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CHANGE OF INERTIA TENSOR DUE TO  
A SEVERED RADIAL BOOM FOR SPINNING SPACECRAFT 

Joseph E. Sedlak* and Babak Vint† 

Many spinning spacecraft have long, flexible, radial booms to carry science 
instrumentation. These radial booms often have low mass but contribute 
significantly to the spacecraft moment of inertia due to their length. There are 
historical cases where radial booms have been severed or have failed to deploy. 
This paper presents models for the center of mass (CM) and inertia tensor that 
account for variable boom geometry and investigates how the CM and inertia 
tensor change when a radial boom is severed. 

The CM and inertia tensor models presented here will be included in the Attitude 
Ground System (AGS) for the Magnetospheric Multiscale (MMS) mission. This 
work prepares the AGS to provide uninterrupted support in the event of a radial 
boom anomaly. These models will improve the AGS computations for spin-axis 
precession prediction, Kalman filter propagation for the definitive attitude, and 
mass property generation needed for the onboard control system. As an additional 
application, a method is developed for approximating the location on the boom 
where the break occurred based on the new models and readily observable attitude 
parameters. 

INTRODUCTION 

The spin-stabilized spacecraft is a convenient platform for the measurement of magnetic and 
electric fields, plasma properties, and other physical phenomena best observed over a wide 
baseline. Many spinning spacecraft have radial booms that are constructed from very thin and 
flexible multi-stranded wire. These radial booms can be quite long, with examples ranging from 25 
to 250 m, and are kept under tension by centrifugal force. This design allows the science instru-
mentation to span a distance that is large in relation to the size of the spacecraft body. However, 
micrometeoroid or debris impacts and deployment problems are inherent risks. As the contribution 
to the mass moment of inertia increases with the square of distance, radial boom anomalies can 
significantly alter the dynamics of the spacecraft despite having low mass. For torques to be 
balanced at equilibrium, flexible members tend toward orientations that are perpendicular to and 
radiate outward from the spin axis. Likewise, the spin axis is dependent on the mass distribution of 
the spacecraft, and therefore on the orientation of each member. This paper presents models for the 
center of mass (CM) and inertia tensor that account for this mutual dependency of spin axis and 
radial boom orientation. 

Radial boom anomalies are not unknown in the history of spin-stabilized spacecraft. In 1996, a 
wire boom on the Fast Auroral SnapshoT (FAST) satellite failed to deploy shortly after launch, 
causing a large coning angle for the duration of the mission. (Coning is defined to be the angle 
between the nominal body spin axis and the spacecraft major principal axis of inertia [MPA].) 
Despite this problem, the mission went on to become a success; complete electric field 
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measurements were still possible using the remaining three radial booms and two axial booms.1 
The IMAGE spacecraft, launched in March 2000, had multiple radial boom breaks: −X antenna 
damage in October 2000, +Y antenna damage in September 2001, and further +Y antenna damage 
in September 2004.2 The more recent ARTEMIS mission consists of two of the five spacecraft from 
the THEMIS constellation that were moved to lunar orbits starting in 2010. In October 2010, 
ARTEMIS P1 (formerly THEMIS B) lost part of one wire boom, including the spherical probe 
attached to its end.3 One additional relevant example of a probable micrometeoroid impact is given 
by the DODGE spacecraft, which was not a spinner. This was a Department of Defense satellite, 
launched in July 1967. This mission was designed to test gravity-gradient stabilization and included 
ten retractable booms. In November 1967, DODGE abruptly changed from a gravity-gradient stable 
attitude to a tumbling mode. This event occurred during an intense Leonid meteor shower, so 
impact was the probable cause.4 Thanks to the efforts of the respective engineering teams, all these 
spacecraft were able to carry out their missions and now serve as useful case studies for current and 
future missions. 

The models and techniques presented here will be included in the Attitude Ground System 
(AGS) for the Magnetospheric Multiscale (MMS) mission.5 The AGS provides flight dynamics 
attitude ground support services in the control center at the NASA Goddard Space Flight Center 
(GSFC). Increasing the accuracy of CM and inertia tensor values benefits three major aspects of 
MMS mission support: the predictions of spin axis precession (needed for ground contact 
planning), the propagation step in the attitude Kalman filter 6 (used to generate definitive attitudes 
for the science teams), and the CM and inertia products uplinked to the MMS spacecraft (used for 
onboard attitude and orbit control). The benefits from the new models will be most significant in 
the event of a boom anomaly, but they will also provide some marginal improvement even for 
nominal flight operations activities with unbroken booms. 

One fundamental assumption made in developing these models is that nutation and boom vibra-
tions are fully damped. This assumption implies three things: the axis of rotation passes through 
the CM, the MPA is coincident with the axis of rotation, and all wire booms are oriented radially 
to the axis of rotation. If any of these conditions were not true, there would be unbalanced torques 
and/or forces driving internal motion of the spacecraft components. Whenever there is internal 
motion, friction will damp it out in time. For the MMS spacecraft, it is known that boom vibrations 
dampen to half-amplitude in roughly 12 hours.7 After a disturbance such as a break in one of the 
booms, the rigid central body of the spacecraft is likely to settle into a new orientation to balance 
the torques and forces. With this rebalancing, the MPA will almost never coincide exactly with the 
spacecraft nominal spin axis (for most spinners, the body Z-axis). Therefore, the spacecraft body 
will be tilted relative to the spin plane. 

