

NASA's Magnetic Gearing Research for Electrified Aircraft Propulsion

Dr. Justin	Vivake	Thomas
Scheidler	Asnani	Tallerico

NASA Glenn Research Center Materials and Structures Division Rotating and Drive Systems Branch

AIAA/IEEE Electric Aircraft Technologies Symposium Cincinnati, OH July 12, 2018

www.nasa.gov

Outline

- Motivation
- Principles of operation
- Technology development at NASA
- Future work
- Conclusions

- NASA set goals for aircraft efficiency, emissions, reliability, and noise [1]
 - Parallel large & small aircraft development
 - Economic benefit of alternative propulsion
- Electrified aircraft propulsion is a key enabler
- Most concepts use direct drive
- Geared drives are almost always mass optimal

Direct drive + Simpler - Non-optimal motor and/or fan

Geared drive

- + Optimized motor & fan
- More complex
- Potentially less reliable

National Aeronautics and Space Administration

Motivation

Mechanical gearing

Pros

- High / very high torque/mass
 (specific torque)
- + High / very high efficiency
- + Mature technology

Cons

- Contact-related wear & failure
 - Requires lubrication system(s)
 - Routine & costly maintenance
- Strong tonal vibration & cabin noise

Magnetic gearing

Pros

- + Non-contact
 - + No lubrication
 - + Low maintenance
- Easily integrated in electric machines
- + Potentially low vibration

Cons

- Unknown limits on specific torque & efficiency
- Magnet temperature limit
- Individual magnet interaction weaker than 1 gear tooth pair

Background

Key historical developments

- **1901** 1st invention
- <1960s primarily electromagnets</pre>
- 1966 SmCo magnets invented
- 1983 NdFeB magnets invented
- 2001 Concentric magnetic gear (CMG) mathematics

Why we selected CMG

- Concentric input & output is most logical for most concepts
- High specific torque
- Easily integrated in electric machines

Principles of Operation

• Example: 4:1 gear ratio, 24 pole pairs in ring (15° wavelength), 6 magnets per pair

Principles of Operation

• Example: 4:1 gear ratio, 24 pole pairs in ring (15° wavelength), 6 magnets per pair

 $N_{\rm modulator} = N_{\rm ring} + N_{\rm sun}$

Principles of Operation

- Key design variables
 - # of magnetic pole pairs ("teeth")
 - # magnets
 - Radial thickness of components & air gaps

 $GR = 1 + \frac{N_{\rm ring}}{N_{\rm sun}}$

R&D needs in the field

- Understand scaling
- Thermal management
- Data at higher speeds efficiency, continuous operation
- Enhanced high-speed efficiency
- Advancement of other configurations
 - Shaft angle change
- Combining inputs

• Higher ratios

Technology Development at NASA

2-1/2 year project

- Create fundamental understanding
- Compare to mechanical gearing for aerospace applications

Focus areas

- Phase 1 specific torque
- Phase 2 efficient high-speed operation
- Phase 3 motor/gear integration

Progress

- Phase 1 was recently completed.
- Two prototypes were developed to understand specific torque

10

Prototype 1 (PT-1)

- Goal: To gain design & manufacturing experience
- Loosely tailored to X-57 high-lift propulsors
 - Ø152 mm (6 in), ~4:1 speed reduction, 4500 rpm
- Off-the-shelf magnets
- Limited design optimization
- 3D printed structures

Lessons learned

- COTS magnets lead to large gaps between magnets in the sun
- Magnetic forces can deform/damage the structures during assembly

Specific torque

- <u>2D simulation</u>: 31 Nm/kg
 <u>35% reduction</u>
- Measurement: 20 Nm/kg

Demonstration of gear ratio

Prototype 2 (PT-2)

- Goal: Maximize specific torque
- Multi-stage parametric study
- Custom-shaped magnets

- Specific torque
- 2D simulation: 61 Nm/kg
 - 23% reduction
- Measurement: 47 Nm/kg (>2X PT-1)

Lessons learned

- Magnetic gap thickness fundamentally limits specific torque
- Mechanical design features that enable thinner magnetic gaps can improve specific torque

