Lunar missions

Solar System and beyond

PLANETARY CUBESATS

Discovering our Solar System and beyond with powerful CubeSat missions

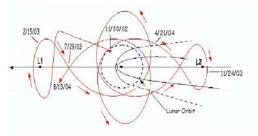
Gateways

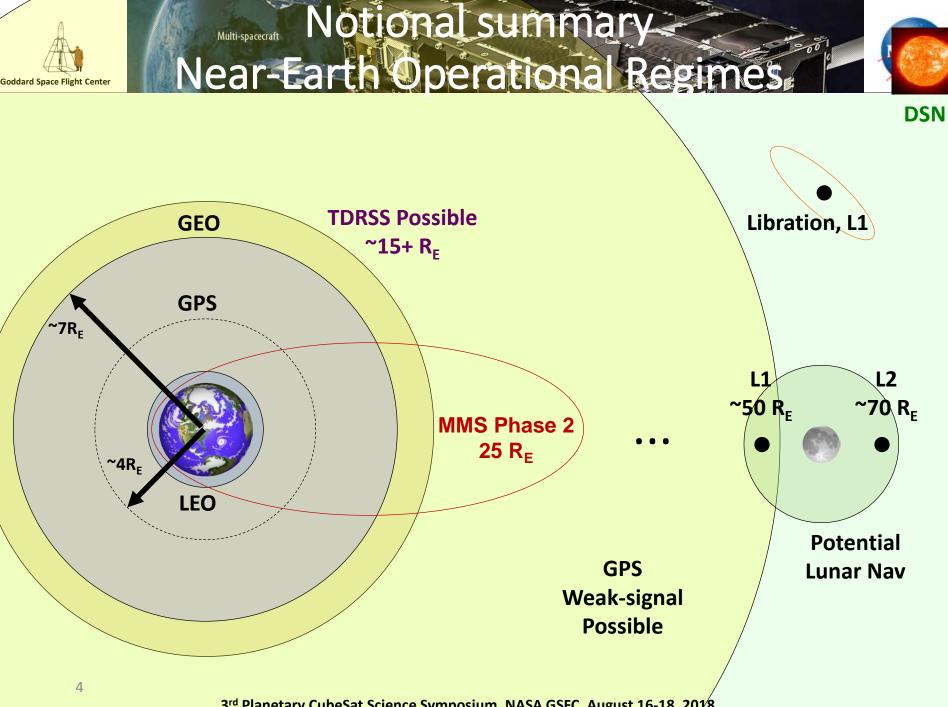
Strategic and Technical Aspects of Planetary Small Satellite Missions

David Folta, Cheryl Gramling Navigation and Mission Design Branch NASA Goddard Space Flight Center

3rd Planetary CubeSat Science Symposium August 16-17, 2018

- Orbit Regimes
- Basic OD Concepts
- Data Systems and Types
- Influences on Measurements
- Planetary Navigation Options
- Future Directions




Defining Navigation Regimes

WHERE AM I HEADING TO

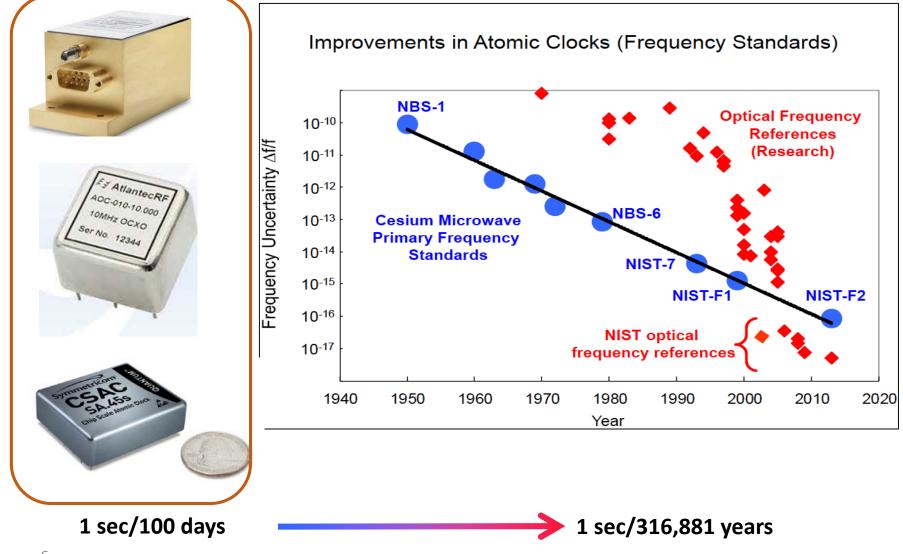
- Near Earth central body is Earth or within 2M km of earth
- Planetary Moon, Planets and their moons, Asteroid,
- Heliocentric Non-Planetary designs, Drift away
- Navigation refers to:
 - Knowledge of the mission orbit wrt the central body (absolute) or wrt another object (relative)
 - Knowledge of where the object resided or currently resides in the orbit (definitive) or will reside in the future (predictive),
 - The trajectory design associated with achieving the mission,
 - How to modify the object's orbit to follow that trajectory,
 - And the time associated with each of these.

