≈RIC

USRA

vitally impacting the future – today

UNIVERSITY HOUSTON

Volatiles Released during Emplacement of Mare Basalts: Implications for Sources of Lunar Polar Volatiles

NASA Johnson Space Cente

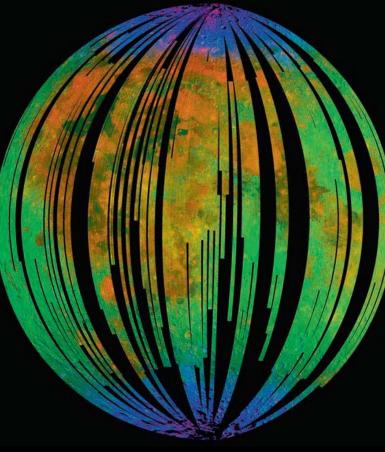
Astromaterials Research & Exploration Science

LUNAR AND PLANETARY

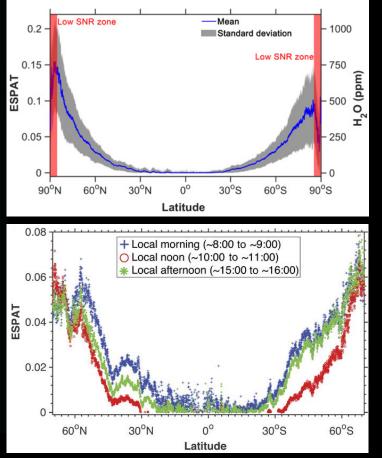
Debra Needham

NOTRE DAM

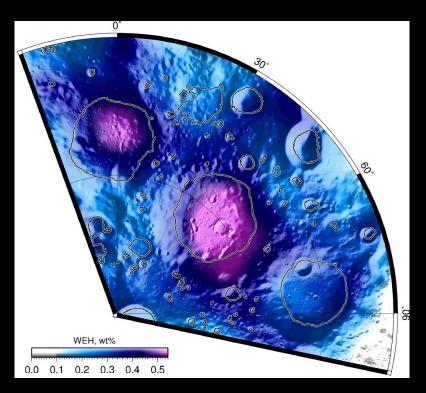
NASA/Marshall Space Flight Center


and

David Kring CLSE/SSERVI – LPI

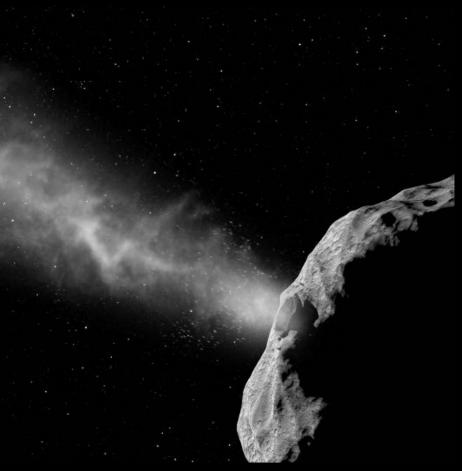

Lunar Polar Volatiles Workshop August 7, 2018

vitally impacting the future – today


Recent Water Detections from Orbit

Moon Mineralogy Mapper detection of OH/H₂O at lunar poles (blue/purple); Pieters et al., 2009.

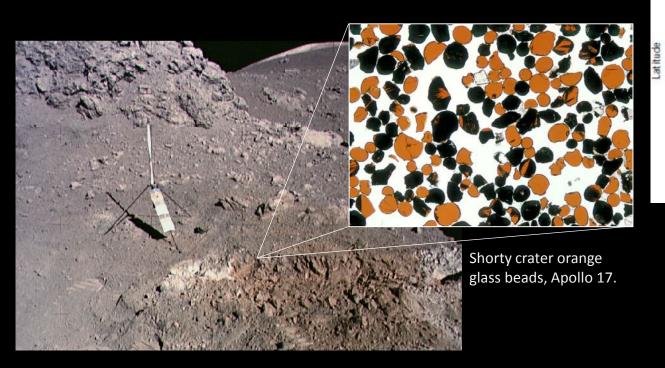
OH/H₂O variability by latitude and day from M³; Li and Milliken, 2017.

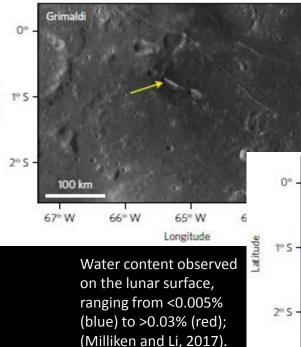


LEND detection of water equivalent H via neutron suppression at lunar poles; Sanin et al., 2017.