The main goal of this paper is to develop a method that considers the “fraction remaining” for 
each boom and solves for the CM and inertia tensor while respecting the mutual dependence of 
spin axis and boom directions. (The fraction remaining for each radial boom is referred to below 
as the boom fraction, 𝑓𝑓𝑏𝑏.) To begin, a spin vector is assumed and its direction is varied via an 
iterative method until it is coincident with the MPA of the inertia tensor resulting from that 
geometry. For each spin vector evaluated, the orientations of the booms, and in turn the inertia 
tensor of the spacecraft, depend upon it. Consequently, each time a spin vector is evaluated, 
solutions for the CM and boom directions consistent with that spin vector must be found. A separate 
iterative method is implemented to solve for these parameters. That is, for each step of the “outer 
iteration,” which solves for consistent spin axis direction and MPA, a nested “inner iteration” solves 
for the boom geometry. Once the spin axis direction converges to be consistent with the resultant 
MPA, and all other parameters are consistent, this outer iterative solution will yield a mapping 
between boom fraction and MPA direction. It is possible to determine the location where a boom 
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was severed using this mapping if the MPA is measurable on orbit. As an example, the MMS 
spacecraft includes star cameras that allow for accurate attitude estimation. By taking appropriate 
spin-averages, the MPA can be estimated.5 The observed change in MPA due to a boom break can 
be compared to the prediction from the inertia tensor model given here to determine the 
approximate location where the break occurred. 

The organization of the paper is as follows. After this introduction, there is a description of the 
spacecraft model, which gives an overview of the coordinate frame and the parts of the spacecraft 
hardware relevant to describing the CM and inertia tensor models. Next, there is a derivation of the 
inner iteration method for solving for the CM and the radial boom directions. An error analysis of 
this method shows that conditions are easily met to guarantee convergence. The next two sections 
present the inertia tensor model and the outer iteration method, which solves for consistent values 
for the spin axis and the MPA. A numerical acceleration method for the outer iteration is used to 
reduce the number of iterations required for convergence. Those sections are followed by an 
analysis showing how to estimate the location where a boom was severed and the uncertainty in 
that estimate. The paper ends with conclusions and a brief discussion of future work. 

SPACECRAFT MODEL 

The MMS mission is a convenient testbed for the ideas presented here.8 This mission comprises 
four nearly-identical spinning spacecraft flying in formation. Each MMS spacecraft has two Axial 
Double Probe (ADP) booms, which lie along the nominal axis of rotation (±Z-axis), and four Spin-
plane Double Probe (SDP) wire booms, which extend radially outward from the spacecraft body.9  

 

Figure 1.  MMS Spacecraft Showing Multiple Booms. 
(Figure used with permission of University of New Hampshire MMS-FIELDS team.) 

Figure 1 shows the layout of the MMS booms. There also are two radial magnetometer booms, 
which are much shorter and more rigid compared to the SDPs. Within the spacecraft body, there 
are four fuel tanks with diaphragms that are supported by helium gas to pressurize the fuel and 
suppress slosh. Among the variables in the CM and inertia tensor models are the amount of fuel 
remaining, which is known from maneuver bookkeeping and other methods (e.g., ideal gas law and 
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heat capacitance methods), and the shapes of the diaphragms and the distribution of fuel in the four 
tanks, which are not directly observable. The prelaunch inertia model assumes the fuel is symmetri-
cally distributed about the nominal spin axis. 

 
Figure 2.  MMS Observatory Coordinate System (OCS). 

The Observatory Coordinate System (OCS) is a body-fixed frame defined for the MMS mission 
and is the primary coordinate system referenced in this paper.10 The origin of the OCS is at the 
center of the lower spacecraft deck. (When the four MMS spacecraft were stacked for launch, this 
location was defined as the “center of the launch vehicle adaptor ring on the separation interface 
plane.”) Figure 2 shows the orientation of the XOCS, YOCS, and ZOCS axes and the location of the 
origin.11 By definition, the OCS Z-axis extends through the spacecraft structure along the center 
line of the thrust tube. The X-axis intersects the plane of Instrument Bay 1, and the Y-axis completes 
the right-handed orthogonal triad. 

The nominal MMS spin axis is along the OCS Z-axis. It is important to keep in mind that the 
actual spin axis is never perfectly coincident with the nominal spin axis since the true CM may be 
offset from ZOCS and there may be some coning, where the MPA is tilted with respect to ZOCS. This 
is one of the elements accounted for in the models presented in this work. 

The CM and inertia tensor models given below divide the spacecraft into a central rigid body 
and four attached rigid bodies representing the radial SDP booms. The fuel slosh is well-damped 
by the diaphragms, and since the magnetometer and ADP booms are quite stiff compared to the 
wire SDP booms, these are all modeled as part of the rigid central body. Since vibrational modes 
for the body damp out faster, are higher in frequency, and are well-separated from the SDP boom 
modes, treating the spacecraft central body as rigid is valid for this study. 

The CM of an individual SDP wire boom depends on the instruments mounted on that boom 
and the location where it has been severed. The booms on the four MMS spacecraft include, in 
order from the attachment point to the boom tip: a multi-stranded wire of length 57 m, a pre-
amplifier, a thinner wire of length 1.75 m, and a sensor sphere of diameter 0.08 m and mass 
0.091 kg. The preamplifier is modeled as a cylinder of length 0.071 m and radius 0.0155 m with a 
mass of 0.086 kg. The main wire linear density is 0.00506 kg/m, and the thin wire linear density is 
0.000155 kg/m. If a break in the SDP boom should occur, it is likely that the sensor sphere and 
possibly the preamplifier would be lost. The boom attachment points are given in Eq. (6) in the 
next section. 



