Ag-Cu Braze	segregation into Cu ₂ S and Ag; Ag mobile
GEER Components	Inconel 625 (Ni-Cr-Mo-Fe)	NiS, Cr_xO_y
	304 SS	Mirror finish, low corrosion rate
	Al foil/Mg doped	MgO on surface, MgF inner layer,
		Al bulk no reaction

Table 4 Tested Materials with Corresponding Outcomes

Lukco, D. et al, Earth and Space Science, *doi.org/10.1029/2017EA000355*

Summary, Conclusion, and Future Plans

- Sensor room temperature test shows good linear response to pressure
- > Sensor stable and reliably operational for ~ 12 earth days
- Sensor physical structure survived 60 earth days of testing
- Primary failure mechanism : Gradual NiS formation on Au-plated Ni wire resulted in changes in wire resistance
- ➤ Long term reliable operation beyond 12 days is in the works
- > Plan to integrate with temperature sensor and electronics in progress
- Open to collaboration for infusion into any Venus science mission architecture

National Aeronautics and Space Administration

Thank You!