

Convergent Aeronautics Solutions Project Transformative Aeronautics Concepts Program

AIAA Aviation 2018

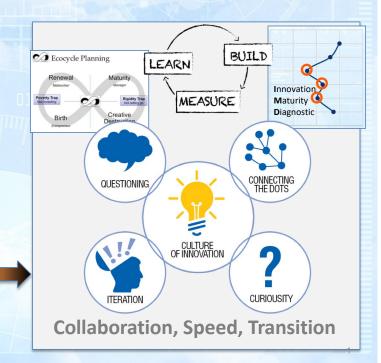
June 27, 2018

Isaac López

CAS Project manager

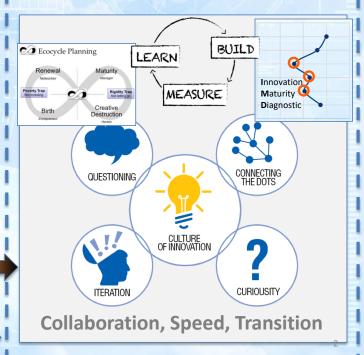
NASA Glenn Research Center

CAS Mission

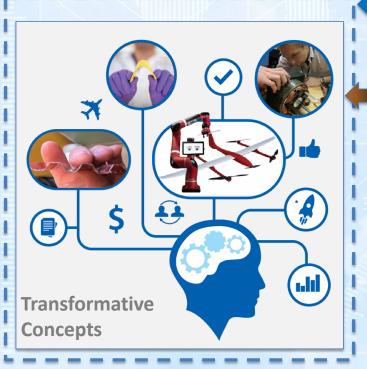


Demonstrate feasibility of transformative concepts and introduce cultural change to align ARMD and the external environment.

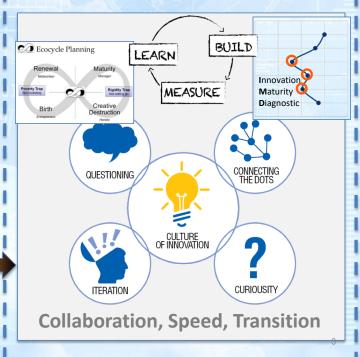
CAS Mission



Demonstrate feasibility of transformative concepts and introduce cultural change to align ARMD and the external environment.



CAS Mission



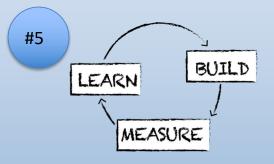
Demonstrate feasibility of transformative concepts and introduce cultural change to align ARMD and the external environment.

CAS Activities coming after this presentation

	Activity
Round 2 (2017)	Compact Additively Manufactured Innovative Electric Motor (CAMIEM)
Round 2 (2017)	Conformal Lightweight Antenna Structures for Aeronautical Communication Technologies (CLAS-ACT)
Round 2 (2017)	Fostering Ultra-Efficient, Low-Emitting Aviation Power (FUELEP)
Round 2 (2017)	LIthium-Oxygen (battery for) NASA (LION)
Round 2 (2017)	Spanwise Adaptive Wing (SAW)

CAS Activities

Innovative Ideas that are -


#2

Convergent

#3

... Inter-Discipline, Inter-Center, Non-Traditional Partners

Rapidly Executed
... Learn Fast & Move On

- Competitively Selected
- Light Project Management

#4

Feasibility Focused

... Can it Work?

... As ONLY NASA Can

NASA ARMD Six Strategic Thrusts

Safe, Efficient Growth in Global Operations Enable full NextGen and develop technologies to substantially reduce aircraft safety risks

Innovation in Commercial Supersonic Aircraft Achieve a low-boom standard

Ultra-Efficient Commercial Vehicles

Pioneer technologies for big leaps in efficiency and environmental performance

Transition to Alternative Propulsion and Energy Characterize drop-in alternative fuels and pioneer low-carbon propulsion technology

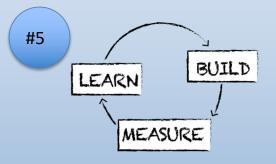
Real-Time System-Wide Safety Assurance
Develop an integrated prototype of a real-time safety monitoring and assurance system

Assured Autonomy for Aviation Transformation

Develop high impact aviation autonomy applications

CAS Activities

Innovative Ideas that are -


#2

Convergent

#3

... Inter-Discipline, Inter-Center, Non-Traditional Partners

Rapidly Executed
... Learn Fast & Move On

- Competitively Selected
- Light Project Management

#4 Eq. 3

Feasibility Focused

... Can it Work?

