Considerations for Development of a Total Organic Carbon Analyzer for Exploration Missions
ICES Paper 2018-185

Chad Morrison – KBRwyle
Christopher McPhail – Anadarko Industries
Shawn Schumacher – KBRwyle
Michael Callahan – Crew and Thermal Systems Division, NASA JSC
Stuart Pensinger – Crew and Thermal Systems Division, NASA JSC
Project Background

- TOCA is water monitoring technology critical to health and safety monitoring for regen water.
- There are gaps in the State-of-Art ISS TOCA versus exploration mission architectures/requirement, e.g., size, mass, consumables, sampling
- ECLSS community agrees an exploration-class TOCA is needed – development effort added to water monitoring roadmap.
- AES miniTOCA Project intends to advance the technology readiness of an exploration-forward TOCA system through:
 - Phase 0 - Technology Feasibility
 - Phase 1 – Ground Demonstration Prototype
 - Phase 2 – Flight Technology Demonstration (*if valued*)
TOCA History: How did we get here?

PCWQM – SS Freedom Process Control Water Quality Monitor
ISS TOCA1 – crit 3, for Russian and stored water analysis
 ➢ Shuttle DTO, 1999
 ➢ ISS operation: 2001-2002
 ➢ Project cancelled during post-Columbia return-to-flight
ISS TOCA2 – crit 1SR, required with U.S. Segment Regen ECLSS
 ➢ Certification phase: 2008
 ➢ ISS operation: 2008-present
TOCA for exploration missions
 ➢ FY17 trade study started on mini-TOCA
 ➢ FY18 trade study, technology evaluation and testing
Mission Concept

The exploration mission concept is largely undefined.
- Mars transit
- Lunar surface
- Orbital outpost

Commonality is that they are NOT low-earth orbit.
- Premium on low launch mass
- Infrequent resupply capability
 - drives high reliability, low maintenance, long life
Deriving Driving Requirements for an Exploration-Class TOCA

ISS TOCA Requirements

inform heritage, baseline

Exploration TOCA Requirements

Best Guess for Functional Performance, Resource, Crew Time, and Life requirements for a TOCA on an exploration mission

Combination of requirements that can’t be currently met by straightforward extension of existing system

ISS/AES Tech Demo TOCA Requirements

SRR in FY20

This is the current focus for feasibility/concept definition.

48th International Conference on Environmental Systems
July 2018, Albuquerque, NM
Exploration TOCA Design Goals – Functional Performance

<table>
<thead>
<tr>
<th>Title</th>
<th>ISS Requirement</th>
<th>New TOCA Goal</th>
<th>Source/Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>+/- 25%</td>
<td>+/- 25%</td>
<td>ISS precedent</td>
</tr>
<tr>
<td>Precision</td>
<td>+/- 25%</td>
<td>+/- 10%</td>
<td>Provide reliable trending of data.</td>
</tr>
<tr>
<td>Range [see next slide]</td>
<td>1 – 25 mg/L TOC</td>
<td>1 - 10 mg/L TOC Challenge: 0.25 - 10mg/L TOC</td>
<td>Exceeds detection of potability limit (5 mg/L)</td>
</tr>
</tbody>
</table>
TOCA History:
Total inorganic /organic carbon (TIC/TOC) measurements from multiple water sources

Water Sources:
- WPA
- Shuttle
- SRV-K
- SVO-ZV
- JAXA/HTV
- ESA/ATV
- Rodnik

1 based on ISS TOCA results
2 based on ground testing

48th International Conference on Environmental Systems
July 2018, Albuquerque, NM
Exploration TOCA Design Goals – Functional Performance

Water Sample Composition:

<table>
<thead>
<tr>
<th>Title</th>
<th>ISS Requirement</th>
<th>New TOCA Goal</th>
<th>Source/Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIC content</td>
<td>up to 15mg/L TIC</td>
<td>up to 5mg/L TIC</td>
<td>No minerals added in regen water. Equilibrium of CO2 in air @ 2mmHg to water=\textasciitilde4.5\text{ppm}_\text{CO}_2.</td>
</tr>
<tr>
<td>Conductivity</td>
<td>N/A</td>
<td><10\mu S/cm</td>
<td>Water processor specification</td>
</tr>
<tr>
<td>pH</td>
<td>N/A</td>
<td>pH 4.5 – 9</td>
<td>HSIR, MPCV70024, section 3.2.2.1 \textit{Note: TOCA may eliminate acidification if sample pH is <8 with no buffering capacity.}</td>
</tr>
<tr>
<td>Free gas</td>
<td>5%</td>
<td>0.1%</td>
<td>NASA-STD-3001 (although HSIR states 5%)</td>
</tr>
</tbody>
</table>

Note: Water composition may interfere with the analysis using certain technologies.
Exploration TOCA Design Goals – Resource Allocation

