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Nomenclature (in order of appearance) 

GUI = Graphic User Interface 

CSCI = Computer Software Configuration Item (team) 

LCC = Launch Control Center 

COTS = Commercial-off-the-shelf 

SSD = Solid State Drive 

QOL = Quality-of-Life 

VAB = Vehicle Assembly Building 

QR = Quick Response Code 

SSH = Secure Shell 

 

I. Introduction 

Over the course of this year I worked on several projects across different departments, from 

physical robots at Swamp Works, to automated robots running functional tests on launch critical 

Graphical User Interfaces (GUIs). My overarching project this year was designing a new 

automated testing framework. It began with becoming familiar with the existing automated testing 

framework, which used image matching to perform programmatic GUI testing. After writing a few 

dozen tests with the existing framework, I was able to identify the strengths and weaknesses of the 

system and begin the search for another tool to replace it. I ended up selecting an open source 

library, which I modified to fit both National Aeronautics and Space Administration (NASA) 

requirements and those of the specific Computer Software Configuration Item (CSCI) I worked 

on. After the new framework was feature-rich enough to meet the team requirements, I helped roll 

out the changes, managed the transition to the new framework, and directed continuing automation 

work in regards to the library. The result was a comprehensive new way of efficiently testing the 

GUI that was robust enough to handle small changes to the GUI itself.  
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Additionally, for approximately six weeks I worked on rebuilding, repairing, and updating the 

software of four “Swarmie” robots for a NASA event. By the close of the six weeks, the four robots 

were operational and had improved obstacle detection software that solved a faulty stop signal 

issue that the robots were experiencing. 

 

 The third major project I worked on was an automated detector that ran in one of the Firing 

Rooms in the Launch Control Center (LCC). The detector attempted to recreate a rare and critical 

bug where launch data was failing to update when being obscured by another window, resulting 

in half-updated rendering artifacts appearing on the screen. I ended up writing and running three 

different versions of the artifact detector throughout my internship, and though they detected no 

valid artifacts, they helped rule out many possible causes of the rendering error. 

 

II. Projects 

A. Automated Testing Framework 

When I began working at NASA, the current automated testing framework was a merger 

between two open-source pieces of software—a programming framework and an image matching 

library. The image matching tool was used to detect parts of the GUI with which to interact on 

screen; the programming framework and language governed interaction with the GUI. After a 

week spent learning and familiarizing myself with the software, I began to write my own 

automated tests using the tools. I wrote approximately fifty tests, helping to automate my CSCI’s 

test procedures, before I saw both the strengths and weaknesses of the tool. The tests were written 

in a high-level programming language close to English, which made it advantageous for this type 

of testing because of its readability and ease-of-use—especially for the non-developers who were 

expected to write many of the tests. The image matching library was a useful tool because it could 

detect colors, text, and images onscreen, but it was especially prone to being broken by even small 

changes to the GUI. Enabling anti-aliasing on text, changing fonts, and adding small 

environmental differences between two machines would be enough to break every image matching 

test. These errors would need to be individually debugged and patched (often resulting in the 
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laborious work of retaking hundreds of new images). It was a time-consuming, tedious task that 

required a developer with a lot of specialized experience with the library itself.  

 

After several weeks of work on creating more automated tests, I was told that a new type of 

middle-ground test was expected to be created, called a Combined Functional Test (CFT). It was 

intended to bridge the gap between the broader system-level tests and the narrower focus of the 

level 5 tests, which validated basic requirements (i.e. sending an invalid command and verifying 

it would fail as expected). Since CFTs were soon to become commonplace, but were still in the 

planning phase, there was an opportunity to find a new framework to use to write them. A new 

framework offered the potential to avoid the disadvantages of the previous version, in addition to 

providing greater functionality. I was tasked with searching out good alternatives in both COTS 

and open-source software to find a suitable replacement. In general, the COTS software was 

reliable, easy-to-use, and easy to set up. Unfortunately, it was also bloated, brittle, and expensive. 

For example, the main COTS product I looked at had the useful functionality of being able to turn 

on a “recording” mode, step through a test by hand, and then replay the test on its own. The 

downside, besides the cost, was that the test it produced was a huge file, that couldn’t be modified 

programmatically. If part of the test needed to be changed, the whole pre-recorded procedure 

would need to be redone.  