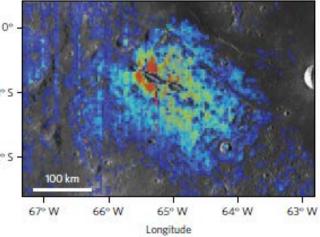
vitally impacting the future – today

Identified Sources for Lunar Volatiles


Solar wind-delivered hydrogen trapped in the Moon's PSRs?



Water delivered by asteroid and comet impacts on the Moon?


vitally impacting the future – today

Another Type of Lunar Water

Pyroclastic deposit at Grimaldi as identified from Lunar Reconnaissance Orbiter Camera and Moon Mineralogy Mapper.

vitally impacting the future – today

Significance of a Volcanic Source for the Lunar Polar Volatiles

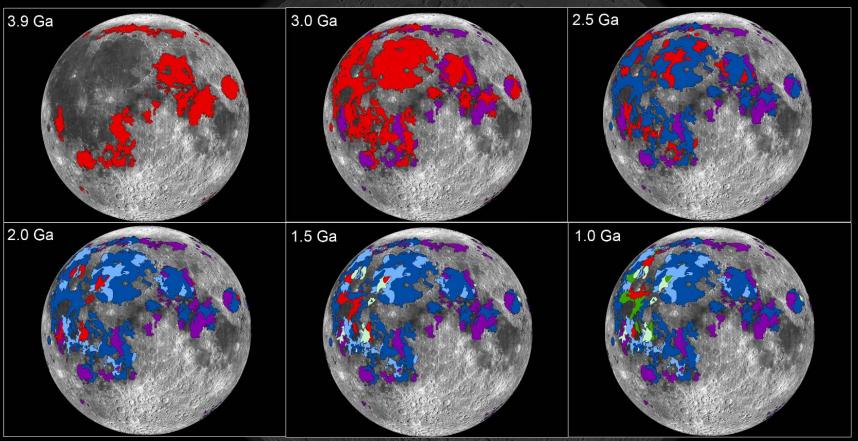
- 1. Lunar Mare Production Function
 - Volume of mare
 - Age of emplacement
- 2. Volatile Mass Production Function
 - Lunar mare volatile distributions.
- 3. Atmosphere Pressure, Duration
- 4. Final Volatile Sink

vitally impacting the future – today

Lunar Mare Volume

• Volume of mare in lunar basins:

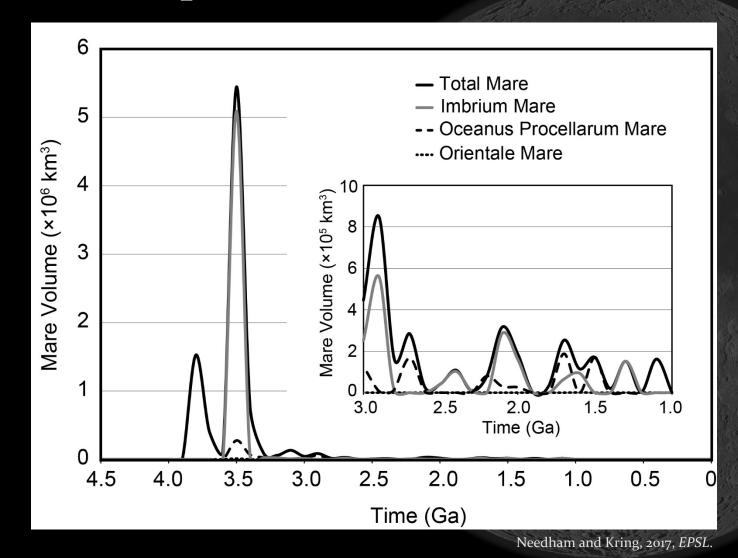
Table 1: Total volume of mare in lunar basins										
Basin	Total Area (km²)	Ave. Thickness (m)	Volume (km ³)	Thickness Reference						
Crisium	156,103	2,940	458,943	Williams and Zuber 1998						
Grimaldi	15,359	3,460	53,142	Williams and Zuber 1998						
Humorum	101,554	3,610	366,611	Williams and Zuber 1998						
Imbrium	1,010,400	5,240	5,294,497	Williams and Zuber 1998						
Nectaris	64,277	840	53,993	Williams and Zuber 1998						
Orientale	75,975	88	13,294	Whitten et al 2011						
Oceanus Procellarum	1,757,799	325	571,285	Hörz 1978						
Serenitatis	342,716	4,300	1,473,679	Williams and Zuber 1998						
Smythii	28,075	1,280	35,937	Williams and Zuber 1998						
South Pole - Aitken	206,430	Varied	153,240	Yingst and Head 1997						
Tranquillitatis	371,257	350	129,940	Hörz 1978						


From Needham and Kring, 2017, EPSL.