.. As ONLY NASA Can

AVIATION 2018 - ATIO.TF-11

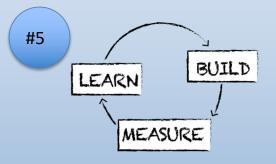
CAS is Focused on Rapid Feasibility Assessment

What's a Feasibility Assessment and how is it different than a technology demonstration effort?

- Feasibility Assessment is Technology Evaluation
 based on extensive investigation and research to support the process of decision making.
 Short Term (0.5-2.5 yrs), rapid "build-measure-learn" assess feasibility and move on
 - Understand where the concept works and where it does not
 - Understand the concept's broader applicability
 - Push the boundaries of concept effectiveness (even taking the concept to failure)
 Such as determine: When, How, and To What Extent, ... to Use the Concept
 - Consider important real-world "ilities" e.g. Maintainability, Community Acceptability, Fly-ability, Cost, Interoperability, etc.
- Not to suggest that all "ilities" will be considered, but identify the most important challenges and have them inform the feasibility approach
- A successful feasibility assessment may determine that the concept doesn't work

CAS Activities

Innovative Ideas that are -


#2

Convergent

#3

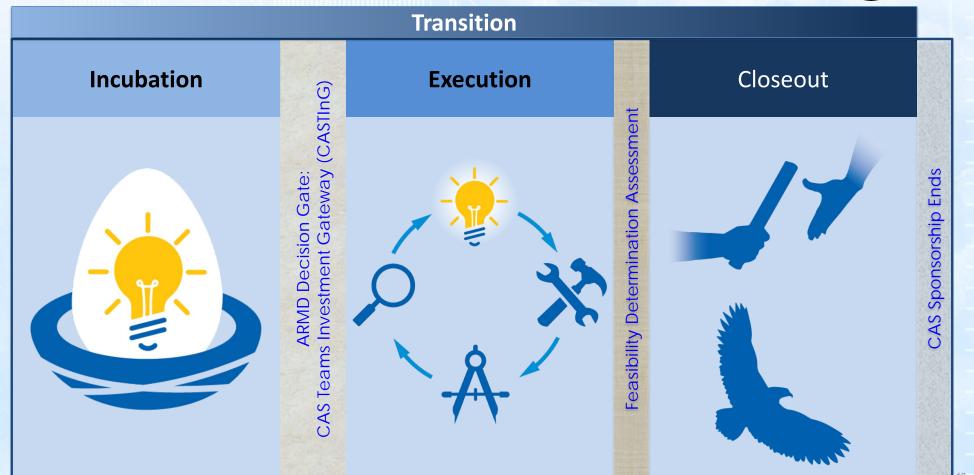
... Inter-Discipline, Inter-Center, Non-Traditional Partners

