

Kennedy Space Center Page | 1 7/3/18

Robots and Robots and More

Alex Siegel

KENNEDY SPACE CENTER

Major: Computer Science & General/Electrical Engineering

Program: NIFS Year-Long Intern

Mentor: Caylyne Shelton

Date: 07/03/2018

Kennedy Space Center Page | 2 7/3/18

Designing an Automated Testing Framework, Updating “Swarmies”, and Performing

Rendering Artifact Detection

Author: Alex Siegel

Swarthmore College, 500 College Ave., Swarthmore, PA, 19081

Nomenclature (in order of appearance)

GUI = Graphic User Interface

CSCI = Computer Software Configuration Item (team)

LCC = Launch Control Center

COTS = Commercial-off-the-shelf

SSD = Solid State Drive

QOL = Quality-of-Life

VAB = Vehicle Assembly Building

QR = Quick Response Code

SSH = Secure Shell

I. Introduction

Over the course of this year I worked on several projects across different departments, from

physical robots at Swamp Works, to automated robots running functional tests on launch critical

Graphical User Interfaces (GUIs). My overarching project this year was designing a new

automated testing framework. It began with becoming familiar with the existing automated testing

framework, which used image matching to perform programmatic GUI testing. After writing a few

dozen tests with the existing framework, I was able to identify the strengths and weaknesses of the

system and begin the search for another tool to replace it. I ended up selecting an open source

library, which I modified to fit both National Aeronautics and Space Administration (NASA)

requirements and those of the specific Computer Software Configuration Item (CSCI) I worked

on. After the new framework was feature-rich enough to meet the team requirements, I helped roll

out the changes, managed the transition to the new framework, and directed continuing automation

work in regards to the library. The result was a comprehensive new way of efficiently testing the

GUI that was robust enough to handle small changes to the GUI itself.

Kennedy Space Center Page | 3 7/3/18

Additionally, for approximately six weeks I worked on rebuilding, repairing, and updating the

software of four “Swarmie” robots for a NASA event. By the close of the six weeks, the four robots

were operational and had improved obstacle detection software that solved a faulty stop signal

issue that the robots were experiencing.

 The third major project I worked on was an automated detector that ran in one of the Firing

Rooms in the Launch Control Center (LCC). The detector attempted to recreate a rare and critical

bug where launch data was failing to update when being obscured by another window, resulting

in half-updated rendering artifacts appearing on the screen. I ended up writing and running three

different versions of the artifact detector throughout my internship, and though they detected no

valid artifacts, they helped rule out many possible causes of the rendering error.

II. Projects

A. Automated Testing Framework

When I began working at NASA, the current automated testing framework was a merger

between two open-source pieces of software—a programming framework and an image matching

library. The image matching tool was used to detect parts of the GUI with which to interact on

screen; the programming framework and language governed interaction with the GUI. After a

week spent learning and familiarizing myself with the software, I began to write my own

automated tests using the tools. I wrote approximately fifty tests, helping to automate my CSCI’s

test procedures, before I saw both the strengths and weaknesses of the tool. The tests were written

in a high-level programming language close to English, which made it advantageous for this type

of testing because of its readability and ease-of-use—especially for the non-developers who were

expected to write many of the tests. The image matching library was a useful tool because it could

detect colors, text, and images onscreen, but it was especially prone to being broken by even small

changes to the GUI. Enabling anti-aliasing on text, changing fonts, and adding small

environmental differences between two machines would be enough to break every image matching

test. These errors would need to be individually debugged and patched (often resulting in the

Kennedy Space Center Page | 4 7/3/18

laborious work of retaking hundreds of new images). It was a time-consuming, tedious task that

required a developer with a lot of specialized experience with the library itself.