Total volume of mare: $\sim 9 \times 10^6$ km³, similar to previous estimates. (1 × 10⁷ km³, Head and Wilson, 1992)

vitally impacting the future – today

Timing of Mare Emplacement


- Area, thickness of each mapped unit (Hiesinger et al., 2011; Whitten et al., 2011).
- Age of each mapped unit from crater counting (Hiesinger et al., 2011; Whitten et al., 2011).
- Remaining mare volume emplaced at time of oldest surface unit.

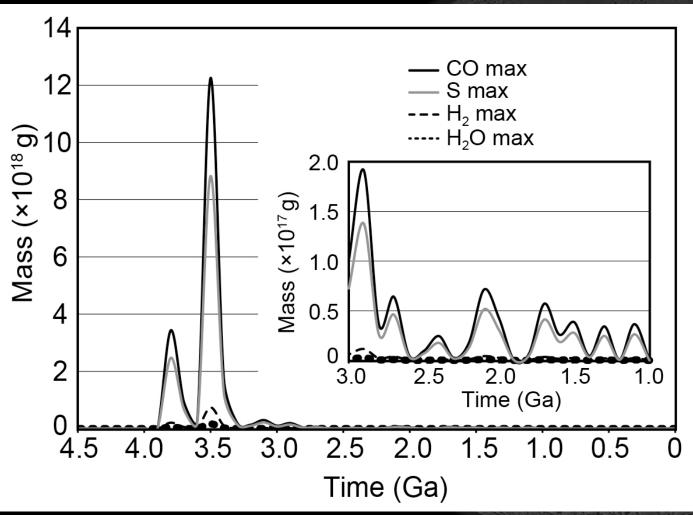
Based on data presented in Hiesinger et al., 2011; Whitten et al., 2011 Needham and Kring, 2017, EPSL.

vitally impacting the future – today

Volume of erupted basalts as a function of time

vitally impacting the future – today

Mass of Released Mare Volatiles


- Lava density: 3000 kg/m³
 - Calculate total mass of mare.
- Mare volatile measurements from literature
 - Calculate mass of each released volatile.

Mare	Min	Max	Released	Min	Max	Reference
Volatiles	(ppm)	(ppm)	(%)	(ppm)	(ppm)	
СО	80	750	100	80	750	Sato 1979
H ₂ O	2	10	90	1.8	9	Robinson and Taylor 2014; Elkins-Tanton and Grove 2011
H ₂	0.007	45	100	0.007	45	McCubbin et al., 2010
S	200	600	90	180	540	Shearer et al., 2006

From Needham and Kring, 2017, EPSL.

vitally impacting the future – today

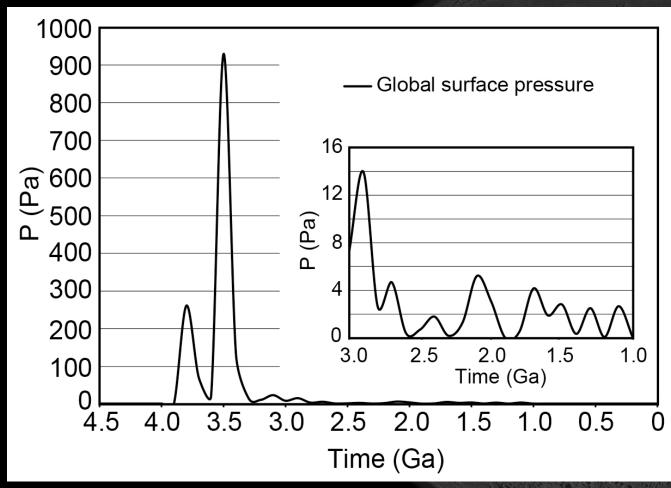
Volatile mass released from all mare eruptions

assuming max mare volatile content

Needham and Kring, 2017, EPSL.

vitally impacting the future – today

Atmospheric Pressure resulting from Volcanically Released Volatiles


• Total mass released as a function of time.

$$P_{surf} = \frac{mg}{A}$$

• Distributed over whole lunar surface.

vitally impacting the future – today

Atmospheric Pressure resulting from Volcanically Released Volatiles

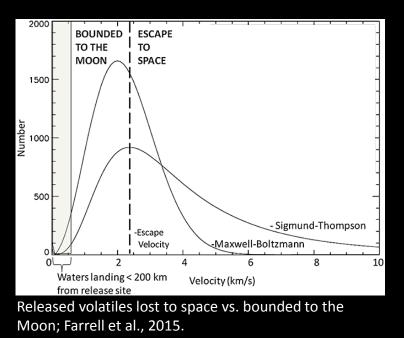
Needham and Kring, 2017, EPSL.

