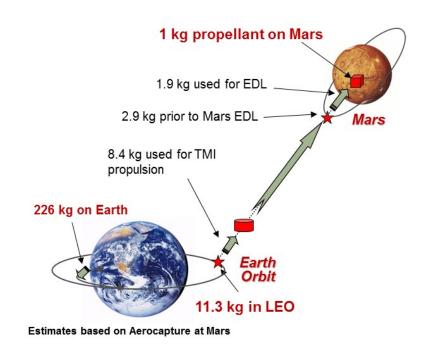
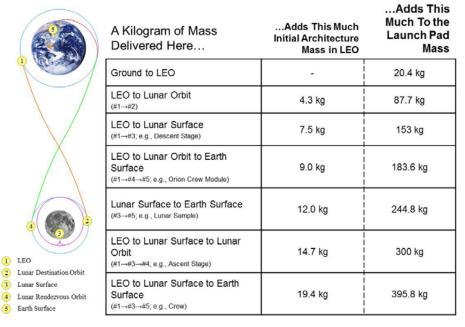


Why consider ISRU? A DRA 5.0 example...




For a Mars mission...

Oxygen only: Methane + Oxygen: 75% of ascent propellant mass; 20 to 23 mT 100% of ascent propellant mass: 25.7 to 29.6 mT

Every 1 kg of propellant made on the Moon or Mars saves 7.4 to 11.3 kg in LEO

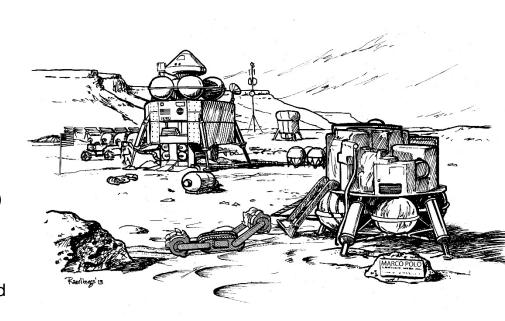
Potential 334.5 mT launch mass saved in LEO = 3 to 5 SLS launches avoided per Mars Ascent

Evolution of ISRU

Solar

- Solar panels enable on-board and destination power, as well as high lsp propulsion
- Space-based solar power could increase surface capabilities

Gravitational ISRU


 Gravity assists at the Moon or Mars reduce propellant requirements from Earth

Atmosphere

- Aerobraking, aerocapture, and aerodynamic EDL reduce propellant requirements from Earth
- Carbon dioxide (95%) and nitrogen (3%) can be acquired and used on Mars

Surface

- Water resources in the regolith and subsurface permit propellant (methane and oxygen) and consumable (water, oxygen, food, nitrogen) manufacture
- Regolith can provide bulk materials, radiation shielding, and refined resources
- Use in-situ manufacturing to reduce logistics needs from Earth

The Three Phases to ISRU

Prospect

- Evaluate potential resource locations:
 - Quantity: how much of the resource exists
 - Accessibility: how to get to and from the resource
 - Environment: temperature, pressure, gravity, lighting, radiation
- Demonstrate critical technologies, functions, and operations
- Evaluate environmental impacts and long-term operation on hardware:
 - dusty/abrasive/electrostatic regolith
 - radiation/solar wind
 - day/night cycles
 - polar shadowing

Test

- Perform critical demonstrations at scale and duration to minimize risk of utilization
- Obtain design and flight experience before finalizing human mission element design
- Potentially pre-deploy and produce product before utilization

Utilize

- Make products at scale to be used
- Integrate ISRU system with supporting systems (power, storage, controls)

Prospect

- Exploration to find the resources needed to enable production
 - Understanding physical and mineral content
 - Characterizing terrain and geology
- History of Mars prospecting/exploration
 - Viking
 - Mars Global Surveyor
 - Mars Odyssey
 - Spirit
 - Opportunity
 - Mars Reconnaissance Orbiter
 - Phoenix
 - Curiosity

- History of other prospecting
 - Hayabusa
 - OSIRIS-REX
 - Rosetta and Philae
- Upcoming missions to prospect
 - RESOLVE
 - ARRM
- Future prospecting needs
 - Water near human landing site
 - Water accessibility

What do we test?