5 

 
Figure 3.  (a) Remaining boom mass, and (b) boom CM measured from the attachment point 

versus location where the boom was severed. 

Figure 3a shows the boom mass, and Figure 3b shows the boom CM location. These plots 
display how the mass and CM vary with the location of a break, measured outwards from the boom 
attachment point. The CM plot is linear, with a slope of one-half, up to the location of the 
preamplifier; this just reflects the CM of a straight rod being at the midpoint of that rod. The plots 
show that the change in boom mass and CM are effectively discontinuous at the preamplifier and 
detector sphere locations. However, for convenience, the mass and CM are modeled as continuous 
functions, treating the bodies of the instrument hardware as uniform density objects. 

SOLUTION FOR CONSISTENT SPACECRAFT CM AND BOOM VECTORS 

This section describes a solution for the spacecraft CM and the directions of the radial wire 
booms. The boom directions are needed to compute the position of the total spacecraft CM. The 
CM position is needed to know the boom directions since the booms are radial to the spin axis, 
which must pass through the CM. Thus, the problem lends itself to solution by iteration, alternating 
between the CM and the boom directions. This is the “inner iteration” described in the introduction. 

The spin axis will lie along the MPA when spacecraft vibrations are fully damped. However, 
the inertia tensor and its MPA are not known prior to solving for the CM and boom vectors. This 
means the spin axis is not yet known, but the spin axis is needed to solve for the CM and boom 
vectors. One resolution to this quandary is simply to assume a temporary direction about which the 
spacecraft is forced to spin. This “forced spin axis” will not be the final spin axis, as it does not yet 
coincide with the MPA. The iteration method described in this section is only an intermediate step 
in the solution of the overall problem. This step will yield consistent CM and boom vectors for any 
assumed spin vector. This solution then will be used in the inertia tensor model, which is needed 
to find the MPA direction, as discussed in the section describing the Outer Iteration Algorithm. 

 
Figure 4.  Sketch of Spacecraft Central Body and Two of the Four Radial Wire Booms. 
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Figure 4 shows the spin axis, 𝜔𝜔��⃗ , tilted by an angle, φ1, from the ZOCS axis, and passing through 
the spacecraft CM. The φ1 angle is a rotation in the plane defined by ZOCS and the severed boom 
attachment point (boom #1 is taken to be the severed boom in this figure). The spin direction is 
arbitrary for this inner iteration algorithm, so it can also have a tilt, φ2, out of this plane. The φ2 
angle is not shown in Figure 4, but it is accounted for in the models presented in this paper. 

Looking ahead to the solution of the outer iteration for the spin axis consistent with the inertia 
tensor and MPA, it will be shown that for that solution the angle φ2 is generally smaller than φ1 as 
long as only one boom is broken (e.g., see Table 1 in the second to last section of this paper). The 
magnitude of φ2 may be comparable to the initial coning angle prior to any boom break; that is, 
even without a severed boom, asymmetry in the fuel distribution causes some coning, leading to 
computed values of φ1 and φ2 differing slightly from zero. The coning angles on the four MMS 
observatories currently range from 0.02 to 0.2 deg, and the spacecraft central body CMs are offset 
from the ZOCS axis by 4 to 8 millimeters. 

Inner Iteration Algorithm 

In the first step of the inner iteration, the spacecraft CM is given as a function of the boom 
vectors and other system parameters, including the boom fractions, fuel tank fill-fraction, and the 
spin direction, 𝜔𝜔�, where the caret indicates unit vector. Note that the boom fractions indicate the 
remaining portion for each of the four booms. The algorithm given here converges for any 
combination of break locations on multiple booms. 

For the second step, the boom vectors are given as functions of the CM position and 𝜔𝜔�. When 
these two functions, that is, the computations of CM and boom vectors, are iterated, their values 
quickly converge. This process yields consistent values for the CM and the boom vectors for any 
choice of boom fractions and spin axis direction. Alternatively, approximate closed-form solutions 
can be derived under the assumption of small angle deviations of the booms from their nominal 
directions. These closed-form approximations were used as a first test of the iteration method, but 
they are not presented here. 

In general, the CM of a body is 

 𝐶𝐶 = 1
𝑀𝑀𝐴𝐴

∑ 𝑀𝑀𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖∈𝒜𝒜  , (1) 

where 𝒜𝒜 is the finite set of all mass particles in the body, Mi and 𝑟𝑟𝑖𝑖 are the masses and positions of 
those particles, and 𝑀𝑀𝐴𝐴 = ∑ 𝑀𝑀𝑖𝑖𝑖𝑖∈𝒜𝒜  is the total mass. This expression can be written as 

 𝐶𝐶 = 1
𝑀𝑀𝐴𝐴

�∑ 𝑀𝑀𝑗𝑗𝑟𝑟𝑗𝑗𝑗𝑗∈ℬ + ∑ 𝑀𝑀𝑘𝑘𝑟𝑟𝑘𝑘𝑘𝑘∈𝒞𝒞 + ⋯� , (2) 

where the set of all particles has been separated into the union of an arbitrary number of disjoint 
subsets, 𝒜𝒜 = ℬ ∪ 𝒞𝒞 ∪⋯. Next, Eq. (2) can be written 