vitally impacting the future – today

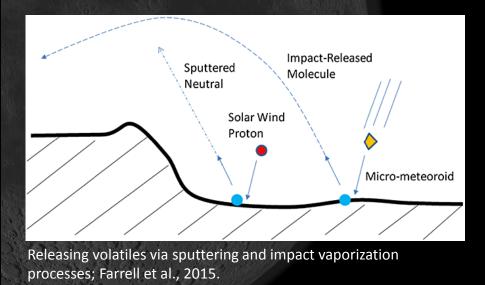
Implications for a Lunar Atmosphere

- Surface Pressure
 - At peak, ~1000 Pa (~0.01 atm).
 - ~1% of Earth's current surface pressure.
 - ~1.5 times greater than Mars' current surface pressure.
- Scale Height of ancient lunar atmosphere: $\frac{KT}{mg}$
 - At Noon: ranges from ~60 km (S) to 1000 km (H_2) .
 - At Midnight: ranges from ~15 km (S) to 250 km (H_2) .

vitally impacting the future – today


Implications for a Lunar Atmosphere

- Duration of Lunar Atmosphere
 - Loss rate controlled by particle interactions.
 - Total atmospheric mass exceeds 10^{11} g (Vondrak, 1974), -> 10^4 g s⁻¹
 - Peak volcanic activity (~3.5 Ga), total mass is 10¹⁶ kg.
 - Volatile effusion rate > 10^7 g s^{-1} . (Wilson and Head, 1980)
 - Resulting atmosphere may have required ~70 Ma to dissipate.


vitally impacting the future – today

Implications for a Volcanic Source for Lunar Volatiles

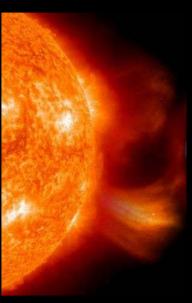
- Sink of Lunar Atmospheric Volatiles:
 - If 0.1% of vented mare water (~10¹⁷ g) is trapped in Permanently Shadowed Regions, volcanically-derived volatiles could account for all water in PSRs (10¹⁴ g, *Eke et al.*, 2009).

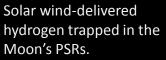
vitally impacting the future – today

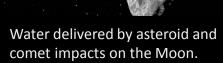
Hypotheses for Distribution of Polar Lunar Volatiles

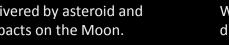
• The source of volatiles can affect how these deposits are distributed and how accessible they are as resources.

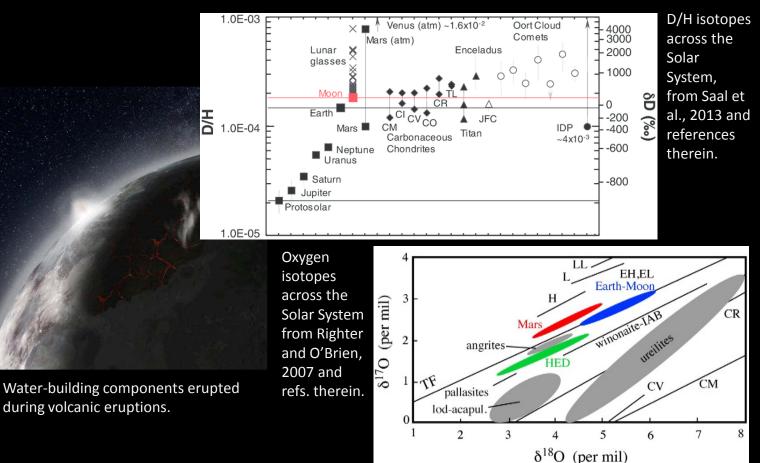
Solar wind-delivered hydrogen trapped in the Moon's PSRs.


Water delivered by asteroid and comet impacts on the Moon.


Water-building components erupted during volcanic eruptions.


vitally impacting the future – today


Implications for a Mission Prospecting for Lunar Volatiles


• The source of volatiles can affect the composition of these volatile deposits.



CENTER FOR LUNAR SCIENCE AND EXPLORATION Vitally impacting the future - today

vitally impacting the future – today

The Current Lunar Atmosphere

- Detected via Apollo 14, 15 (e.g., Johnson et al., 1972; Stern, 1999 and references therein)
 - Night Pressure: $\sim 1.6 \times 10^{-13}$ atm
 - Day Pressure: $\sim 1.6 \times 10^{-15}$ atm
 - Ar, CH_4 , He, CO, CO_2 , N_2 , Rn
- Surface Boundary Exosphere with various sources (Stern, 1999):
 - Solar Wind Impingement
 - Thermal, Sputtering, Chemical
 - Meteoritic Delivery
 - Outgassing of Internal Volatiles

Lunar ALSEP deployed during Apollo 12.

• Enhanced impact and volcanic activity >3 Gyr may have enabled development of more substantial collisional lunar atmosphere.