After several weeks of work on creating more automated tests, I was told that a new type of

middle-ground test was expected to be created, called a Combined Functional Test (CFT). It was

intended to bridge the gap between the broader system-level tests and the narrower focus of the

level 5 tests, which validated basic requirements (i.e. sending an invalid command and verifying

it would fail as expected). Since CFTs were soon to become commonplace, but were still in the

planning phase, there was an opportunity to find a new framework to use to write them. A new

framework offered the potential to avoid the disadvantages of the previous version, in addition to

providing greater functionality. I was tasked with searching out good alternatives in both COTS

and open-source software to find a suitable replacement. In general, the COTS software was

reliable, easy-to-use, and easy to set up. Unfortunately, it was also bloated, brittle, and expensive.

For example, the main COTS product I looked at had the useful functionality of being able to turn

on a “recording” mode, step through a test by hand, and then replay the test on its own. The

downside, besides the cost, was that the test it produced was a huge file, that couldn’t be modified

programmatically. If part of the test needed to be changed, the whole pre-recorded procedure

would need to be redone.

I ended up selecting an open-source solution. It was free, feature-rich, and compatible with the

existing test automation framework. Instead of using image matching, this library was able to hook

into the Java hierarchy of the GUI and interact with the components themselves based on the

hidden component names. This meant it was resilient to changes in the GUI, because it was

unlikely that the components themselves would ever be removed or renamed. I wrote several demo

scripts with the library, and made a pitch to my technical lead, Jason Kapusta, to accept the library

as the new tool for writing CFTs. After it was accepted, I began to work on modifying the library

to be suitable for CFT work. The main obstacle was the GUI on which we were performing the

test. Most of the code behind the GUI was launch-critical code and could not be easily changed,

but several of its features made it incompatible with the library. The three most critical missing

features from the library were the ability to hook into the main JWindow at the top of the GUI,

find modal dialogs, and use popup menus (as well as adding names to all the components so they

Kennedy Space Center Page | 5 7/3/18

would be discoverable by the library). I added a new Java function operator and corresponding

operator factory to the library that gave it the functionality to select JWindow components, like

the one at the top of the GUI. I modified another function to allow it to select our left click enabled

popup menus. Lastly, I modified the library in order to allow selection of modal dialogs by

expanding the scope of context in which the library would search for a matching dialog.

After I finished making the necessary patches to the library, I was able to roll out CFT work. I

made several example programs and distributed them to other interns, the automated test team,

and my CSCI. I spent the remainder of the time patching issues people encountered with the

library, helping people get the library working for them, and expanding its functionality.

B. “Swarmies”

[2] “Swarmies” in front of the VAB at KSC

For a period of approximately six weeks I was tasked with repairing several “Swarmie” robots

in the Swamp Works lab at Kennedy Space Center. The “Swarmies” are Roomba-like remote

controlled robots with an attached claw for picking up objects. They also come equipped with

several cameras and distance sensors. They have a toggleable automated mode, during which they

wander an area looking for QR-code stamped blocks to gather. There were four robots that needed

to be repaired for a NASA competition. These robots were in various states of disrepair. Two were

fully disassembled, one was experiencing a corrupted software issue, and another had damaged

Kennedy Space Center Page | 6 7/3/18

hardware (a snapped claw and support struts as well as non-functional servos). After a tutorial on

how to load Ubuntu Linux onto the robots, build their software, and put them together, I set to

work repairing the robots.

The hardware fixes were straightforward, but the software differences between the robots

resulted in a prolonged debugging process. I was eventually forced to wipe each of the robots clean

and reload all their software. One of the robot’s controllers was faulty, but after thorough

investigation, I came to the conclusion that the wireless chip in the controller itself was broken

which meant it was essentially irreparable. At the end of this first few weeks, all four robots were

in a state of good repair, but missing the one controller. To ensure the robots were working

correctly, I tested the robots for several hours a day, having them run their automated movement

course, as well as manually controlling them to do what would be common tasks for the upcoming

competition. “Swarmie” operators had previously experienced an issue where the onboard Intel

NUC computers would fail to get past the boot screen when powered up. After a few days of

testing, I encountered a recurrence of this issue. It turned out to be a bad SSD, but since there were

no replacement SSDs on hand I searched for a workaround. Pulling the power from the onboard

battery to the NUC, leaving it unplugged for ten seconds, then plugging it in and restarting the

device, temporarily got the robot back on its feet and allowed it to boot properly. It was only a

temporary workaround, but resetting the devices in this way abated the problem for roughly a day,

so I performed the reset on all four robots immediately prior to the start of the competition and all

performed nominally. Afterwards, I replaced the SSDs on the broken robots which fixed the issue

permanently.