3rd Planetary CubeSat Science Symposium, NASA GSFC, August 16-18, 201/8

Forms of Direct Measurements

→ Range (Distance)

- Time Delay
- Differential Delay → Angle
- Frequency shift (Doppler)
 or Carrier Phase → Line of Sight Velocity
- Frequency Change Rate → Line of Sight or Acceleration
- One common element among each of these...



Multi-spacecraft Time is Fundamental

Cs and USO

3rd Planetary CubeSat Science Symposium, NASA GSFC, August 16-18, 2018

Multi-spacera TIME is the Facilitator

- Ground element timing establishes boundary condition for enduser performance
- Applicable to communications, radiometrics, and science
- Sources clock and frequency
 - Delay accountability
 - Phase noise & jitter
 - Coherency
- Automatic exchange of timing state during a communication session enables:
 - TDMA type communication schemes Time-division multiple access (TDMA) is a <u>channel access method</u> for shared-medium networks. It allows several users to share the same <u>frequency channel</u> by dividing the signal into different time slots
 - Autonomous or on-demand session establishment
 - Internet-like routing

Multi-spacecraft Data Types & Systems

Measurement Type	Providing Systems
Range – tone, swept tone	GN, TDRS TTC, DSN
Range – PN	TDRSS, GPS, DSN (variation)
Doppler or Carrier Phase	All
Angles – Direct Observation	GN, TDRS (WSC SGL, SA & MA beams)
Celestial Navigation – Indirect Angles	Star Sensors, Earth/Sun Sensors
Delta Differenced One-Way Range - Angles	DSN with Quasars
Imaging/Optical Navigation	Cameras
XNAV	XNAV Pulsars

Range & Doppler can be either 1-way or 2-way Both improved by differencing

Error Sources on Radiometrics

- Media phase delay
- Oscillator stability ground, relay, customer*
 - Local Oscillators and the respective Phase Lock Loop
 - Includes resolution of Numerically Controlled Oscillators (NCO)
- Thermal Noise
- Loop Order ability to track higher order dynamics
- Signal to Noise Ratio & integration time
- Calibration
- Tone selection resolution limitations
- Coherency precision of turnaround
- Platform calibration location, orientation
- * Does not apply to coherent operations; Can be differenced out with adequate source availability

Multi-spacecraft Planetary Navigation

- Planetary Navigation options include traditional ground based and Onboard Celestial Navigation
- Traditional option includes the use of the NEN and DSN and a DSN compatible transponder, e.g. IRIS-V2 requiring multiple station contacts
- Onboard options include the use of Celestial Navigation, a self contained onboard system
 - Developed for libration and deep space missions
 - Equipment quality depends on the mission and orbit regime & requirements
 - XPDR with ability to accept external reference and to output low phase noise Doppler (<<1mHz, like 0.3mHz)
 - Oscillator with Allan Variance <1e-12 (prefer 1e-13) over tau of 10-100 seconds
 - Accelerometer
 - Star sensor with wide FOV in E-W/Azimuth looking anti-sunward (can get earth-Moon, and other planets, with reference star in background
 - Onboard timing synchronous across all systems related to nav (XPDR, XLINK, C&DH, Nav processor, accelerometer, star sensor observables)
 - Processor
 - Xlink for Formation –incorporate relative Doppler and pseudo range, referenced to the same oscillator as the XPDR; the ambiguity has to be tunable or allow for the far field distances, but while maintaining near field accuracy.
- Improved accuracy (convergence) using onboard system, especially for frequent maneuvers for formation control and any momentum uploads
- Requirements, math specs, & Users' Guide that contain the specs for CelNav are available 3rd Planetary CubeSat Science Symposium, NASA GSFC, August 16-18, 2018

Autonomous Celestial Navigation

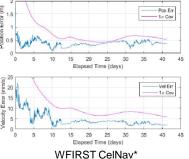
Technology Demonstration Concept:

 Autonomous, on-board celestial navigation system fused with one-way radiometrics, accelerometers, Goddard Enhanced On-board Navigation System (GEONS), and Goddard Image Analysis and Navigation Tool (GIANT). Would provide autonomous Gateway navigation.

