

Overview of the Kilopower System Development and Testing at the Nevada National Security Site

Max Chaiken Kilopower Project NASA GRC AIAA Briefing, June 20th, 2018

Introduction

- Kilopower
 - Space fission power source
 - Fast spectrum nuclear reactor
 - Surface or space power
- KRUSTY
 - Ground nuclear hardware test
 - 3 1/2 year development
 - Concluded with successful nuclear test in March 2018
- Future
 - Finish hardware development
 - Define system and programmatic requirements
 - Get into space!

- Kilopower Description
- KRUSTY Description
- Nuclear Reactor Dynamics
- Test results discussion
- Next steps

Kilopower System Overview

- Fast spectrum nuclear reactor
 - Uranium/Molybdenum high temperature metal core
 - Beryllium Oxide (BeO) radial and axial neutron reflectors
 - Boron Carbide (B₄C) control rod
- Heat pipe thermal transfer
 - Haynes 230 alloy pipes
 - Sodium working fluid
 - ~800 °C temperature
- Radiation shield
 - Lithium Hydride (LiH) neutron shielding
 - Tungsten or Depleted Uranium gamma shielding
- Stirling engine thermal power conversion
 - Radioisotope Power Systems heritage
 - High efficiency 30-40%
- Heat rejection radiators
 - Titanium-water heat pipes
 - ~100 °C temperature

Stirling power conversion

Haynes sodium thermal transfer heat pipes

LiH/Tungsten radiation shield

Reactor core w/ fuel, reflector, control rod

Kilopower Reactor Using Stirling TechnologY

- Collaboration between NASA and DoE
 - GRC, MSFC
 - LANL, Y12, NNSS
- Test performed at the Nevada National Security Site
 - In the Device Assembly Facility (DAF)
 - Using existing criticality control hardware (COMET test stand)
- Maintained budget and schedule
 - 3 1/2 year development
 - \$20M price tag split in a cost share with DoE
- First space nuclear hardware test in >50 years
 - SNAP-10A: Flown 1965
 - SP-100: Designed 1983-1995, no nuclear testing
 - Prometheus: Designed 2003-2005, no nuclear testing
- First new fission reactor design fully tested in 40 Years

KRUSTY System Components

- The KRUSTY test was designed to represent as many significant flight subsystems as possible
- Flight prototypic
 - Core
 - Reflector
 - Heat pipe material and fluid
 - Stirling engine heat conversion
- Missing
 - Startup using Boron Carbide control rod
 - Radiation shielding
 - Microgravity heat pipe operation
 - Only 2 engines, 6 simulators
 - Engines do not have optimized power level or thermal interfaces
 - Heat rejection radiators

KRUSTY Test Components and Instrumentation

- Thermocouples
 - Core, Heat Pipe, Engine, Gas temperatures
 - Over 140 in total
- Engine Parameters
 - Voltage
 - Current
 - Power
 - Piston Amplitude
- Vacuum Chamber Pressure
- Gas Flow
- Neutron Counters
- COMET Platen Position

Reactor Assembly

Control Room

The Nuclear Physics of Kilopower and KRUSTY

Fast vs. Thermal reactors

- Reactors grouped into two broad types based on the neutron energy spectrum during operation
- Fission neutrons born at energies following the Watt spectrum
- Fast reactors operate closer to the Watt spectrum
- Thermal reactors operate with "thermalized" or slow neutrons, achieved through moderation (i.e. scattering from high to low energies)

Idealized Watt Fission Spectrum

Fast vs. Thermal reactors

• Thermal reactors

- Needs a moderator to thermalize neutrons (e.g. water, graphite, beryllium)
- Moderator introduces potential positive reactivity feedbacks
- Fast reactors
 - No moderator
 - Can be smaller and simpler (in theory)
 - Needs higher enrichments due to smaller fission cross-sections
 - Allows for high degree of passive control and load following

http://www.world-nuclear.org/gallery/reactor-diagrams/pressurized-water-reactor.aspx

Nuclear chain reaction

- Effective neutron multiplication factor, k_{eff} , determines operation of a nuclear chain reaction
 - Ratio of number next generation neutrons over current generation
 - k_{eff} < 1 Subcritical, diminishing chain reaction, decreasing power
 - $k_{eff} = 1$ Critical, sustaining chain reaction, maintaining power
 - *k_{eff}* > 1 Supercritical, expanding chain reaction, increasing power
- *k_{eff}* is effected by what happens to neutrons in the reactor environment
- Calculated with probabilities, but governed by the law of large numbers

https://www.nuclear-power.net/nuclear-power/reactor-physics/nuclear-fission-chain-reaction/

