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What is NASA Electric Aircraft Testbed (NEAT)?

Reconfigurable Powertrain Testbed

* Located at NASA Glenn Plum Brook Station in the recently
refurbished Hypersonic Tunnel Facility (HTF)

* Full-scale powertrain testing under actual flight scenarios

* Can support cryogenic fuel, high voltage, large wingspan,
electromagnetic interference, and high power research
h/ware

Planned Testing at NEAT

* Phased approach with ~1 aircraft configuration per year (goal)

* Initially COTS, ambient
¢ TRL maturation of:

High voltage bus architecture — — System EMI Mitigation and Standards —
Insulation, geometry, 600V up to 4500V Shielding, DOD-160, MIL-STD-461

High power MW Inverters, Rectifiers- — System Fault Protection —

Commercial, In-House, NRAs Fuse, Circuit Breaker, Current Limiter
High power MW Motors, Generators- — System Thermal Management -
Commercial, In-house, NRAs Active/Passive, Ambient/Cryo,

System Communication — Distributed/Mixed

Aircraft CAN, Ethernet, Fiber-optics



NASA Electric Aircraft Testbed (NEAT)




NASA Electric Aircraft Testbed (NEAT)

Reconfigurable testbed to support full-scale large aircraft
powertrain testing

Plans to demonstrate high fidelity turbo-generation and ducted
fan transient emulation and to test MW-class research motors,
inverters, and powertrains

NEAT Configured to Test a Lightly
Distributed Turboelectric Aircraft

Electric machine pairs to act
as electrical motor driving a
boundary layer ingesting fan

~d

Altitude chamber to test at
high voltage in a reahlistic
flight environment

Electric machine pairs to act as turbofans
Up to 24 Megawatt, high- with integrated electrical generators to
voltage airplane power grid produce thrust plus electrical power




National Aeronautics and Space Administration

STARC-ABL Configuration
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STARC-ABL Motor Pairing

1MW NEAT System With 2-Channel 135KW DC Supplies and an 135KW Unidirectional Supply at 600V

Need total DC power 306KW,

[T Existing S00KW NEAT System Built in 2017
[] Additional Components for LMW NEAT System
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Flexible MW-Scale Aircraft Powertrain Altitude Testing

Four Parker 250KW Motors
& Four Rinehart Inverters
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STARC-ABL Communication and Control
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Response, Bandwidth, Shielding, Standards, and Topology




STARC-ABL Error Handling
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MW Research Motor Gearbox Connection to Facility Motors

1MW
7,000 RPM.
OUTPUT/INPUT

I 25MwW 25MW 1|0” 25MW 25Mw | . 1MW
“ 21,000 RPM
. LOVEJOMp-FIEX 1'53 2 ¢ IN PUT/OUTPUT
Disc coupling Disc coupling L _
Kop-Flex 103

Four Parker 250KW Motors
& Four Rinehart Inverters

Disc coupling
motor/inverter

1MW GEARBOX
3:1 RATIO
SF=2.61

Interfacing facility speed and voltage with aircratt research bus voltage and machine speed




Single-String and STARC-ABL Powertrain Configurat

Inside Altitude Chamber

> Commencement of Testing for
" a 500 kW STARC-ABL

500 kW STARC-ABL Configuration

Full-scale Boeing 737-800 Powertrain Layout for EMI, thermal,
impedance, latency, conformity, and reflections
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NEAT NPSS Control Strategy

Wing Turbogenerators
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Current 500 kW STARC-ABL System Interconnections
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Flexible Dual-Shaft Motor |

N~

R SR = ~
MW-scale T Cooling Water System

* Multiple 250kW
machines on single shaft

* For cost-saving and
reconfigurability



500 kW Motor and Ducted Fan Emulati

Provide actual dynamic altitude conditions up to 50,000 feet while also
providing actual loading via NPSS real-time emulated ducted fan

_ Speed Motor | _| Speed Motor

Torque Motor Speed Motor

L
-

Exposed Double Shaft [ : / Inverter

Inverter




Instrumentation Challenges and Implementation




Dynamic Power System Model




Flight Profile for NPSS Testing
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Generator M1 Model Validation

Generator Torque Generator Speed
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Very good agreement between predicted model data and hardware results