Rapidly Executed
... Learn Fast & Move On

- Competitively Selected
- Light Project Management

#4

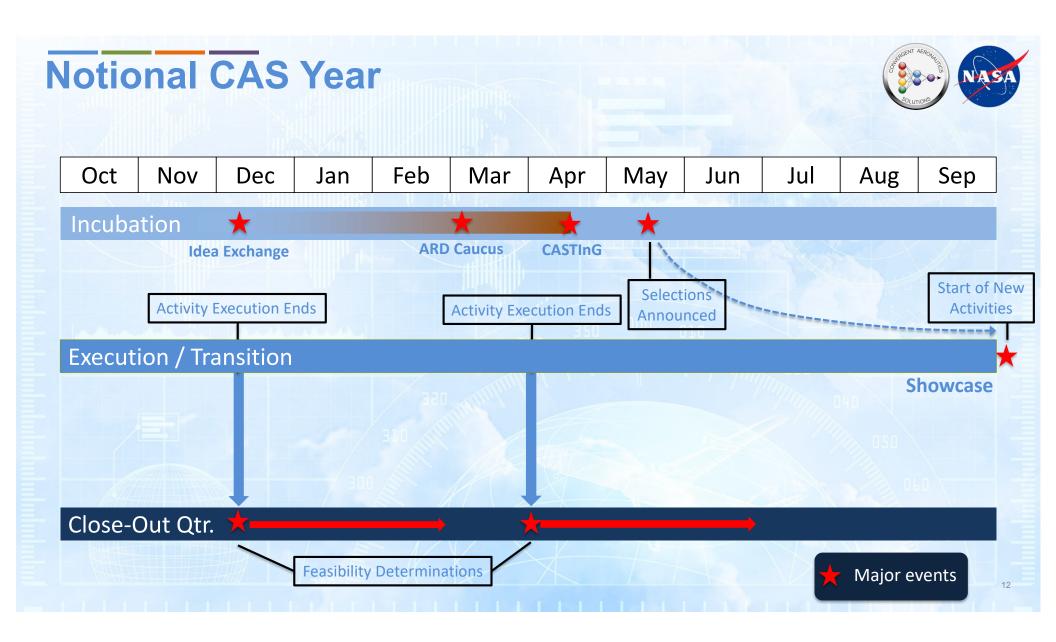
Feasibility Focused


... Can it Work?

Managed by Phases

CAS FY18 Project Portfolio (FTE Allocations)

	Quarters in Execution										Thrusts/Outcomes				Proposed FTE/Centers											
	FY17 Q1	FY17 Q2	FY17 Q3	FY17 Q4	FY18 Q1	FY18 Q2	FY18 Q3	FY18 Q4	FY19 Q1	FY19 Q2	FY19 Q3	FY19 Q4	FY20 Q1	FY20 Q2	FY20 Q3	FY20 Q4	1	2	3	4	5	6	ARC	AFRC	GRC	LARC
Y18 (Round 3) N	ew Starf	t Sub-Pr	ojects																							
ATTRACTOR			13												4500		F	1 2			F	M,F	X	X	1111	Х
Fit2Fly															1111			15	240		N,F	N,F	100		X	Х
QTech			M														М		23	×	M,F	M,F	X		X	
Y17 (Round2) Su	b-Proje	cts																								
LION																			Α	Α	200		X	Х	Χ	
SAW													4					Α	Α				(; '	X	Χ	Х
FUELEAP													350	0.0					Α	Α				X	Χ	X
CAMIEM												ıΠ				טענ	п	en i	Α	M, F	- 10			Х	Х	Х
CLAS-ACT													TTTI			I/IIII	M, F		M,F			F	Х	Х	Х	Х
Y16 (Round1) Su	b-Proje	cts																								
Learn2Fly									חבב		Mer.				- 1		F	// "	F	2		F				Х
Digital Twin																			М	4/17	N,M	784				Х
MADCAT											V.		7						F				Х			
AOS4UAV								لاساد					/									F	Х			
M-SHELLS											1								M,F	M,F			Χ		Х	Х
HVHEP										18		100					7		_	M,F			Х	11 B	Х	
			777////			/			1/4										W.L			75				


quarters in execution quarters in transition/closeout transition from CAS to Mission Projects

P Primary Thrust

S Secondary Thrust

Outcomes N: Near Term (2015-202

X Home Center of
Principal Innovator
X Partnering Center

PROJECT LEVEL

PM: Isaac López DPM: Marty Waszak

Center Liaisons: Starr Ginn (AFRC), Dr. Greg Dorais (ARC), Dr. Jerry Welch (GRC), Dan Williams (LaRC)

Execution Manager: Debbie Martínez Transition Manager: Peggy Cornell Business Lead: Christina Morris Scheduler: Donna Gilchrist

Center Liaisons	Ex	Transition Manager						
Incubation		Transition 8	Close Out					
	Round 1 (FY16- 18)	Round 2 (FY17-19)	Round 3 (FY18-20)	Round 0 (FY15) SCEPTOR	Round 1 (FY16-17)			
Next FY+[Round N]	AOS4UAV	CAMEIM	ATTRACTOR	X-Plane	Digital Twin*			
Concepts	M-SHELLS*	CLAS-ACT FUELEAP	Fit2Fly QTech	DELIVER*	MADCAT*			
		LION	Qrear	Carry-in: VIPR3, Seedling,	L2F*			
	* Activities in transition endi	ng 3QFY18	* Activities in transition	* Activities in transition ended 1QFY18				

Completed CAS Activities

	Activity
Round 1 (2016)	High Voltage Hybrid Electric Propulsion (HVHEP)
Round 1 (2016)	Mission Adaptive Digital Composite Aerostructure Technologies (MADCAT)
Round 1 (2016)	Learn to Fly (L2F)
Round 1 (2016)	Multifunctional Structures for High Energy Lightweight Loadbearing Storage (M-SHELLS)
Round 1 (2016)	Digital Twin
Round 1 (2016)	Autonomy Operating System for UAVs (AOS4UAV) *

^{*} No summary presented

High Voltage Hybrid Electrical Propulsion

Objective:


 Evaluate feasibility of high voltage, variable frequency power system with selfhealing insulation, doubly fed electric generators and propulsors, settingless protection system, and zero energy fault clearing.

