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Athena X-IFU Baseline Array Configuration

• Currently assumed X-IFU baseline
- Uniform Large Pixel Array - LPA.
- 3840 identical transition-edge sensor (TES) pixels,

0.25mm pitch.
- ΔEFWHM = 2.5 eV @ 7 keV.
- Baseline changed in Nov 2016 to make use of defocusing

optic (for high rate point source observations).
- Reduces count-rate requirement to ~ few cps, enables

reduced speed pixels (~x2-3) and more optimal use of
available readout resources (greater engineering margin).
‣LPA-1 -> LPA-2

Large pixel array 
(LPA)

5’ field of view
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Transition-edge sensor arrays, 2016 state of 
the art

• Previously proposed “LPA-1” GSFC TES pixel.
- Mo/Au Bilayer TES, target TC ~ 90 mK, suspended on SiN (~ 1 μm).
- Low impedance TES, Rn = 10 mΩ.
- Composite Au/Bi electroplated absorbers (low heat-capacity and fast thermalization).
- Thermal conductance Gb = 200 pW/K, Fast ~ 400 μs decay times (originally for LPA-1,

10’s cps / pixel).

Array cross-section

SiN membrane

Absorber contact region

140 μm

Nb bias 
leads

GSFC Reference TESAu banks 
and 

stripes
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Transition-edge sensor arrays, 2016 state of 
the art

• GSFC devices were historically optimized for Time Division
Multiplexing (TDM) approach under study as back-up.
- See J. Ullom et al. 10699-60 @ 4:30pm

• However baseline readout approach uses Frequency Division
Multiplexing (FDM).
- See H. Akamatsu et al. 10699-58 @ 4:00pm

• In TDM TESs are DC biased (multiplexing via switching SQUIDs).
- TES transition is independent of the muxing.

• In FDM the mux encoding via AC TES bias with different frequencies.
- In Mo/Au TESs lead to frequency dependent variations in TES transition shape and degraded

resolution performance.
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Pixel optimization activities

• Technology development focused on 3 main areas:
(1) Pivot towards lower count-rate ‘LPA-2’.
- x2-4 slower pixels, control of thermal conductance to the heat-sink via TES size /

membrane thickness.
(2) Uniformity optimizations.
- Exploring better transition uniformity, less sensitive to environment (role of stripes, size

effects).
(3) Reduce the impact of frequency dependent effects in the AC-TES.

Mixed arrays for transition and Gb studies
100 μm50 μm 75 μm 120 μm 100 μm50 μm 75 μm 120 μm
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- Pixel size. Gb scales with TES
phonon emitting perimeter.

140 -> 50 μm => 3x reduction in Gb.

- Impact of geometry (pixel
size/metal features) on transition
shape.
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DC transition studies – studying role of 
stripes
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Different transition shapes in different quadrants 
of 32x32 array
Q1 and Q3 have majority ‘kinked’ transition
Q2 and Q4 had majority ‘smooth’ transition

2 Stripes + T-stem
αIV=T/R dR/dT

• LPA optimization activities has led to growing understand of geometry effects in TESs.
- Exploring the role of stripes, historically used on larger TESs for noise and transition shape control (empirically).- Measurements in large arrays show undesirable variations in transition shape.

‣ Presence of ‘kinks’ hard to predict and can impact array uniformity.
‣ Improving understand of how they come about / evolve – See Wakeham et al., LTD-17, 2017.
‣ Maybe due to alignment difference between the different metal layers (stripes/stems).
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DC transition studies – studying role of 
stripes
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First uniform kilo-pixel arrays of no-stripe pixels

• First uniform 32x32 arrays, no stripes, 50/75/100/120 μm, 250 μm pitch.
• Example for 50 μm devices, show good DC transition shape and uniformity.
• Large transition phase space with no kinks, less sensitive to environment (B-

field)
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DC transition studies – example 50 μm TES, no 
stripes  
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• Good pulse shape and noise uniformity.
• DC performance is excellent, ΔEFWHM consistently at 2.0 eV level.
• Smaller TES sizes. Gb = 75 pW/K at TC = 90 mK.

=> slower speed τ = 2.2 ms.
Very promising LPA2 DC pixel understudy for use with backup TDM
readout.

Miniussi et al. 2017

ΔE = 1.58±0.12 eV
6220 counts

Mn-Kα (6 keV)

50 μm TES

Average pulse shapes for10 pixels at 15% Rn

3% variation over 10 pixels
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AC Pixel optimization activities

• Large collaborative effort NASA/SRON/NIST  to understand frequency effects in 
AC TES.

• Identified two main contributors:
1) AC, dissipative, losses (magnetic coupling to nearby metals) broadens transition (lower α). Limits access 
to most sensitive part of the transition used to achieve < 2.5 eV. [Sakai et al 2017].