 𝐶𝐶 = 1
𝑀𝑀𝐴𝐴

�𝑀𝑀𝐵𝐵
∑ 𝑀𝑀𝑗𝑗𝑟𝑟𝑗𝑗𝑗𝑗∈ℬ

𝑀𝑀𝐵𝐵
+ 𝑀𝑀𝐶𝐶

∑ 𝑀𝑀𝑘𝑘𝑟𝑟𝑘𝑘𝑘𝑘∈𝒞𝒞
𝑀𝑀𝐶𝐶

+ ⋯� = 1
𝑀𝑀𝐴𝐴

�𝑀𝑀𝐵𝐵𝐶𝐶𝐵𝐵 + 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 + ⋯� , (3) 

where 𝑀𝑀𝐵𝐵 = ∑ 𝑀𝑀𝑗𝑗𝑗𝑗∈ℬ  and 𝐶𝐶𝐵𝐵 is the CM of the particles in set ℬ, and similarly for set 𝒞𝒞, etc. This 
shows a rigid body can be divided into arbitrary separate parts, and the CM of the entire system 
will be the first moment of the masses of these parts located at their respective CMs, divided by the 
total mass. A similar argument allows one to compute the inertia tensor for a body by subdividing 
it into arbitrary parts. The inertia tensors for the individual parts can be computed and combined to 
obtain the whole. However, care must be taken to use consistent coordinate frames and to account 
for the offset of the CMs of the parts, as discussed in the Inertia Tensor section below. 
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Using Eq. (3), one can write the spacecraft CM, denoted 𝐶𝐶𝑆𝑆𝑆𝑆, as 

 𝐶𝐶𝑆𝑆𝑆𝑆 = 1
𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡

�𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + ∑ 𝑚𝑚𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖=1,4 � , (4) 

where 𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the mass and 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the CM of the spacecraft central body, and Mtot is the total 
spacecraft mass. The mi in Eq. (4) are the wire boom masses, with index i running from 1 to 4. The 
vectors to the boom CMs, 𝑠𝑠𝑖𝑖, are obtained as the sums of vectors from the origin of the OCS frame 
to the boom attachment points, 𝐴𝐴𝑖𝑖, plus vectors along the booms. The distances from the 
attachments to the boom CMs are di, and the unit vectors along the booms are written 𝑏𝑏�𝑖𝑖. Hence, 
the boom CM vectors are 

 𝑠𝑠𝑖𝑖 = 𝐴𝐴𝑖𝑖 + 𝑑𝑑𝑖𝑖𝑏𝑏�𝑖𝑖 , (5) 

for i = 1 to 4. The values for mi and di are given in Figures 3a and 3b. The boom attachment points 
in the OCS frame are 

 𝐴𝐴1 = 𝑍𝑍30 �
𝑅𝑅
0
𝐻𝐻
� ,       𝐴𝐴2 = 𝑍𝑍30 �

−𝑅𝑅
   0
   𝐻𝐻

� ,       𝐴𝐴3 = 𝑍𝑍30 �
0
𝑅𝑅
𝐻𝐻
� ,       𝐴𝐴4 = 𝑍𝑍30 �

   0
−𝑅𝑅
   𝐻𝐻

� , (6a-d) 

where H = 1.051 m is the height and R = 1.597 m is the radial distance from the OCS origin to the 
attachment points, and 𝑍𝑍30 ≡ 𝑀𝑀𝑧𝑧(−30 𝑑𝑑𝑑𝑑𝑑𝑑) is the Z-axis rotation matrix, where 

 𝑀𝑀𝑧𝑧(𝜃𝜃) = �
    cos 𝜃𝜃 sin 𝜃𝜃 0 
− sin 𝜃𝜃 cos𝜃𝜃 0 

  0 0 1 
� , (7) 

which is needed since the attachment points are rotated by 30 deg from the OCS X- and Y-axes. 

Next, the boom vectors are written as functions of the spacecraft CM. Define the vectors from 
the spacecraft CM to each boom attachment point 

 𝐷𝐷��⃗ 𝑖𝑖 ≡ 𝐴𝐴𝑖𝑖 − 𝐶𝐶𝑆𝑆𝑆𝑆 ,   (i = 1,4) . (8) 

As shown in Figure 4, the spin axis passes through the CM. The boom vectors pass through their 
attachment points, and if extended, must intersect the spin axis and be perpendicular to it. Thus, the 
boom directions can be obtained by projecting the vectors in Eq. (8) onto the spin plane, that is, the 
plane perpendicular to the spin axis, 𝜔𝜔�. Normalizing those results yields the unit boom vectors, 

 𝑏𝑏�𝑖𝑖 = 𝒫𝒫𝐷𝐷��⃗ 𝑖𝑖 �𝒫𝒫𝐷𝐷��⃗ 𝑖𝑖��  ,   (i = 1,4) . (9) 

The projection operator, 𝒫𝒫, onto the spin plane is 

 𝒫𝒫 ≡ 𝐼𝐼3 − 𝜔𝜔�𝜔𝜔�𝑇𝑇, (10) 

where I3 is the 3×3 identity matrix. 

The iteration now can proceed by first computing the boom vectors using Eq. (9) with the central 
body CM, 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, as an initial guess for the total spacecraft CM in Eq. (8). Then, Eq. (4) is used to 
compute a new value for the spacecraft CM. These steps are repeated until the changes in these 
values are less than a convergence tolerance.  

