National Aeronautics and Space Administration

A Data-driven Analysis of a Tactical Surface Scheduler

Aviation Technology, Integration, and Operations Conference Atlanta, GA June 27, 2018

Introduction: ATD-2 Concept

Introduction: Scheduling Concepts

Overhead Stream Insertion

Surface Metering

Measure and assess the ability of the tactical scheduler to:

- 1. Balance demand with the available runway capacity
- 2. Generate accurate takeoff time predictions

- Background on ATD-2 IADS system at CLT
- Tactical scheduler design
- Balancing demand with available runway capacity
- Accuracy of TTOT predictions
- Challenges with scheduling in the tactical time frame
- Conclusions

- Background on ATD-2 IADS system at CLT
- Tactical scheduler design
- Balancing demand with available runway capacity
- Accuracy of TTOT predictions
- Challenges with scheduling in the tactical time frame
- Conclusions

Background on ATD-2 at CLT

Runway 36C: Predominantly departure only runway

Runway 36R: Dual use runway accepting both departures and arrivals

Data collected from **live operational system** in bank-2 between 2018-03-01 and 2018-04-31

- Background on ATD-2 IADS system at CLT
- Tactical scheduler design
- Balancing demand with available runway capacity
- Accuracy of TTOT predictions
- Challenges with scheduling in the tactical time frame
- Conclusions

Tactical Scheduler Design

- Background on ATD-2 IADS system at CLT
- Tactical scheduler design
- Balancing demand with available runway capacity
- Accuracy of TTOT predictions
- Challenges with scheduling in the tactical time frame
- Conclusions

Balancing Demand and Capacity

Runway 36R Runway Rate Analysis with 15 Minute Bin

Balancing Demand and Capacity

We observe a slight bias of scheduling more operations than are realized in a 15-minute time period. For runway 36R we believe this is a result of missed opportunities to depart in an available slot between two arrivals.

Balancing Demand and Capacity

We observe a slight bias of scheduling more operations than are realized in a 15-minute time period. For runway 36C we believe this is a result of runway crossings which the wake vortex separation constraints do not model.

- Background on ATD-2 IADS system at CLT
- Tactical scheduler design
- Balancing demand with available runway capacity
- Accuracy of TTOT predictions
- Challenges with scheduling in the tactical time frame
- Conclusions

Accuracy of TTOT Predictions

Accuracy of the TTOT prediction compared to the Actual Takeoff Time (ATOT) improves as the lookahead time decreases

VT D2

Accuracy of TTOT Predictions

The average <ATOT – TTOT> contains less bias than we would expect after observing the bias in the runway rate

Relationship Between Runway Rate and TTOT Prediction Accuracy

The bias in the runway rate does not show up in the average <ATOT – TTOT> because not all aircraft scheduled to take off in front of a given aircraft materialize

- Background on ATD-2 IADS system at CLT
- Tactical scheduler design
- Balancing demand with available runway capacity
- Accuracy of TTOT predictions
- Challenges with scheduling in the tactical time frame
- Conclusions

- Uncertainty in the underlying trajectory prediction
 - Earliest Off Block Time (EOBT)
 - Pushback and engine spool duration
 - Taxi route / taxi speed
 - Controller actions (runway switch / unexpected hold)
- Uncertainty in runway operations
 - Runway crossings on 36C
 - Missed departure slots on the dual use runway 36R
- Accurate TTOT predictions requires both
 - Accurate prediction of the rate operations are using the runway
 - Accurate prediction of the departure sequence

- Background on ATD-2 IADS system at CLT
- Tactical scheduler design
- Balancing demand with available runway capacity
- Accuracy of TTOT predictions
- Challenges with scheduling in the tactical time frame
- Conclusions

- We observed that the minimum-time wake vortex separation constraints resulted in scheduling departure operations at a slightly higher rate than the runway was operating
- We believe that for 36C this is due to runway crossings and for runway 36R this is a result of missed departure slots
- We were unable to recover this bias of over scheduling when we measured the average <ATOT – TTOT>
- We discovered that the bias did not materialize in <ATOT TTOT> because not all aircraft scheduled to take off in front of a given aircraft materialize due to uncertainty on the surface
- Future work will investigate new techniques to reduce inaccuracies in the scheduled runway rate and scheduled queue sequence