<table>
<thead>
<tr>
<th>Title</th>
<th>ISS Requirement</th>
<th>New TOCA Goal</th>
<th>Source/Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>4160 in(^3) (actual)</td>
<td>< 1200 in(^3)</td>
<td>Notional reduction. Balancing achievable with return on development investment.</td>
</tr>
<tr>
<td>Device Weight</td>
<td>80 lbs (actual)</td>
<td>< 25 lbs</td>
<td>Notional reduction. Balancing achievable with return on development investment.</td>
</tr>
<tr>
<td>System Weight per 5-year ops</td>
<td>N/A</td>
<td><35lbs</td>
<td>Includes device plus all consumables and unreclaimed water consumption</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>< 175 W avg.</td>
<td>< 175 W avg.</td>
<td>ISS precedent. AES vehicles will have reduced power availability than ISS.</td>
</tr>
<tr>
<td></td>
<td>< 225 W peak</td>
<td>< 225 W peak</td>
<td></td>
</tr>
<tr>
<td>Sample Size</td>
<td>< 150mL</td>
<td>< 150mL</td>
<td>Any water returned to the water balance does not count against the requirement.</td>
</tr>
<tr>
<td>Supply Gases</td>
<td>N2</td>
<td>N2 or O2 are acceptable</td>
<td>Compressed N2 and O2 can be utilized if favorable to overall design trades. Supplied H2 is not available.</td>
</tr>
</tbody>
</table>

48th International Conference on Environmental Systems
July 2018, Albuquerque, NM
Exploration TOCA Design Goals – Crew Time Allocation

<table>
<thead>
<tr>
<th>Title</th>
<th>ISS Requirement</th>
<th>New TOCA Goal</th>
<th>Source/Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Time</td>
<td>190 mins</td>
<td>12 hours</td>
<td>No hard requirement. GOAL = less than ISS TOCA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GOAL: less than 190 mins</td>
<td></td>
</tr>
<tr>
<td>Analysis Frequency / yr.</td>
<td>N/A</td>
<td>60 analyses / year</td>
<td>Allows > weekly analyses per ops concept</td>
</tr>
<tr>
<td>Crew Time for Analysis</td>
<td>< 15 mins / analysis</td>
<td>< 15 mins / analysis</td>
<td>No more crew time than ISS TOCA. Goal for inline, automated sampling.</td>
</tr>
<tr>
<td>Crew Time for Maintenance</td>
<td>< 8 hrs / year</td>
<td>< 8 hrs / year</td>
<td>Includes consumable replacements and calibration.</td>
</tr>
</tbody>
</table>

1. Automated sampling should be traded with size, complexity. The current assumption is that automation reduces size due to large size of crewed interfaces.

Forward Work: Combine total resource and crew time into equivalent system mass calculation for future evaluation.
Exploration TOCA Design Goals – Life

<table>
<thead>
<tr>
<th>Title</th>
<th>ISS Requirement</th>
<th>New TOCA Goal</th>
<th>Source/Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOCA Lifetime</td>
<td>5 years with maintenance</td>
<td>10 years with maintenance</td>
<td>Match the entire life of TBD habitat to eliminate resupply costs. (Device life = ground assembly/certification + mission life)</td>
</tr>
<tr>
<td>TOCA Cycle Life</td>
<td>1200 analyses with maintenance</td>
<td>600 analyses with maintenance</td>
<td>60 samples/year x 10 years</td>
</tr>
<tr>
<td>Component Shelf Life</td>
<td>1 year</td>
<td>> 3 years</td>
<td>assumes a minimum resupply frequency for maintenance components every 2 years.</td>
</tr>
</tbody>
</table>
Feasibility Studies

Potential sources for exploration TOCA technology include:

- Current ISS TOCA
- Original Crit3 ISS TOCA
- Commercial TOC analyzers (i.e. modify and fly)
- SBIR spaceflight TOC analyzer prototypes
- Future new development options
Why not use the ISS TOCA?

Size of existing TOCA cannot be reduced dramatically unless the electrochemical oxidizer is redesigned due to flow rates required

Advantages
- Proven environmental compatibility, range, accuracy, reliability, safety.
- Detection range: 0 – 25ppm TOC;
- Accuracy: +/- 25%; Reliability: >4.5 years of operation on ISS
- Maintenance: 1st maintenance and calibration occurred after 3.5 years (238 samples)

Disadvantages
- 80 lbs, 22 x 16 x 12 inches
- Not packaged for “in-line” potable water monitoring.
- Requires resupply and consumable replacement: manual waste water bag replacement every 6 samples; acidic buffer container replacement every 7 month or 46 samples.
TOCA1 technology is also a possibility...

Designed by Sievers with Wyle/NASA

H x W x D, in. 8.9 x 19.3 x 16.3
Weight, lb. 54.1
Max. power, W 69.3 avg.; 93.2 peak
Criticality 3
Range: 0-25ppm TOC

Mission duration spec.:
- RME, days 90+ required/365 design
- ISS, mos. 12
- ISS, analyses 50 required/85 design

1. Size is still too large
2. 1 year life due to persulfate
3. Tox 2 hazardous chemicals

TOCA1 in use on ISS October 2001
Are COTS TOC Analyzers an Option?