<u>Prototype</u>

Prototype Performance

	PT-1	PT-2	•
Torque (Nm)			-
2D simulation	53.0	178	
Measurement	34.0	134.8	
Mass (kg)			-
Active	1.0 (59 %)	1.7 (59 %)	
Structural	0.7 (41 %)	1.2 (41 %)	
Total	1.7	2.868	
Specific torque (Nm/kg)			
2D simulation	31	61	
Measured	20	47	

- Specific torque is only 3% less than an aircraft gearbox
- Conclusive comparison requires more data & higher TRL
 - Thermal & dynamic considerations neglected so far
 - Can reduce mass with smaller air gaps & better structural integration
 - Simultaneously need high specific torque & high efficiency
- Scaling to other torque levels is unknown at this point

Data courtesy of Dr. Tim Krantz (NASA GRC)

Test Rig Development

- Motivation: comprehensive characterization of CMG needed & very sparse description of experiments in literature
- **Purpose:** study components of electrified drivetrain
- Rotating system driven by 30 kW motor

Test Rig Development

Specialized features

- 1. Adaptability support table permits wide variety of test articles (including those with parallel offset between input & output shafts)
- 2. Very high precision efficiency calculated from output/input mechanical power $< \pm 0.02\%$ uncertainty in measured torque & speed couplings that impose low forces when misaligned
- Dynamic measurement sensors with 6 kHz bandwidth couplings with zero backlash lightweight & stiff components vibration isolation table

Test Rig Development

- Controlled parameters: motor's speed & dynamometer's torque
- Eddy current dynamometer
 - Suitable for emulating moderate to high speed propellers (~1,000 to 4,000 rpm)
- **Disc couplings:** several benefits, but low misalignment capability
- Measurements
 - Torque (capacity, ripple, & response to overload)
 - Speed
 - Transverse vibration
 - Temperature (bearings & prototype)
- Bearing loss vs speed measured & subtracted

Key specifications

Input	Max torque (continuous)	16 Nm
	Max speed	22,000 rpm
	Max power (continuous)	30 kW
Output	Max torque (continuous)	100 Nm
	Max speed	15,000 rpm *
	Max power (continuous)	30 kW
Measurement uncertainty at nominal state**	Torque	±0.02%
	Average efficiency	±0.11%
	Instantaneous efficiency	±0.13%
	Measurement bandwidth	6 kHz

* with minor balancing

** not including parasitic losses or the effect of misalignment

Future Work

Phase 2 – enable high efficiency at high speeds

- Data
 - Speed dependence of torque, efficiency, vibration, & temperature
- Design
 - Reduce driving mechanism for eddy currents
 - Unconventional solutions for magnet & pole piece containment
- Materials
 - Alternative or laminated magnetic materials
 - Electrically-insulating, thermally-conductive structural materials

Phase 3 – integration in electric motors

- Focus: motor-to-rotor stages of the quadrotor and tiltwing
- Explore several topologies from literature

17

Conclusions

- Studied torque-to-mass ratio of concentric magnetic gear
- Designed, built, and statically tested 2 prototypes
 - PT-1 rapid build, understand design & fabrication issues
 - **PT-2** nearly optimized torque-to-mass ratio
- Key conclusions from NASA's Phase 1 (understand & improve specific torque)
 - Strong coupling between mechanical & magnetic designs
 - Magnetic performance limited by mechanical features & min. gap size
 - Concentric magnetic gears are viable, at least for lower torque applications (e.g., emerging electrified short haul aircraft)
 - Improvement relies on reducing air gaps, better integration, lighter structures
- Developed a new 30 kW (40 hp) rotating test rig to study components of electrified drivetrains
 - Test a wide variety of test articles
 - Directly measure mechanical efficiency with very high precision
 - Measure dynamic responses and vibration

Acknowledgements

- NASA Revolutionary Vertical Lift Technology (RVLT) Project
- NASA Internal Research & Development Project

References

1. Constantinides, S., "The demand for rare Earth materials in permanent magnets," Proc. of 51st Conf. of Metallurgists, Niagra Falls, Canada, 2012.

19