2) AC Josephson reactance, periodic steps through the transition due to variation in Josephson inductance. 
Undesirable non-linearity and noise properties, hard to find good bias points. [Gottardi et al 2017].
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Example R vs T 50 μm TES αIV vs R/Rn

Typical 2 eV optimum bias zone

Sakai et al. 2017

αIV=T/R dR/dT

Normal state

Superconducting state
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AC loss and Josephson-effect mitigation 
strategies

• Comparison of many different geometries and improved theoretical
understanding has led to optimization routes.

• Strategy is to explore higher resistance regime in GSFC Mo/Au TES.
- AC loss independent of TES Z => higher Z bias point reduces impact of fixed AC loss.
- High Z devices have small Josephson oscillations.
‣ Seen for example in SRON Ti/Au very high-Z devices 200 mΩ [P. Khosropanah, 10699-57]

- Challenge is to increase Z enough, without affecting other noise or uniformity properties.

1) 15 -> 50 mΩ/☐ bilayer sheet resistance. Thinner TES films. Now implemented and in
testing.
2) Change aspect ratio (1:1 -> 1:0.25). Longer and thinner. Now implemented and in testing.

1:1 1:0.75 1:0.5 1:0.25

R 2R 3R 4R
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First high-Z devices with good DC 
performance
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• No additional thermal noise.
• Same achieved ΔE as low-Z films
• Larger TES => steeper transition
• C = 1.5 pJ/K, Au 2.30 μm / Bi 3.39 μm

– increased x2 to maintain linearity

DC measurement of 120 μm TES
Rn = 32.7 mΩ (increased from 9 mΩ)

120 μm TES 

ΔEFWHM = 1.87 +/- 0.13 
eV
Counts: 5,213 Increasing α with size 
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First results on high-Z TES under AC bias at 
SRON

• First spectral measurements on mixed arrays at SRON yielded AC-TES x-ray resolution comparable to DC.
• Best performance seen in 100/120 μm sizes. Smaller, slower 50 μm sizes not as good performance.
• Less structure + more access to lower bias points. => consistent access to < 2.5 eV 1-5 MHz range.
• Later presentation by H. Akamatsu will show more results and FDM testing from 1-5 MHz
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Predicted resolution vs R/Rn
100 μm, Rn = 38 mΩ, f = 2.5 
MHz
Mn-Kα, Counts: 5327
ΔEFWHM = 2.06 +/- 0.12 eV

Figures courtesy Luciano Gottardi

Low-Z
High-Z
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First uniform high-Z arrays suitable for large 
scale FDM demonstrations

• Two 32x32 arrays screened at GSFC and sent to SRON for 40-pixel FDM testing.
• Good DC transition properties and uniformity, R vs T, pulse shape, ΔE.
• <ΔEFWHM> = 1.95 eV for 6 pixels tested.
• Larger TES size => Pixels are fast => for X-IFU may still need to slow these down.

100 μm TES 

13 R-T curves, Rn = 30 mΩ
100 μm TES, no stripes
TC uniformity 1.5 mK
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First DC results from high aspect ratio 120 µm 
TESs
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ΔE = 2.08 +/- 0.09 eV
Counts = 9,723 

ΔE = 2.13 +/- 0.11 eV
Counts = 6,180 

ΔE = 2.18 +/- 0.11 eV
Counts = 6,206 

Rn = 54 mΩ, Gb = 113 pW/K Rn = 82 mΩ, Gb = 79 pW/K Rn = 160 mΩ, Gb = 65 pW/K

• First 120 μm high aspect ratio devices in DC testing.
• Preliminary measurements suggest no strong ΔE dependence on aspect ratio
• Added design flexibility: higher Z and lower Gb.
• First AC tests planned soon.

1:0.75 1:0.50 1:0.25
12

0 
μm
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0 
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First large X-IFU array scale test parts 
yielded  

• 90 mm diameter hexagonal chip and
prototype detector array.

• 3540 sensors on 250 μm pitch.
• 960 pixels connected to bond pads.
• First DC tests planned for later this year.
• Later iteration will include coil-coupling

for AC biased testing.
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Summary

• Improved DC and AC pixel designs:
-Evolved original 3-stripe 140 μm TES design to smaller TESs without stripes.
‣ Larger transition phase-space without ‘kinks’ -> Improves array uniformity.-Developed first high-Z Mo/Au TESs for reduced AC Loss and + Josephson
effect in AC TES.
‣ Improved access good transition regions.
‣ Break through energy resolution < 2.5 eV results for AC TESs at both low and high

frequency.-First high-Z uniform 32x32 arrays now delivered to SRON for 40-pixel FDM
testing.

• Ongoing development activities:
-First high aspect ratio devices in DC testing.
‣ Designs offer addition parameter space for higher Z and low Gb.
‣ AC testing planed for this fall.

-First large scale X-IFU testing planned for 1000-pixel testing later this
year.
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