For the MMS spacecraft, the iteration process converges to machine double precision in 9-10 
iterations. Six iterations will yield precisions of milli-arcseconds for the boom directions and 
nanometers for the CM position. 
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Proof of Convergence for Iteration Method for CM and Boom Vectors 

This subsection presents approximate values for the errors in the CM and boom vectors at each 
step of the inner iteration process. The error in the CM can be expressed as the gradient of Eq. (4) 
with respect to the vectors, 𝑏𝑏�𝑖𝑖, times the errors in those vectors. This yields 

 Δ𝐶𝐶𝑆𝑆𝑆𝑆 ≈
1

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡
∑ 𝑚𝑚𝑖𝑖𝑑𝑑𝑖𝑖Δ𝑏𝑏�𝑖𝑖𝑖𝑖=1,4  , (11) 

where the error in a variable is indicated by the Δ symbol. 

Similarly, the errors in 𝑏𝑏�𝑖𝑖 can be written as the gradient of Eq. (9) with respect to the spacecraft 
CM, times the error in the CM. After some algebra, this results in 

 Δ𝑏𝑏�𝑖𝑖 ≈
−1
�𝒫𝒫𝐷𝐷��⃗ 𝑖𝑖�

�𝒫𝒫 − 𝑏𝑏�𝑖𝑖𝑏𝑏�𝑖𝑖𝑇𝑇�Δ𝐶𝐶𝑆𝑆𝑆𝑆  ,   (i = 1,4) . (12) 

Suppose Eq. (12) gives the N-th iteration for the boom vector errors. Then, by combining 
Eqs. (11) and (12), one obtains the CM error for the N + 1st iteration, 

 Δ𝐶𝐶𝑆𝑆𝑆𝑆
(𝑁𝑁+1) ≈ −1

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡
∑ 1

�𝒫𝒫𝐷𝐷��⃗ 𝑖𝑖�
𝑚𝑚𝑖𝑖𝑑𝑑𝑖𝑖�𝒫𝒫 − 𝑏𝑏�𝑖𝑖𝑏𝑏�𝑖𝑖𝑇𝑇�𝑖𝑖=1,4 ∆𝐶𝐶𝑆𝑆𝑆𝑆

(𝑁𝑁) . (13) 

The following arguments can be made to establish approximate values for the factors in Eq. (13). 
First, the spin axis is expected always to be close to the Z-axis in the OCS frame. Even with a 
completely severed boom, the change in coning angle is found to be less than 2 deg, and the CM 
remains within a few centimeters of the Z-axis. This means the value of �𝒫𝒫𝐷𝐷��⃗ 𝑖𝑖� will be approximately 
equal to the radial distance, R, of the boom attachment points for all four booms. Second, if one 
rotates about the Z-axis to a frame where booms 1 and 2 are nominally along the ±X-axis, and 
booms 3 and 4 are nominally along the ±Y-axis, then 

 𝒫𝒫 − 𝑏𝑏�𝑖𝑖𝑏𝑏�𝑖𝑖𝑇𝑇 = 𝐼𝐼3 − 𝜔𝜔�𝜔𝜔�𝑇𝑇 − 𝑏𝑏�𝑖𝑖𝑏𝑏�𝑖𝑖𝑇𝑇 ≈ �
0 0 0
0 1 0
0 0 0

� ,   (i = 1,2) , (14a) 

and 

 𝒫𝒫 − 𝑏𝑏�𝑖𝑖𝑏𝑏�𝑖𝑖𝑇𝑇 = 𝐼𝐼3 − 𝜔𝜔�𝜔𝜔�𝑇𝑇 − 𝑏𝑏�𝑖𝑖𝑏𝑏�𝑖𝑖𝑇𝑇 ≈ �
1 0 0
0 0 0
0 0 0

� ,   (i = 3,4) , (14b) 

where the spin axis again is assumed to be near the Z-axis.  

Combining Eqs. (13) and (14) yields the errors for the X- and Y-components of the CM, 

 Δ𝐶𝐶𝑆𝑆𝑆𝑆,𝑋𝑋
(𝑁𝑁+1) ≈ −1

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑅𝑅
(𝑚𝑚3𝑑𝑑3 + 𝑚𝑚4𝑑𝑑4)∆𝐶𝐶𝑆𝑆𝑆𝑆,𝑋𝑋

(𝑁𝑁)  , (15a) 

and 

 Δ𝐶𝐶𝑆𝑆𝑆𝑆,𝑌𝑌
(𝑁𝑁+1) ≈ −1

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑅𝑅
(𝑚𝑚1𝑑𝑑1 + 𝑚𝑚2𝑑𝑑2)∆𝐶𝐶𝑆𝑆𝑆𝑆,𝑌𝑌

(𝑁𝑁)  . (15b) 

In the approximations used in this error analysis, the Z-component of the CM error is unaffected 
by the iteration process. A break in one of the booms will cause 𝐶𝐶𝑆𝑆𝑆𝑆,𝑍𝑍 to shift in the negative 
Z-direction due to the mass loss, but that shift will be captured in the first iteration. In subsequent 
iterations, the corrections to the boom vectors remain perpendicular to the spin axis; thus, Δ𝐶𝐶𝑆𝑆𝑆𝑆,𝑍𝑍 
will be near zero. 
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The coefficients of the errors in Eqs. (15) are always less than or equal to the values obtained 
using unbroken booms. Let m0 and d0 be the mass and boom CM distance for unbroken booms. 
Equations (15) imply that the error in 𝐶𝐶𝑆𝑆𝑆𝑆 on the N-th iteration is bounded, 

 �Δ𝐶𝐶𝑆𝑆𝑆𝑆
(𝑁𝑁)� < �2

3/2𝑚𝑚0𝑑𝑑0
𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑅𝑅

�
𝑁𝑁
�Δ𝐶𝐶𝑆𝑆𝑆𝑆

(0)� . (16) 

Convergence of the iterative method is guaranteed if the quantity in parentheses in Eq. (16) is less 
than unity. For the MMS spacecraft, this expression has a value of approximately 0.03. In addition, 
since the error in the initial guess, Δ𝐶𝐶𝑆𝑆𝑆𝑆

(0), is certainly less than the spacecraft radius R (where 
R ≈ 1.6 m), Eq. (16) yields error estimates in good agreement with the numerical convergence 
results quoted at the end of the previous subsection after Eq. (10). 