Neutron inventory

- Neutrons are born through fission reactions
 - $U^{235} + neutron \rightarrow fission \, fragments + 2.4 \, neutrons \, (average) + 192.9 \, MeV$
 - $Pu^{239} + neutron \rightarrow fission fragments + 2.9 neutrons (average) + 198.5 MeV$
- Three main events can happen to a neutron once it is born
 - Absorbed by fuel leading to fission
 - Absorbed by material leading to transmutation
 - Scattered outside reactor
- Fate of neutrons determined by interaction cross-sections with materials in the reactor

Nuclear interaction cross-sections

- Determine the likelihood of a nuclear interaction
- Microscopic cross-section, σ
 - Isotope specific
 - Vary based on relative neutron energy
 - Resonance regions
 - Units of area (1 barn = $1 \times 10^{-24} \text{ cm}^2$)
- Macroscopic cross-section, Σ
 - Product of σ and atomic density (#/cm³)
 - Determine physical response of actual system
 - Units of inverse length (cm⁻¹)
- Total cross-section comprised of a summation of various categories
 - Capture, σ_c
 - > Absorption, σ_a
 - \succ Fission, σ_f
 - Scatter, σ_s

Comparison: U-235 to U-238

Cross-section temperature feedback

Microscopic Feedback	Macroscopic Feedback
Doppler broadening	Thermal Expansion
Increase in temperature widens the range of relative energies for each resonance peak	Expansion reduces mass density, and therefore atomic density
Overall effect is to increase resonance likelihood	Macroscopic cross-section is reduced
	Most noticeable in fuel, but affects other reactor components as well (e.g. BeO reflector)

UNBROADENED

E₀ ENERGY

https://www.nuclear-power.net/glossary/doppler-broadening/

DOPPLER BROADENED Can be positive or negative

Reactor Control

- Active control
 - Control rods
 - Startup, shutdown
 - Small adjustments over lifetime operation
- Passive control
 - Thermal feedback
 - Can be positive or negative
 - Integral to load following behavior
- Prompt vs. Delayed neutrons
 - Prompt neutrons are born during fission interaction, with a timeframe of ~10⁻¹⁴ seconds
 - Delayed neutrons are born during the radioactive decay of fission products, with a timeframe of ms to seconds
 - This difference in neutron production timeframes has extremely significant effects on nuclear reaction control
- Reactor control hinges on *delayed neutron fraction*, β
 - β is highly dependent on what fissile isotopes are present
 - Typical value of β for U-235 is around 0.0064 or 0.64% of the neutron inventory

Kilopower vs KRUSTY active controls

Reflector: Scatters leaked neutrons back into core

KRUSTY Test Active Reactivity Control Reflector raised on NNSS criticality-rated platen

Control rod: absorbs neutrons until it is removed

Kilopower Flight Active Reactivity Control Control rod removed by motor drive

- Relative change in k_{eff} from a critical state, defined as $\rho = \frac{k_{eff}-1}{k_{eff}}$
- Reactivity is a result of
 - Materials
 - Geometry
 - Feedback
- $\rho = 0$ for a critical reactor
- Widely used units are "dollars" and "cents"
 - $\frac{\rho}{\beta} = \$$
 - $\rho = \beta = \$1$ of reactivity
 - Intuitive response of reactor power to reactivity insertions
- At \$1 of positive reactivity prompt neutrons alone are sufficient to increase the neutron population, leading to power increases on extremely quick time scales (~10 µs, or the mean neutron lifetime)

- Power dynamics set by neutron multiplication
- Neutron multiplication set by nuclear interactions, which depend on:
 - Material cross-sections (reactor design)
 - Geometry (active control)
 - Temperature (passive feedback)
- Change in neutron multiplication is represented as reactivity
 - <\$0: subcritical, decreasing power</p>
 - \$0: critical, steady state power
 - \$0 \$1: delayed supercritical, controlled increase in power
 - >\$1: prompt supercritical, generally means a bad day for someone
- Reactivity added or subtracted either actively (control rod) or passively (feedback)
- Power not proportional to temperature, only to fission rate

Overview of KRUSTY Test Results

Full Test

- Operated for ~28 hours
- Nominal steady state
- Off-nominal responses
- Fission rate measured by neutron counters positioned around the experiment
- Fission rate does not provide a 1-to-1 correlation with nuclear power produced

Full Test

- Startup
- Break-in
- Power Transients
- Nuclear Transients
- Loss of Coolant Test
- Engine Restart
- SCRAM and Cooldown

Active Control

Active Control

0.00

-0.10

-0.20

-0.30

-0.40

-0.50

-0.60

-0.70

-0.80

-0.90

-1.00

Position (in)

·Core Average

- Control on a scale of mils •
- Small changes in geometry • can lead to large changes in reactivity
- Large reactivity worth of the • **KRUSTY** reflector control scheme responsible for these small control movements
- B₄C rod in flight system will • control over larger movement scales

Multiple effects on reactivity

- Fission rate changes even without change in reflector position
- Shows the significance of passive reactivity feedback

Load following

- Fission rate follows power
- Power does not necessarily follow fission rate

Constant Temperature variable power source

- Core temperature does not significantly change during power transients
- Power does not significantly have to change when core temperature changes

Components of power draw

- Two Advanced Stirling Engines (ASCs) producing electrical power
- Six Stirling Simulators approximating the missing engines
- N₂ gas for thermal power removal from engines and simulators

- Supercritical increase in power
- Reactivity feedback turns power over
- Active control used to maintain constant power during heat-up
- Short transient visible around one hour, what is it?