COTS TOC analyzers generally have at least one of the problems below:

- Hazardous chemicals are used for acidification and oxidation.
- Reagentless analyzers employ mercury UV lamps.
- Reagentless analyzers are only compatible with purified water sources.
- Infrared CO2 detection requires gas-liquid separation typically employing gravity-dependent sparging.
- Conductivity-based TOC measurement requires an ultra pure water source.
- Additional CO2 separation membrane is required for conductivity detection to eliminate non-carbon conductivity interferences.
- Non-spaceflight reliability and safety.
Can we utilize previous SBIR development?

- SBIR awards have produced two prototype TOC analyzers that were developed with goals for small size, no hazardous reagents, and microgravity compatibility.
- Prototypes were delivered to NASA in 2007 and 2011.
- NASA priorities at that time did not warrant continued funding to Phase III.
- Lessons learned and design solutions from the previous SBIR prototypes may be useful and are currently being investigated.
Proposed AES TOCA requirements cannot be met directly by
- ISS TOCA2
- ISS TOCA1
- Commercial TOC analyzers
- SBIR prototype deliverables

SBIR components will require additional evaluation and testing.

Custom commercial work is costly and appears likely to lead to a “one off” device for an ISS demo, not a development of knowledge and capabilities for a sustainable flight project.

Many subsystem/component technologies within the list above are attractive.

The current focus is to evaluate available technologies for selection based on performance and cost.
Project Plan
Technology Maturation

Develop Technology Matrix
- Component Performance
- Fit with system architecture
- Availability

Investigate and Test the most favorable technologies

Downselect best technologies and integrate into system breadboard(s)

Test and select the best breadboard system

Build Prototype TOCA

48th International Conference on Environmental Systems
July 2018, Albuquerque, NM
Technology Matrix Highlights

<table>
<thead>
<tr>
<th>Acidification</th>
<th>Oxidation</th>
<th>CO2 Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrolytic anion removal</td>
<td>Mercury UV</td>
<td>Membrane conductivity (aq)</td>
</tr>
<tr>
<td>Electrolytic protonation</td>
<td>Excimer UV (172nm)</td>
<td>Raman spectroscopy (aq)</td>
</tr>
<tr>
<td>Electrochemical generation from salt</td>
<td>LED UV / catalyst</td>
<td>Laser Spectroscopy (aq) (absorbance or acoustic)</td>
</tr>
<tr>
<td>Chemical reagent</td>
<td>Combustion (catalytic 450-850C)</td>
<td>NDIR (gas)</td>
</tr>
<tr>
<td>Electrochemical generation from salt</td>
<td>Boron-doped diamond electrochemical</td>
<td>Laser Spectroscopy (gas)</td>
</tr>
<tr>
<td>Chemical reagent</td>
<td>Ozone</td>
<td>Methanizer/Flame Ionization (gas)</td>
</tr>
<tr>
<td>Chemical reagent</td>
<td>UV/Vis spectroscopy (aq)</td>
<td>Pulsed discharge detector (gas)</td>
</tr>
<tr>
<td>Chemical reagent</td>
<td>Thermal conductivity (gas)</td>
<td></td>
</tr>
</tbody>
</table>
Advantages:
- Architecture based on proven techniques performed by Sievers (now Suez) – UV oxidation with membrane/conductivity detection.
- Electrodeionization cell is added to eliminate consumable and life limited acidic reagent. Development needed.
- Excimer UV is proposed instead of mercury-based UV. Excimer lamp was utilized in the TOCA1 along with persulfate.
Technology Architectures: UV/Raman

Advantages:
- Raman has capability for direct measurement of CO2 and carbonate species in the aqueous phase which could eliminate need for acidification and membrane separation.
- Raman needs development to reach low-level sensitivity.

Acidification
- Not required

Oxidation
- Excimer VUV photo-oxidation

CO2 Detection
- Raman spectroscopy
Advantages:
• Combustion/NDIR is a common TOC analysis technique. See Shimadzu, Teledyne, OI Analytical, etc...
• Combustion allows small sample sizes and complete oxidation.
• Tunable Laser Spectrometer is less sensitive to water vapor interference than NDIR.
• pH control is not required if mineral carbonates precipitate and gaseous CO2 is measured and subtracted.
Technology Architectures: Combustion(Polyarc®) / FID

Advantages:
• Polyarc is marketed for liquid injection gas chromatography analysis and has not been applied to TOC analysis.
• Polyarc performs catalyzed combustion and methanization in one step at a lower temperature than TOC combustion chambers.
• FID is selective to methane. Insensitive to water vapor or other interferences.
Project Plan
Technology Maturation

Develop Technology Matrix
- Component Performance
- Fit with system architecture
- Availability

Investigate and Test the most favorable technologies

Downselect best technologies and integrate into system breadboard(s)

Test and select the best breadboard system

Build Prototype TOCA

2018

2019

2020
Acknowledgements

- NASA Advanced Exploration Systems for seeing the need and opportunity to fund this development.
- Coauthors Mike Callahan, Stuart Pensinger, Christopher McPhail, and Shawn Schumacher for contributions throughout this project.
- Project partnerships at NASA-JPL with Aaron Noell, Richard Kidd, Margie Homer, and Murray Darrach.