One Quality-of-Life (QOL) problem I noticed during the manual testing phase was that when

the robots attempted to pick up certain blocks at an odd angle (or stacked blocks), their claw would

sometimes raise the blocks to a position in front of the distance sensors mounted on their face.

This would trigger the obstacle collision code that would lock the robot’s wheels in place,

preventing it from moving forward. The workaround was simple—either turn the robot, move

backwards, or lower the claw, and it would be able to continue on its way. Although this was

uncommon, happening an estimated once in every thirty block pickups, the fix was unintuitive for

first time users (as all the participants of the competition would be). I wasn’t at liberty to remove

Kennedy Space Center Page | 7 7/3/18

the obstacle detection code because the nature of the competition made the robot vulnerable to

being smashed against a wall. Therefore, I modified the collision code so it had a minimum

distance (from which a wall would not be detected), slightly past the length of its claw. This meant

that most blocks it picked up were inside the “safe zone” for the collision detection code and would

not cause the wheels to lock. However, even after this change, some blocks were barely slipping

out of the minimum distance I had set, and causing the robot to stop. I was wary about expanding

the minimum distance by much because of the scenario in which the robot would rotate into facing

an immediate wall, only inches away, and not detect it as an obstacle. I added another check to the

obstacle detection which checked whether all three distance sensors were triggered, or only one.

If it was just the middle sensor, I instructed the robot to ignore the collision warning. The idea

behind this change was that walls usually triggered all three distance sensors, whereas only thin

pillars might cause a single distance sensor to ping. More importantly, the blocks that the claw

raised up in front of the distance sensors triggered only the middle sensor for the most part (since

they were not particularly wide objects). This change was not sufficient on its own, since on rare

occasions a block could spill over or be picked up at an odd angle and still trigger multiple sensors,

so it had to be used in conjunction with the minimum distance change to eliminate all chances of

incorrect collision detection. I also added a greater minimum distance specifically for the middle

distance sensor so that its output would still be useful. If it detected a thin pillar at a distance, it

could still trigger the obstacle detection code. The only error case was a thin pillar that the robot

turned into, so it entered into the middle sensor “safe zone”. However, this scenario was rare

enough that my mentor was willing to take the risk for the QOL benefits of the change.

C. Artifact Detection

The first project I worked on when I became familiar with the automated testing framework

and associated image matching library was an automated artifact detector that ran on development

machines and workstations in one of the Firing Rooms in the LCC. There was a rare bug that was

being encountered based on an interaction with the Launch Control System GUI and other frames

superimposed on top of the GUI. The result was that data being updated on the GUI’s displays

would only partially update—data obscured by another frame (whether a terminal or another

program) would fail to change, but visible data would update correctly. If the window was moved

away, artifacts were left on-screen—half-updated and half-old information. These artifacts would

Kennedy Space Center Page | 8 7/3/18

usually fix themselves if you moved the mouse over them, but the problem was still critical because

the users needed to be able to depend on seeing accurate data from the GUI without needing to

worry about double-checking to make sure the data had updated correctly. We weren’t sure what

was causing the issue, but it was essential to be able to replicate the bug to determine exactly what

conditions allowed it to occur. While a workaround was possible, it involved a refresh of

everything on-screen every few seconds, so it was extraordinarily performance-heavy.