 

I ended up selecting an open-source solution. It was free, feature-rich, and compatible with the 

existing test automation framework. Instead of using image matching, this library was able to hook 

into the Java hierarchy of the GUI and interact with the components themselves based on the 

hidden component names. This meant it was resilient to changes in the GUI, because it was 

unlikely that the components themselves would ever be removed or renamed. I wrote several demo 

scripts with the library, and made a pitch to my technical lead, Jason Kapusta, to accept the library 

as the new tool for writing CFTs. After it was accepted, I began to work on modifying the library 

to be suitable for CFT work. The main obstacle was the GUI on which we were performing the 

test. Most of the code behind the GUI was launch-critical code and could not be easily changed, 

but several of its features made it incompatible with the library. The three most critical missing 

features from the library were the ability to hook into the main JWindow at the top of the GUI, 

find modal dialogs, and use popup menus (as well as adding names to all the components so they 
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would be discoverable by the library). I added a new Java function operator and corresponding 

operator factory to the library that gave it the functionality to select JWindow components, like 

the one at the top of the GUI. I modified another function to allow it to select our left click enabled 

popup menus. Lastly, I modified the library in order to allow selection of modal dialogs by 

expanding the scope of context in which the library would search for a matching dialog.  

 

After I finished making the necessary patches to the library, I was able to roll out CFT work. I 

made several example programs and distributed them to other interns, the automated test team, 

and my CSCI. I spent the remainder of the time patching issues people encountered with the 

library, helping people get the library working for them, and expanding its functionality. 

 

B. “Swarmies” 

 

[2] “Swarmies” in front of the VAB at KSC 

 

For a period of approximately six weeks I was tasked with repairing several “Swarmie” robots 

in the Swamp Works lab at Kennedy Space Center. The “Swarmies” are Roomba-like remote 

controlled robots with an attached claw for picking up objects. They also come equipped with 

several cameras and distance sensors. They have a toggleable automated mode, during which they 

wander an area looking for QR-code stamped blocks to gather. There were four robots that needed 

to be repaired for a NASA competition.  These robots were in various states of disrepair. Two were 

fully disassembled, one was experiencing a corrupted software issue, and another had damaged 
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hardware (a snapped claw and support struts as well as non-functional servos). After a tutorial on 

how to load Ubuntu Linux onto the robots, build their software, and put them together, I set to 

work repairing the robots.  

 

The hardware fixes were straightforward, but the software differences between the robots 

resulted in a prolonged debugging process. I was eventually forced to wipe each of the robots clean 

and reload all their software. One of the robot’s controllers was faulty, but after thorough 

investigation, I came to the conclusion that the wireless chip in the controller itself was broken 

which meant it was essentially irreparable. At the end of this first few weeks, all four robots were 

in a state of good repair, but missing the one controller. To ensure the robots were working 

correctly, I tested the robots for several hours a day, having them run their automated movement 

course, as well as manually controlling them to do what would be common tasks for the upcoming 

competition. “Swarmie” operators had previously experienced an issue where the onboard Intel 

NUC computers would fail to get past the boot screen when powered up. After a few days of 

testing, I encountered a recurrence of this issue. It turned out to be a bad SSD, but since there were 

no replacement SSDs on hand I searched for a workaround. Pulling the power from the onboard 

battery to the NUC, leaving it unplugged for ten seconds, then plugging it in and restarting the 

device, temporarily got the robot back on its feet and allowed it to boot properly. It was only a 

temporary workaround, but resetting the devices in this way abated the problem for roughly a day, 

so I performed the reset on all four robots immediately prior to the start of the competition and all 

performed nominally. Afterwards, I replaced the SSDs on the broken robots which fixed the issue 

permanently. 

 

One Quality-of-Life (QOL) problem I noticed during the manual testing phase was that when 

the robots attempted to pick up certain blocks at an odd angle (or stacked blocks), their claw would 

sometimes raise the blocks to a position in front of the distance sensors mounted on their face. 

This would trigger the obstacle collision code that would lock the robot’s wheels in place, 

preventing it from moving forward. The workaround was simple—either turn the robot, move 

backwards, or lower the claw, and it would be able to continue on its way. Although this was 

uncommon, happening an estimated once in every thirty block pickups, the fix was unintuitive for 

first time users (as all the participants of the competition would be). I wasn’t at liberty to remove 
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the obstacle detection code because the nature of the competition made the robot vulnerable to 

being smashed against a wall. Therefore, I modified the collision code so it had a minimum 

distance (from which a wall would not be detected), slightly past the length of its claw. This meant 

that most blocks it picked up were inside the “safe zone” for the collision detection code and would 

not cause the wheels to lock. However, even after this change, some blocks were barely slipping 

out of the minimum distance I had set, and causing the robot to stop. I was wary about expanding 

the minimum distance by much because of the scenario in which the robot would rotate into facing 

an immediate wall, only inches away, and not detect it as an obstacle. I added another check to the 

obstacle detection which checked whether all three distance sensors were triggered, or only one. 

If it was just the middle sensor, I instructed the robot to ignore the collision warning. The idea 

behind this change was that walls usually triggered all three distance sensors, whereas only thin 

pillars might cause a single distance sensor to ping. More importantly, the blocks that the claw 

raised up in front of the distance sensors triggered only the middle sensor for the most part (since 

they were not particularly wide objects). This change was not sufficient on its own, since on rare 

occasions a block could spill over or be picked up at an odd angle and still trigger multiple sensors, 

so it had to be used in conjunction with the minimum distance change to eliminate all chances of 

incorrect collision detection. I also added a greater minimum distance specifically for the middle 

distance sensor so that its output would still be useful. If it detected a thin pillar at a distance, it 

could still trigger the obstacle detection code. The only error case was a thin pillar that the robot 

turned into, so it entered into the middle sensor “safe zone”. However, this scenario was rare 

enough that my mentor was willing to take the risk for the QOL benefits of the change. 