Civil engineering

- Moving regolith and building berms
- Sintering landing pads

Consumable and Propellant Production

- Oxygen production
 - Carbon dioxide electrolysis (Mars 2020: 22 g/hr O2 over 50 sols)
 - Oxygen liquefaction and storage (Mars Pathfinder: ~0.5 kg/hr)
- Methane production
 - Water acquisition and electrolysis
 - Sabatier reaction
 - Methane liquefaction and storage
- Trash to propellant

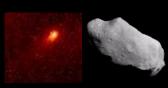
Manufacturing

- 3D printing
- Creating feedstock
- Metalworking

Where do we test?

Microgravity Processing & Mining

ISS & Space



ISRU Focus

- Trash Processing into propellants
- Micro-g processing evaluation
- In-situ fabrication

Purpose: Support subsequent robotic and human missions beyond Cis-Lunar Space

Near Earth Asteroids & Extinct Comets

ISRU Focus

- Micro-g excavation & transfer
- Water/ice prospecting & extraction
- Oxygen and metal extraction
- In-situ fabrication & repair
- Trash Processing

Purpose: Prepare for Phobos & future Space Mining of Resources for Earth

Phobos

ISRU Focus

- Micro-g excavation & transfer
- Water/ice and volatile prospecting & extraction

Purpose: Prepare for orbital depot around Mars

Planetary | Surface Processing & Minina

Moon

ISRU Focus

- Regolith excavation & transfer
- Water/ice prospecting & extraction
- Oxygen and metal extraction
- Civil engineering and site construction

Purpose: Prepare for Mars and support Space Commercialization of Cis-Lunar Space

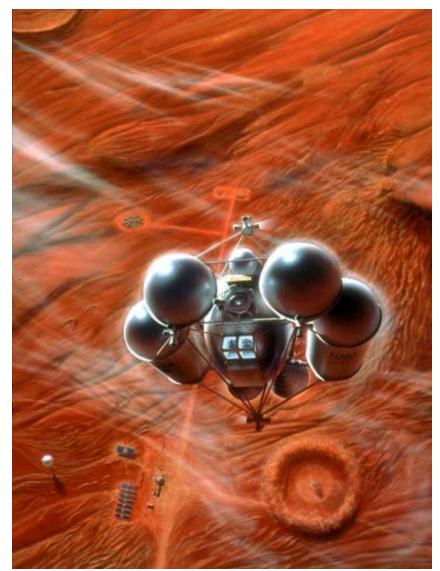
Mars

ISRU Focus

- Mars soil excavation & transfer
- Water prospecting & extraction
- Oxygen and fuel production for propulsion, fuel cell power, and life support backup
- Manufacturing & Repair

Purpose: Support human Mars missions

Utilization in the EMC



Mars Ascent Vehicle propellant production

- Replace 20-23 t of O₂ with ~1 t of ISRU system
- Pathway to all propellant production (CH₄ + O₂)

EMC Architectural and Campaign Impacts

- ISRU power requirement
 - Amount of product (20-23 t)
 - **Time** to produce product (1.5-3 years)
- Launch and Landing
 - Landed with MAV and integrated into descent stage
 - EMC studying distance of power system
 - All production complete prior to crew landing (DRA 5: crew departure)

Utilization Beyond EMC—What could be?

Transportation architectures and their impact

- Vehicle masses, payloads, energy requirements
- Propellant nodes: Moon, NEA, Phobos

Commercial resources and their impact

- Deep Space Industries
- Planetary Resources
- Shackleton Energy Company

Reusable systems

- Fuel cells for mobile power
- Hoppers for surface mobility and sample return
- Landers for transporting payloads

Surface Pioneering and Earth Independence

Consumables and Logistics

- EVA oxygen and water
- Food
- Packaging and clothing

Civil engineering

- Excavation
- Regolith sintering
- Construction

Metalworking

- Surface mobility
- Habitation
- Spares and replacements

The first missions to Mars will be used to prospect and test more advanced ISRU.

Current and Forward Work

- Architectural trade of CH₄ + O₂ vs O₂ only
 - Location
 - System requirements (Mars regolith study)
 - Integration
 - Testing and implementation

Pioneering trades

- Moon, NEAs, Phobos
- Prospect/test/utilize analysis
- What does a pioneering campaign look like?

Mars Human Landing Site Study

- Balancing science and human requirements
- How to evaluate a site for ISRU