For the first iteration of this artifact detector, I was instructed to mimic the Launch Control

System GUI with a Java program that was a large JTable that took user input and then filled all its

columns and rows with that input. It simulated updating “data” by receiving different input from

the testing framework, displaying that input in every cell of the JTable, and verifying it had

correctly updated its cells. My robot program launched the Java program, verified it opened

correctly, then entered different user input every few seconds and verified that the JTable changed

as expected. If the result differed from the expected result, the program took a screenshot and filed

it away, then continued running (for weeks if uninterrupted). After several weeks’ worth of

runtime, the program caught nothing. Even if it had encountered a genuine artifact, it was unlikely

that it could have successfully identified it because the accuracy parameter it was using was too

low to notice a few cut-off characters. Furthermore, it was missing several key elements that lead

to the error occurring in the first place.

For the second version of the artifact detector, I was instructed to include many of these missing

elements, such as a “blocker” window that popped up, obscured the data table, and then

disappeared again. I also raised the accuracy parameter, and wrote failure-case tests to verify that

artifact-like objects would be detected and logged. The other changes I made included bursts of

activity then rest periods (similar to how a user interacted with the actual GUI), changing

background colors for the table (similar to the flashing alarms of the GUI), and minimizing, then

refocusing, the table itself. I checked before and after each of these events to verify that the table

didn’t show any signs of artifacts. The last alteration I made was to have two instances of the

program running simultaneously on the same computer’s monitors, but both SSH’d into different

computers. This was to simulate how we run the actual GUI, with different processes running over

different servers. As of the writing of this paper, this version has not caught any artifacts, but it is

Kennedy Space Center Page | 9 7/3/18

more promising because it has produced far fewer false positives, which increases the likelihood

that it will detect a valid artifact if it encounters one. If this version produces no artifacts, then the

scope of the problem is narrowed further to an interaction with the actual GUI and the frames that

obscure it. Therefore, the next version that I will work on will run a genuine display from the GUI,

instead of a JTable that simulates a display, and verify the same conditions.

III. Conclusion

 While I still continue to work on the rollout of the automated testing framework and future

iterations of the artifact detector, the most technically difficult parts of the assignments are

behind me and I look forward to seeing the results. The “Swarmies” were a resounding success

at their competition and worked as expected (bar one or two controller glitches). Now, they sit

in Swampworks, repaired, ready-to-go, and equipped with upgrades to their software.

 The artifact detectors have yet to find valid artifacts, but their existence and their various

iterations help narrow down the possible causes of the rendering issue. Eventually, one of them

or their kind will be capable of replicating the error on demand and the bug will be able to be

identified.

 My overarching project, the automated testing framework replacement, is patched, ready-to-

use, and can successfully accomplish all the requirements of the framework it was designed to

replace—and more. Within the next few weeks, and continuing on, people will be writing CFTs

and other pieces of software to support the library, and soon it will supplant most of the existing

automated testing effort. It should have a long future as a piece of software because of its

resilience to GUI changes, ease-of-use, and consistency with its results. There are some

applications where the old image matching framework will still be necessary, but hopefully this

new library is the first step on the path towards the reduction of manual human-run testing and

arduous image-matching debugging. Between the physical robots and the virtual, this internship

has been especially rewarding and I believe the work I have accomplished will prove useful for

my CSCI and the greater Software group at Kennedy Space Center.

Kennedy Space Center Page | 10 7/3/18

Acknowledgments

Thank you to Sam Goff—I couldn’t have done it without you. Thank you to Will Denis, and

Corey Dike for your willingness to help, your advice, and your camaraderie. Thank you to Jamie

Szafran, for your mentorship. Thank you also to Jason Kapusta, Jordan Kiser, Tony Ciavarella,

Caylyne Shelton, Jill Giles, and all those who have offered me help along the way.

References

[1] Swarthmore Photo

https://www.swarthmore.edu/communications-office/college-logo

[2] “Swarmies” Photo

https://www.nasa.gov/content/swarmies-shuffle-through-field-tests

https://www.swarthmore.edu/communications-office/college-logo
https://www.nasa.gov/content/swarmies-shuffle-through-field-tests