Impact:

 Significantly reduces power electronics (85%), switchgear (>50%), and distribution weight leading to efficiency improvements and lower emissions.

Results:

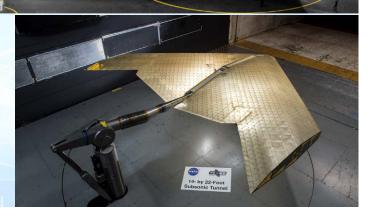
- The HVHEP System is effective at much <u>lower</u> power densities and bus voltage than the DC System!
- Ability to control real and reactive power (phase and voltage) using generator and propulsors provides more effective control than traditional power system method
- Propulsors become generators during throttle back and coast
 - Regenerative energy must be stored or dissipated
 - DFEM provides means to deactivate field to prevent regeneration rather than accommodate
- Ability to control load (ducted fan speed) provides more effective control than traditional power system methods
 - Traditional power system treats loads as disturbance with no ability for proactive control

MADCAT:

SOLUTIONS SOLUTIONS

Objective:

 To demonstrate feasibility of a novel aerostructure concept that takes advantage of emerging digital composite manufacturing and fabrication methods to build high stiffness-to-density ultra- light structures (i.e. a digital materials (discrete, digitized structures) approach to making an ultra- lightweight and adaptable (reconfigurable) wings.)


Impact:

- Scalable, cost effective design and manufacturing structures.
- High stiffness-to-density ultra-light aerostructures
- New mission objectives

Results:

 The proposed digital aircraft concept proved to be feasible for achieving aerodynamic performance with variable aerostructure stiffness, which will enable new mission opportunities

Learn to Fly

Objective: Develop Self-Learning Airplane Technologies

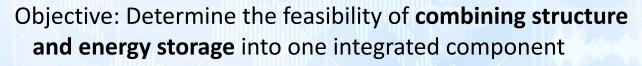
Flight tests of novel configurations with no ground-based testing,
 with aircraft autonomously developing models and control strategy
 in flight – updating as it learns more about itself

Impact:

- Much lower cost/time for airplane development
- Safety / reliability improvement

Results:

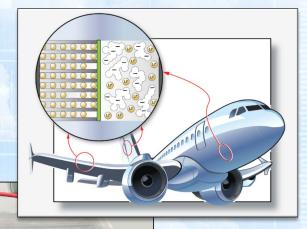
- Modeling: Automated real-time onboard global aerodynamic modeling was successfully demonstrated in flight
- Controls & Mixer: Desired vehicle response adjusted real-time, online based on the vehicle's dynamics
- Guidance: Control system learning enabled vehicle to follow a desired ground track for navigation
 - Vehicle learned best glide performance for landing
 - Repeatable, stabilized approach to landing demonstrated

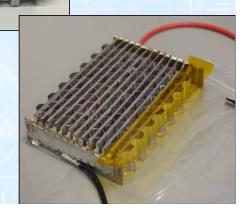


M-SHELLS: Multifunctional Structures for High Energy

Lightweight Load-bearing Storage

Impact: Significantly reduces the system level weight and volume by combining the structural function and energy storage function in one piece


✓ Increased range, Increased payload, Increased efficiency


Results:

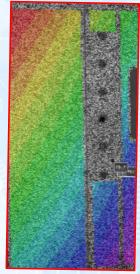
- Successfully demonstrated a multifunctional configuration that can store or deliver power while under mechanical load without electrochemical failure
- Showed potential weight savings if M-SHELLS multifunctional material could replace existing structure + batteries

Digital Twin

Objective:

 Expand the design space and accelerate certification of future structural configuration while assuring safety and reliability.

Impact:


 The digital twin concept combines as-build components, as-experienced loads and environmental conditions, and vehicle-specific characteristics to enable ultra-high fidelity models that can drastically reduce uncertainty and improve predictions of structural performance and service life.

Results:

- Digital Twin is feasible and could be implemented on the component level
 - Can use a variety of data input from physical twin
 - Can handle and quantify uncertainty in input data
 - Can be improved on the fly by reducing uncertainties (e.g. by upgrading sensors or improving damage model)

Needs improvement