• Relevance:

Goddard Space Flight Center

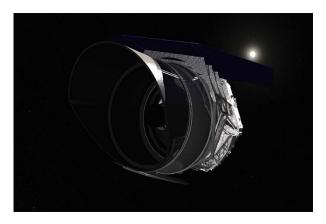
- Made up of existing high-TRL components with flight heritage (MMS, OSIRIS-Rex) and flight-proven software. Multi-center collaboration
- Answers specific need for WFIRST flagship mission, common hardware proposed for Caesar and Lucy


• Relation to Current Activities:

- Testing of an autonomous celestial navigation system would directly support technology maturity for the WFIRST on-board navigation system.
 - Gateway & WFIRST on-board OD is more accurate for maneuver planning than ground based navigation alone and will save fuel, extending mission lifetime
 - Reduces DSN/NEN contact times for ranging
 - Aides relative navigation for potential WFIRST/Starshade mission

• Gateway Requirements:

 Mass & power allocations, Gateway location(s) with Moon and Earth in the FOV, and access to ACS data will be required.


3rd Planetary CubeSat Science Symposium, NASA GSFC, August 16-18, 2018

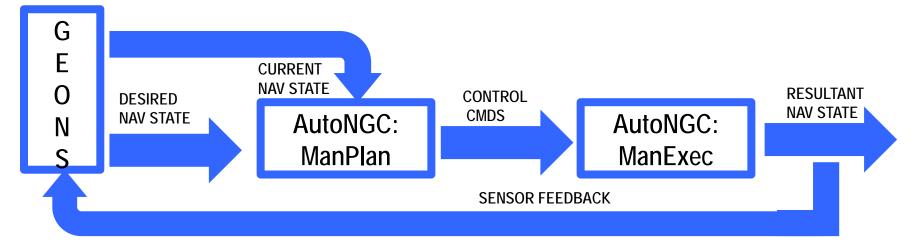
On-board OD (CelNav + 1-way Doppler) for WFIRST 5 – 30 km, 15 - 50 mm/s, 3-sigma RSS

Ground OD (NEN) based on recent experiences (multiple) 0.2 - 1 km, 200 - 500 mm/s, 3-sigma RSS

Performance is orbit/mission dependent Gateway-specific analysis pending

Multi-s Incorporate Optimetrics

- Radiometrics: A measure of the change in a parameter associated with a radio frequency-based signal that can be used as an observable of direction, range, or relative velocity between two objects.
- As SCaN moves toward optical communications, the navigation systems will adapt and can benefit.


 Optimetrics: Same as radiometrics, but using an optical signal as the source to provide orders of magnitude increased accuracy on the observables

Autonomous Navigation, Guidance,

- Follow-on to onboard orbit estimation is onboard orbit control: autonomous maneuver planning, execution, and calibration
- AutoNGC demonstrated on EO-1 in 2000; Established for single mission
- Reduces ground ops required for maneuver planning and execution and associated risks
- Requires telemetry feed from the maneuver, similar to ground planning/execution/calibration process
- Algorithms for formation missions not yet implemented in FSW

Simplified Measurement Capability

- Broad summary of measurement capability
 - Not intended to indicate one size fits all
 - Some measurements not available in real-time
 - Snowflake-like possible combinations for performance & robustness

				ΔDOR	CELNAV/Optic Requirement/S	
Orbit	GPS	TDRSS	NEN/DSN	(DSN)	al	ource
	50 cm @ 1	2–8 m @ 1.5	10–20 m @			
LEO	Hz	orbit	1.5 orbit	N/A	1 km @ 2 hr	≤ few m
HEO (perigee					0.1–15 km @	
< 2Re)	10 m @ 1 Hz	100 m	100 m	N/A	1 orbit	< 1 km / many
			100–200 m		1–5 km @ 1	
GEO	5 m @ 1 Hz	N/E	@ 36 hrs	N/A	orbit	10 m / many
			200m @ 2	1 km @ 1	0.5 km @ 0.5	
Lunar, in view	N/A ^a	N/E	days	day	days	500 m / LRO
Lunar, far					0.5 km @ 0.5	
side/hi lat	N/A	N/A	N/A	N/A	days	500 m / LRO
Sun-Earth			2 km @ 3	1 km @ 1	5–20 km @ 3	
L1/L2	N/A	N/A	wks	day	days	2 km / WMAP

Generalized/Simplified Navigation

gorias

- Broad summary of navigation categories
 - Not intended to indicate one size fits all
 - More snowflakes
 - Mission unique elements
 - Combination of many known components