 

C. Artifact Detection 

The first project I worked on when I became familiar with the automated testing framework 

and associated image matching library was an automated artifact detector that ran on development 

machines and workstations in one of the Firing Rooms in the LCC. There was a rare bug that was 

being encountered based on an interaction with the Launch Control System GUI and other frames 

superimposed on top of the GUI. The result was that data being updated on the GUI’s displays 

would only partially update—data obscured by another frame (whether a terminal or another 

program) would fail to change, but visible data would update correctly. If the window was moved 

away, artifacts were left on-screen—half-updated and half-old information. These artifacts would 
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usually fix themselves if you moved the mouse over them, but the problem was still critical because 

the users needed to be able to depend on seeing accurate data from the GUI without needing to 

worry about double-checking to make sure the data had updated correctly. We weren’t sure what 

was causing the issue, but it was essential to be able to replicate the bug to determine exactly what 

conditions allowed it to occur. While a workaround was possible, it involved a refresh of 

everything on-screen every few seconds, so it was extraordinarily performance-heavy.  

 

For the first iteration of this artifact detector, I was instructed to mimic the Launch Control 

System GUI with a Java program that was a large JTable that took user input and then filled all its 

columns and rows with that input. It simulated updating “data” by receiving different input from 

the testing framework, displaying that input in every cell of the JTable, and verifying it had 

correctly updated its cells. My robot program launched the Java program, verified it opened 

correctly, then entered different user input every few seconds and verified that the JTable changed 

as expected. If the result differed from the expected result, the program took a screenshot and filed 

it away, then continued running (for weeks if uninterrupted). After several weeks’ worth of 

runtime, the program caught nothing. Even if it had encountered a genuine artifact, it was unlikely 

that it could have successfully identified it because the accuracy parameter it was using was too 

low to notice a few cut-off characters. Furthermore, it was missing several key elements that lead 

to the error occurring in the first place.  

 

For the second version of the artifact detector, I was instructed to include many of these missing 

elements, such as a “blocker” window that popped up, obscured the data table, and then 

disappeared again. I also raised the accuracy parameter, and wrote failure-case tests to verify that 

artifact-like objects would be detected and logged. The other changes I made included bursts of 

activity then rest periods (similar to how a user interacted with the actual GUI), changing 

background colors for the table (similar to the flashing alarms of the GUI), and minimizing, then 

refocusing, the table itself. I checked before and after each of these events to verify that the table 

didn’t show any signs of artifacts. The last alteration I made was to have two instances of the 

program running simultaneously on the same computer’s monitors, but both SSH’d into different 

computers. This was to simulate how we run the actual GUI, with different processes running over 

different servers. As of the writing of this paper, this version has not caught any artifacts, but it is 
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more promising because it has produced far fewer false positives, which increases the likelihood 

that it will detect a valid artifact if it encounters one. If this version produces no artifacts, then the 

scope of the problem is narrowed further to an interaction with the actual GUI and the frames that 

obscure it. Therefore, the next version that I will work on will run a genuine display from the GUI, 

instead of a JTable that simulates a display, and verify the same conditions. 

 

III. Conclusion 

  While I still continue to work on the rollout of the automated testing framework and future 

iterations of the artifact detector, the most technically difficult parts of the assignments are 

behind me and I look forward to seeing the results. The “Swarmies” were a resounding success 

at their competition and worked as expected (bar one or two controller glitches). Now, they sit 

in Swampworks, repaired, ready-to-go, and equipped with upgrades to their software.  

 

  The artifact detectors have yet to find valid artifacts, but their existence and their various 

iterations help narrow down the possible causes of the rendering issue. Eventually, one of them 

or their kind will be capable of replicating the error on demand and the bug will be able to be 

identified. 

 

  My overarching project, the automated testing framework replacement, is patched, ready-to-

use, and can successfully accomplish all the requirements of the framework it was designed to 

replace—and more. Within the next few weeks, and continuing on, people will be writing CFTs 

and other pieces of software to support the library, and soon it will supplant most of the existing 

automated testing effort. It should have a long future as a piece of software because of its 

resilience to GUI changes, ease-of-use, and consistency with its results. There are some 

applications where the old image matching framework will still be necessary, but hopefully this 

new library is the first step on the path towards the reduction of manual human-run testing and 

arduous image-matching debugging. Between the physical robots and the virtual, this internship 

has been especially rewarding and I believe the work I have accomplished will prove useful for 

my CSCI and the greater Software group at Kennedy Space Center. 
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