INERTIA TENSOR 

The current method used by the MMS AGS for calculating the inertia tensor is based on a lookup 
table along with an analytic model for the radial boom deployment. The lookup table was generated 
prelaunch by the MMS mechanical engineers and contains the mass properties (CM and inertia 
tensor) for various stages of boom deployment and fuel fill-fractions. This method assumes all 
booms are undamaged, point in nominal directions, and are symmetrically deployed in opposing 
pairs. For the work presented here, it was desired to improve the model to account for booms that 
are partly severed and boom directions that vary as the mass distribution of the spacecraft changes 
(with or without any damage to the booms). This improvement will increase the accuracy of attitude 
estimation in general, facilitate ground support in the case of damaged radial booms, and provide 
the means for estimating a boom break location. 

The MMS engineers determined the mass properties of the spacecraft prior to launch. These 
tabulated properties, along with a simple fuel consumption model, yield the inertia tensor model 
used from launch until now. The AGS analysts also perform frequent calibrations to determine 
corrections to the MPA direction to account for any asymmetry in the fuel distribution,5,7 but these 
corrections are not included in this paper. Other than these MPA calibrations, the mass properties 
of the central body itself would not be affected by damage to the radial booms. The contribution of 
the radial booms to the spacecraft mass properties, however, can be improved by modeling angling 
or breakage of the radial booms. This only works if the boom geometry is known. While boom 
directions are not directly observable, they can be determined iteratively, as shown in the previous 
section. 

In the improved inertia tensor model, the spacecraft central body and the four radial booms are 
each taken to be rigid components of the system. The wire booms are flexible, of course, but their 
rigid-body inertias are needed for computing the MPA for fully-damped rotation and for very low-
frequency perturbations, e.g., the spin axis precession from gravity-gradient torques. Since each 
boom comprises several parts, the parallel axis theorem is used to build each boom inertia tensor 
from these parts. The model then uses the parallel axis theorem once more to build the total 
spacecraft inertia tensor from the inertia tensors of the body and four booms. 

The values for the mass and CM of an individual boom were given earlier in Figure 3 in the 
section on the Spacecraft Model. To obtain the boom inertia tensor, the inertias of the boom parts 
can be combined in a convenient frame and then transformed to the OCS. Since each boom exhibits 
axial symmetry about its length, a convenient coordinate system for calculating mass moments of 
inertia orients one axis along the boom direction and the other two axes in any mutually orthogonal 
directions. Here, the X-axis is chosen to lie along the length of the boom, and the origin is chosen 
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to be the attachment point of the boom to the body. Let this frame be named the Boom Direction 
Coordinate System (BDCS). 

Due to the rotational symmetry about the BDCS X-axis, one has JYY = JZZ for all boom parts, 
with all products of inertia zero, and arbitrary choices for the BDCS Y- and Z-axes. A simple choice 
for the BDCS is to define a sequence of two rotations on the OCS: the first rotation is about the 
Z-axis by an angle 𝜃𝜃1 that aligns the BDCS X-axis with the OCS XY-projection of the boom 
direction, and the second rotation is about the Y-axis by an angle 𝜃𝜃2 to complete the alignment of 
the X-axis parallel with the boom direction. Therefore, for a given boom direction, 𝑏𝑏�, the 
corresponding BDCS is defined by the following passive transformation from OCS to BDCS, 

 𝜃𝜃1 = tan−1 �𝑏𝑏𝑌𝑌
𝑏𝑏𝑋𝑋
�  , (17) 

 𝜃𝜃2 = tan−1 � −𝑏𝑏𝑍𝑍

�𝑏𝑏𝑋𝑋
2  + 𝑏𝑏𝑌𝑌

2�
1/2�  , (18) 

 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵←𝑂𝑂𝑂𝑂𝑂𝑂 = �
cos 𝜃𝜃2 0 −sin 𝜃𝜃2

0 1 0
sin𝜃𝜃2 0    cos 𝜃𝜃2

� �
   cos 𝜃𝜃1 sin 𝜃𝜃1 0
−sin𝜃𝜃1 cos𝜃𝜃1 0

0 0 1
� . (19) 

Note that Eq. (17) is implemented using the atan2 function so the signs and the quadrant are 
accounted for properly. The transformation from BDCS to OCS is obtained as the transpose of 
Eq. (19) since the inverse is the transpose for orthogonal matrices. The resulting matrix is applied 
as a similarity transformation (since the inertia tensor is bilinear in the mass coordinates) to express 
the BDCS boom inertia tensor in the OCS, 

      𝐴𝐴 = 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝑆𝑆←𝑂𝑂𝑂𝑂𝑂𝑂𝑇𝑇  , (20) 

 𝐽𝐽𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴 𝐽𝐽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴𝑇𝑇. (21) 

The parallel axis theorem is used multiple times to build the inertia tensor of each boom from 
its parts, and to build the inertia tensor of the system from the five rigid bodies. In both cases, one 
follows the same procedure to combine several inertia tensors into one. First, determine the system 
center of mass based on the masses and CMs of its constituents. Next, determine the inertia tensor 
of each constituent about its CM. Apply the parallel axis theorem to translate the inertia tensor of 
each constituent from its own CM to the system CM. At this point, the inertia tensors of all the 
constituents are referenced to the same point in space. The final step is simply to sum these inertia 
tensors to form the combined inertia tensor of the system. For a single boom, the inertia tensors of 
the boom parts are combined. For the spacecraft, the inertia tensors of the five rigid-body 
components are combined. 