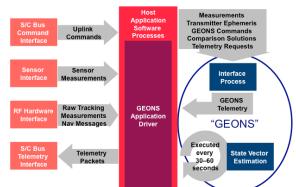
Category	Lower Accuracy	Accurate	High Accuracy	Precision Navigation
Absolute Definitive	100 – 300 m	5 – 40 m	50 cm – 10 m	< 1mm – 50 cm
Absolute Predictive (1 day)	1 km	75 – 500 m	5 – 50 m	5 cm – 5 m
Relative Definitive	1 – 50 m	1 – 10 m	0.1 – 1 m	<0.1 mm – 1 m
Relative Predictive (1 day)	<0.5 km	50 – 75 m	1 – 10 m	0.1 mm – 10 cm
Science Objective	Astro, Spatial, Loose temporal	Temporal, Surface Observer, Human	Temporal, Surface Observer/Altimetry, Human	Altimetry, Gravity, Interior Composition
Orbit Regime	Low, libration, helio cruise, cis-lunar cruise	Low, GEO, High, loose formation, precise maneuvers	Low, GEO, High, approach, formation, cluster	low, GEO, High, precise formation, rendezvous/docking

- Navigation in the near-earth regime, 2M km can be performed by a wide array of systems to provide robust solutions with seamless transitions between orbit regimes
- Navigation in the planetary regime has limited options with traditional ground support using radiometric tracking, onboard systems, and relative options available
- Many components within a communications system influence the resultant radio/optimetric tracking data quality
- GSFC Navigation offers relevant pre- and post-launch services to the user and networks communities
- Navigation needs to be an enabler for the science NASA hopes to achieve in the future – technology investments are key.

BACKUP

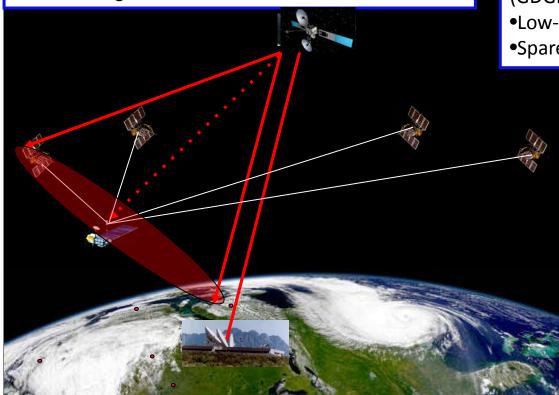
- GPS Receiver
 - GSFC developed weak-signal GPS; licensed to companies (BRE)
 - Assists in coverage in higher altitudes
- Global Navigation Satellite System (GNSS)
 - Advancing to additional signals (L2c, L5), including other constellations (Galileo, Glonass, Compass)
- Crosslink
 - Developed as element integrated with weak-signal GPS receiver to TRL 5 for MMS
 - 1-way range measurement for relative navigation
 - Low-rate data on signal (exchange science alerts, H&S, nav)
- Autonomous Rendezvous and Docking Sensor
- XNav sensor; translates pulsar timing to pseudo-range observation
- Star Sensor
- Accelerometer
- Integrate navigation sensor with communications receiver

19


systems

- Robust to outages or shortcomings of any one system
- High accuracy
- Seamless transitions across orbit regimes

- GEONS flight software processes forward Doppler from ground stations and TDRSS, attitude sensor data for celestial nav, GPS, crosslink & TASS pseudorange, XNav
 - Solves for absolute and relative navigation
 - Future data types: optimetric, optical imaging
 - Plans to upgrade to C++
- Test Facility: Formation Flying Test Bed
 - Provides Test As You Fly simulation capability
 - GPS simulator, Path Emulator for RF Signals, User Dynamics Environment summator
- From the spacecraft side, as comm subsystem is developed, nav and comm engineers need to work together to define requirements



TDRSS Augmentation Service

TASS Signal Consists of:

- Low-rate data message (< 1 kbps)
- PN ranging code synchronized with GPS time
- A wide "earth coverage" beam transmitted from three TDRS locations to provide global coverage to >1000 km altitude

TASS Message Includes:

- •TDRS ephemeris and health/status information (FDF, WSC)
- •0.5 Hz GPS corrections (GDGPS)
- •5 sec GPS integrity alarms (GDGPS)
- •Data authentication (GDGPS)
- •Earth orientation (GDGPS)
- •Space environment/weather data (GDGPS/NASA GSFC CCMC)
- •Low-rate fast-forward user commands (MOC)
- •Spare message bits for future content

TASS provides direct benefits in the following areas:

- Science/payload missions
- Human Space Flight missions
- SCaN/Network operations
- GPS and TDRSS onboard navigation users
- TDRSS performance
- New capabilities consistent with the modern GNSS architecture