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: Introduction: Northwest Africa (NWA) 7034 and its pairings represent a regolith breccia of basaltic bulk composition [1], the fine-
grained matrix of which bears a strong resemblance to the major and trace element composition estimated for the ancient southern
highlands crust on Mars [2]. Therefore, NWA 7034 may represent a key sample for constraining the composition of the martian crust,
particularly the ancient highlands. Here we seek to constrain the hydrogen isotopic composition of the martian crust using apatite [Ca5
(PO4)3(Cl,F,OH)]. Apatites across all lithologic domains in NWA 7034 have been affected by a Pb-loss event at ~1.5 Ga before
present [3] and so they are unlikely to have retained magmatic volatile composition and are more likely to have equilibrated with
fluids within the martian crust that may or may not have exchanged with the martian atmosphere.
 
Methods & Results: Electron probe microanalysis (EPMA) of apatite was conducted following the work of McCubbin et al., [4] and
Santos et al., [5]. The H-isotopic composition and H2O abundance of apatite in two thin sections of NWA 7034 were measured using
the Cameca NanoSIMS 50L at The Open University, following protocols described in [6]. Apatites in NWA 7034 were measured in a
number of lithologic contexts, including basaltic clasts, Fe, Ti, and P-rich (FTP) clasts, and large crystal clasts within the bulk matrix
[5].  All  apatites  are  Cl-rich  and  contain  between  238-1343  ppm H2O.  In  addition,  the  δD  values  of  apatites  ranged  from 453‰ to
2564‰.
 
Discussion: In  the  absence  of  a  magnetosphere,  the  martian  atmosphere  has  been  stripped of  1H over  billions  of  years  by  the  solar
wind [7].  This  has produced a heavily fractionated atmosphere (δD ~2500-6100‰,[8,9])  compared to the mantle  (δD <275‰,[10]).
The equilibration of apatite with crustal fluids is supported by the chlorine-rich compositions exhibited by apatites in NWA 7034 in
comparison to apatites from other martian meteorites [4]. The apatites in NWA 7034, which likely attained their volatile inventories
during a Pb-loss event at 1.5 Ga [3], have δD values <3000‰. All of the H-isotopic compositions that we obtained fall within ~500‰
of the range of values reported for the intermediate H reservoir predicted for the martian crust by Usui et al., [11]. These observations
indicate  that  at  least  portions  of  the  martian  regolith  have  not  exchanged  completely  with  the  martian  atmosphere.  If  NWA  7034
records  the  H-isotopic  composition  of  the  crust  ca.  1.5  Ga,  then  Allan  Hills  84001  (ALH  84001),  the  oldest  unbrecciated  martian
meteorite, constrains the H-isotopic composition of the crust ca. 4 Ga [12]. Greenwood et al. [13] determined a δD value of ~3000 ‰
for apatite in ALH 84001, which is D-enriched relative to the intermediate reservoir. However, our recent petrologic investigation of
ALH 84001 hints that there are at least two generations of apatite within ALH 84001, and it is not clear which generation of apatite
was measured by [13]. We will measure the H-isotopic composition of apatite in ALH 84001 to ascertain whether or not ALH 84001
holds new clues to the evolution of hydrogen in the ancient martian crust.
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