Startup

- Reactor power transient caused by heat pipe dynamics
- Heat pipes reach a more efficient heat transfer temperature and cool the core, causing a reactivity feedback

- Decreased engine power
- Increased simulator power
- Shut off simulator at radial position 0
- Shut off simulator at radial position 180
- Simulates heat pipe or engine failure

- Fission rate load follows exceptionally well
- Small damping oscillations as reactivity feedback effects work themselves out
- However...

- Core temperature remains almost unperturbed during power transients
- Small oscillations quickly dampen back to steady state operation

- Radial temperature distribution does change
- 0 and 315 position temps increase when simulator 0 shuts off
- Other temps decrease, average temp remains unchanged
- 135 and 180 position temps increase when simulator 180 shuts off

Engine results

- Two ASC engines
- Output of ~80-85 W each
- Thermal power removed by N₂ gas rather than radiators

Engine results

- Engines controlled by setting the alternator voltage
- Power can still change without change in commanded voltage

Engine results

- Temperature of the engine heat acceptor also changes power
- Heat rejection temperature of the engine also plays a part, and effects the selection of radiator components

Nuclear transients – active control

NASA

- Raise and lower reflector platen to perform active control transients
- Core temperature changes proportionally to change in reactivity control

Nuclear transients – active control

- Nuclear power changes slightly due to lack of fine control on stirling engine power
- Less steady state change than during power transients
- Higher oscillations than during power transients due to higher changes in core temperature

Loss of Coolant

Core Temp vs. Total Power Draw

Core Average ----- Total Power

- Loss of coolant simulated by • turning off engines and gas flow to simulators
- Core temp is not significantly ulleteffected, highlighting the robustness of the passive control

Loss of Coolant

5000

1.E-05

9.E-06

8.E-06

7.E-06

6.E-06

5.E-06

4.E-06

3.E-06

2.E-06

1.E-06

0.E+00

28.00

Current (amps)

Ŀ.

Neutron Count

Total Power

---- Nuclear Count Rate

Power Draw vs. Fission Rate

- Fission rate again load follows
- Power drops by factor of ~5
- Fission rate drops by factor of ~2
- Points to significant thermal losses in test setup

Shutdown

- Reactor power drops quickly once reflector is dropped
- Unlike commercial reactors, fission • product decay power is not an issue for low power reactors

Shutdown

Core Temp vs. Reflector Position

- Core temperature drops slowly due to vacuum environment
- Offers a look into thermal losses at temperature during the test

Thermal Losses

- Core alone appears to be losing ~350 W at operating temperature
- Also losses from heat pipes, simulators, engines, structures
- Need to revisit a complete thermal model of the KRUSTY test set up

Performance Summary

Event Scenario	Performance Metric	KRUSTY Experiment	Performance Status
Reactor Startup	< 3 hours to 800 deg. C	1.5 hours to 800 deg. C	Exceeds
Steady State Performance	4 kWt at 800 deg. C	> 4 kWt at 800 deg. C	Exceeds
Total Loss of Coolant	< 50 deg. C transient	< 15 deg. C transient	Exceeds
Maximum Coolant	< 50 deg. C transient	< 10 deg. C transient	Exceeds
Convertor Efficiency	> 25 %	> 35 %	Exceeds
Convertor Operation	Start, Stop, Hold, Restart	Start, Stop, Hold, Restart	Meets
System Electric Power Turn Down Ratio	> 2:1 (half power)	> 16:1	Exceeds

- Metal core fast reactor provides simplest solution for a low mass passively controlled space nuclear reactor
- Kilopower system has excellent load following and fault tolerance capabilities
- DoE now has the procedure and test data to safely make baseline Kilopower reactor cores, significantly lowering risk for future development
- Small teams with achievable, step-by-step milestones can succeed even in nuclear development programs, a field notoriously susceptible to cancellations

Kilopower Next Steps

- Hardware development
 - Radiation shield trades (B₄C vs. BeO vs. LiH)
 - Redesign heat pipes for microgravity environment (add an internal wick)
 - Develop appropriately sized Stirling engines and controllers (highest risk)
- System-level studies
 - Life test as much as possible
 - Fission radiation environment vs. space radiation effects on electronics
 - Optimize mass
- Mission/programmatic studies
 - Launch safety/security
 - Missions enabled by fission power
 - Multi-mission architecture vs. specific mission designs

The Future of Kilopower

Questions?