To translate a rigid body’s inertia tensor about its CM to an arbitrary point 𝑃𝑃, define a displace-
ment vector 𝑟𝑟 pointing between the CM and 𝑃𝑃, and use the parallel axis theorem, 

 𝐽𝐽𝑃𝑃 = 𝐽𝐽𝐶𝐶𝐶𝐶 + 𝑚𝑚(𝑟𝑟2𝐼𝐼3 − 𝑟𝑟𝑟𝑟𝑇𝑇)  , (22) 

where r is the magnitude of 𝑟𝑟, and I3 is the 3×3 identity matrix. Note that since Eq. (22) is quadratic 
in 𝑟𝑟, it does not matter whether 𝑟𝑟 points from 𝑃𝑃 to the CM or from the CM to 𝑃𝑃. 

As described in the Spacecraft Model section, the parts composing the boom (in order from 
attachment to tip) are: the main boom wire, a preamplifier, a thin wire, and a spherical sensor. To 
calculate the inertia tensors of these parts, both wires are modeled as thin rods, the preamplifier as 
a cylinder, and the probe as a sphere, each having uniform density. Expressions for the axial and 
transverse mass moments of inertia about the CM, Ja and Jt, respectively, are well-known for these 
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solids. Since the BDCS X-axis is the symmetry axis, the inertia tensor for each part about its own 
CM can be written 

 𝐽𝐽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �
 𝐽𝐽𝑎𝑎 0 0 
0 𝐽𝐽𝑡𝑡 0 
0 0 𝐽𝐽𝑡𝑡  

� . (23) 

Denote the mass of each part of the boom as 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and the location of its CM along the length 
of the boom as 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. By definition, the position of 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 lies exactly along the BDCS X-axis. 
Application of the parallel axis theorem to translate the part’s inertia tensor from its CM to the 
boom CM yields 

 𝐽𝐽𝐶𝐶𝐶𝐶,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐽𝐽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �
 0 0 0 
 0 𝑥𝑥2 0 
 0 0 𝑥𝑥2

� , (24) 

where 
 𝑥𝑥 ≡ 𝑑𝑑𝑖𝑖 − 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , (25) 

and where di is the distance along the boom to the boom CM. The result in Eq. (24) indicates the 
inertia tensor of the individual part about the boom’s CM. Once 𝐽𝐽𝐶𝐶𝐶𝐶,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is determined for every 
part, the sum of these tensors yields the total inertia tensor of the boom about the boom’s CM in 
the BDCS. This inertia tensor is transformed from the BDCS to the OCS using Eq. (21).  

When this procedure is accomplished for all four booms, the masses, CMs, and inertia tensors 
in OCS will be known for all five components of the spacecraft (i.e., the central body and the four 
radial booms). The total spacecraft inertia tensor about the spacecraft CM is obtained by applying 
the parallel axis theorem again to translate the five components to the spacecraft CM, 

 𝐽𝐽 = ∑ �𝐽𝐽𝐶𝐶𝐶𝐶,𝑖𝑖 + 𝑚𝑚𝑖𝑖(𝑟𝑟𝑖𝑖2𝐼𝐼3 − 𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖𝑇𝑇)�𝑖𝑖=1,5  , (26) 

where here the 𝑟𝑟𝑖𝑖 are the vectors in OCS from the spacecraft CM to the CMs of the five body 
components, and ri are their magnitudes. 

Note that while this paper focuses on the rigid-body inertia tensor, there also exists an “effective 
inertia tensor” that is used in the MMS onboard attitude maneuver controller and in the AGS 
Kalman filter to compute the definitive attitudes. The effective inertia is a useful concept for attitude 
estimation and control using rigid-body algorithms in the presence of unmodeled boom 
flexibility.11,12 In the event of a boom anomaly, the techniques given here for the rigid-body inertia 
tensor will provide results that are needed for computing an improved effective inertia tensor as 
well. 

SOLUTION FOR CONSISTENT SPIN AXIS AND MPA 

The inner iteration algorithm described in an earlier section accepts a spin vector as a parameter 
and solves for the spacecraft CM and boom directions that are consistent with that spin direction. 
As indicated in that section, that algorithm permits the spin axis to take on values that are not 
consistent with torque-free steady-state motion. Recall that as the spin axis changes, the boom 
angles change, and consequently, the inertia tensor and MPA also change. To arrive at a full set of 
realistic values for the spacecraft, one must solve for the spin axis that coincides with the MPA of 
the resultant spacecraft geometry. 