Motor M3 Model Validation
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20 T r T -1000 : :
Idie
Test Data Test Data
Simulation Data | - - ——— Simulation Data
1500 F
Takeoff Cruise Decent/
-2000 Landing
5 g
-4 ©
%"_ E -2500
2 8
-3000
3500 |
-140 : : : . . - -4000
100 200 300 400 500 600 700 800 100 200 300 a0 500 600 700 800
Time (sec) Time (sec)
o0 Motor Inverter Current . Motor Inverter Voltage
Test Data
T20 ———— Simulation Data
m -
a0 F
Test Data
20 -

Simulation Data

Current (A)

-40

] ] ] i i ! sa0 ] i
100 200 300 400 00 600 T00 800 100 200 300
Time (sec)

400 500 600 00 800
Time (sec)

Very good agreement between predicted model data and hardware results




Full STARC-ABL Flight Profile — 900 NM

2.44-Hour Flight Profile, Altitude, Tail Cone Motor Power, Speed, Single Motor Torque
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—Motor2 Torque  —Altitude (ft) x0.01  —Motor3 speed x 0.1 Total Tail Cone Power (KW)

CHALLENGE MITIGATION

Thermally managing the motors
Addressing EMI between the controls and inverter
Load balancing the system
Communication delays
Bus transients and power quality improvement

Fault management with a complex system

Changing the coil configuration
Insuring good shielding contact end-to-end
High-speed DAQ
Fiber optics and ARINC 664 Protocol
Smart energy storage

Federated detection and control at inverters



Current 500 kW STARC-ABL System Grounding
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Fault Management
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Lessons Learned

* EMI shielding is critical for safe and proper operation of the powertrain even with DO-160G
compatible equipment

* Federated fault response with localized feedback/controls are important for orderly shutdown
sequencing

* Electric machines can be scaled and controlled to simulate a turbine and ducted fan operation

* System interactions between components must be tested to account for common modes,
grounding loops, electrical and mechanical resonant conditions

e Spline coupling selection impacts controllability

e Turbine and Electric Powertrain modeling can be very accurate if the component controls are fully
characterized

* Optical fiber and digital instrumentation are required for robust communication and sensors

e Higher voltage and current present new issues such as insulation resistance breakdown and power
guality challenges when operating near rated equipment limits

* Torgue measurements are effected by cogging, EMI, torsional resonance, spline back-lash, and
acquisition rates

* Shielding throughout the powertrain limits the ability to acquire data from transducers forcing
calculated results via inverter software measurements.



Next Steps

State of the Art Testing Ambient Research Cryogenic Research Cryocooler
FY16 FY17 FYL8 FY19 FY20 FY21 FY22
Scientific and Development Goals Ql|Q2|Q3|Q4|Q1jQ2|Q3|Q4|Q1|Q2j0z|04j0l1|02]03|04]Ql]Q2]|Q3]Q4ajQ1|Q2|Q3|Q4|Q1|]Q2|Q3|Q4
Single-String Propulsor System Demo (125 kW)
Development (Single-Bus Propulsor System Demo (500 kW)
Steps Two-Bus Propulsor System Demo

Full Aircraft Multi-Bus Propulsion and Generation
System Communication and Controls - .
Fault Protection, Redistribution, Energy Storage

Research - . o
High Voltage Bus, Insulation, EMI Shielding
Elements X
High Power MW Next Gen Inverters/Motors
Ambient or Cryogenic Thermal Management
Demonstrate controls, protections, performance
Scientific Validate anallytlcal modeling p_redlctlons
Results Confirm turbine and fan mapping schemes

Confirm flight-weight system and compatibility
Characterize EMI & power quality standards

* Smart energy storage and fault management
e Triple redundancy

* Aircraft Grounding Scheme

* Dual-Spool Power Extraction

* Real-time turbine and ducted fan emulation
e Altitude

* Flight-Weight Components




Summary

* Flexible Electric Aircraft Testbed Completed First STARC-ABL Flight Profile
* Full-scale Single-Aisle Electric Aircraft Powertrain
* Continue to add to capabilities (power, voltage, cooling, altitude)
* Up to 24-48MW with regeneration
* 50,000 feet altitude in 15 minutes
*  >1MW thermal management
* Full-size and safe with remote control

Remote
Control
Building

Powertrains

* Goalis to evaluate multiple aircraft
configurations

* Partnerships, collaborations

Components & Integrated Testing

Hosting HTF and * Altitude, high voltage
nearby facilities * Cryogenic, thermal
make jet fueled «  NASA-sponsored machines and power MW

power a possibility electronics . ' Cooling
* Partnered testing in academia, gov't,

industry