It is stressed that coincidence of the spin axis and the MPA is an assumption that is valid when 
all major vibrations have damped out and the system acts as five rigid bodies at equilibrium. The 
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actual booms are far from rigid and have many modes of vibration. However, as vibrations dampen, 
the booms appear nearly straight and at rest in the body frame. The system will behave 
approximately as a rigid body for very low-frequency perturbations, but not for thrusting or for 
debris impacts. When a true rigid body in stable torque-free rotation is perturbed, the instantaneous 
angular velocity vector will nutate about the MPA (as observed from a body-fixed coordinate 
system). In a flexible spacecraft, a disturbance usually will induce vibrations and internal motions 
that dissipate energy. After some time, the vibrational modes will fully dampen. The final 
equilibrium state is that at which the angle between the MPA and the instantaneous angular velocity 
is zero. 

Outer Iteration Algorithm 

The outer iteration algorithm requires only the nominal spacecraft geometry, the four boom 
fractions, and the remaining fraction of fuel as input to arrive at a solution for the spacecraft CM 
and inertia tensor. On each iteration, the CM and boom directions are recalculated because the spin 
axis parameter is varied. That is, each outer iteration requires full evaluation and convergence of 
the inner iteration algorithm described in the section on the Solution for Consistent Spacecraft CM 
and Boom Vectors. 

 
Figure 5.  Functional Flow Diagram for Nested Iteration. 
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Figure 5 illustrates the overall process of solving for the mass properties given the boom 
fractions, 𝑓𝑓𝑏𝑏, and fuel tank fill-fraction, 𝑓𝑓𝑓𝑓. Note that in the figure, 𝑓𝑓𝑏𝑏 represents the 4-tuple of the 
four boom fractions. 

To begin the iterative process, the initial guess for the spin axis is ZOCS since this is the nominal 
spin direction. For subsequent iterations, the MPA from the previous iteration is used as the spin 
axis because the hypothesis is that these vectors are coincident. For the inner iterative process, the 
initial guess uses the four nominal boom directions. These are the directions radial to the nominal 
spin axis, which extend through the boom attachment points; pictorially, the booms nominally point 
straight out as spokes on a wheel. 

Each loop of the outer iteration models the inertia tensor using the spin axis for that iteration. 
This involves running the inner iteration algorithm outlined in the earlier section until it converges 
to obtain the CM and boom vectors that are consistent with each other and the given spin axis. The 
geometry dictated by the boom vectors allows calculation of the inertia tensor as described in the 
Inertia Tensor section. The MPA of the inertia tensor is the eigenvector of this matrix having the 
largest eigenvalue. If the angular difference between this MPA and the spin axis is below some 
threshold, the algorithm has converged; if not, the iteration continues. 

Accelerated Series Convergence 

When the straightforward iteration method described above is used to determine a consistent 
spin axis direction and MPA for the MMS spacecraft, it typically requires more than 100 iterations 
to converge to milli-arcsecond precision for the direction of the MPA. Inspection of the direction 
of the spin axis at each step of the process shows that the error decreases with each iteration and 
does not alternate signs. If the error decreases roughly as a power law, then it should be possible to 
accelerate the convergence. 

Let 𝜔𝜔�𝑖𝑖 be the ith iteration for the MPA direction. The z-component of 𝜔𝜔�𝑖𝑖 will always be near 
unity since the MPA is near the OCS Z-axis. Let xi and yi be the x- and y-components of 𝜔𝜔�𝑖𝑖 in the 
OCS frame. Define the difference in the x-component at each iteration to be 

 𝑒𝑒𝑖𝑖 ≡ 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1 . (27) 

The partial sum for the x-component then is 

    𝑥𝑥𝑁𝑁 = 𝑥𝑥0 + ∑ 𝑒𝑒𝑖𝑖𝑁𝑁
𝑖𝑖=1  . (28) 

Here, and in the following, the expressions for yi are identical to those for xi. Assume the difference 
term has the form of a power law; that is, 

 𝑒𝑒𝑖𝑖 = 𝑐𝑐𝛼𝛼𝑖𝑖 . (29) 

From Eq. (29), one has 

 𝛼𝛼 = 𝑒𝑒𝑖𝑖+1
𝑒𝑒𝑖𝑖

 , (30) 

for any i. The limit of the partial sums in Eq. (28) is 

 𝑥𝑥∞ = 𝑥𝑥0 + ∑ 𝑒𝑒𝑖𝑖∞
𝑖𝑖=1 = 𝑥𝑥0 + 𝑐𝑐 ∑ 𝛼𝛼𝑖𝑖∞

𝑖𝑖=1 = 𝑥𝑥0 + 𝑐𝑐𝑐𝑐
1−𝛼𝛼

 , (31) 

where the last summation assumes α has magnitude less than unity. Using 𝑐𝑐𝑐𝑐 = 𝑒𝑒1 from Eq. (29), 
one can rearrange Eq. (31) to find 

 𝑥𝑥∞ = 𝑥𝑥1 − 𝛼𝛼𝑥𝑥0
1−𝛼𝛼

 . (32) 
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One can then show by induction that 

 𝑥𝑥∞ = 𝑥𝑥𝑖𝑖+1 − 𝛼𝛼𝑥𝑥𝑖𝑖
1−𝛼𝛼

 , (33) 

for any i. 

 
Figure 6.  Functional Flow Diagram for Accelerated Iteration Method. 

Figure 6 shows how Eqs. (27-34) can be applied to accelerate the convergence. One starts with 
ZOCS as an initial guess for the spin axis and takes a few normal iteration steps to get the process 
started, as presented in Figure 5. Next, one uses the last value, 𝜔𝜔�𝑖𝑖−1, and takes two additional 
normal iteration steps, yielding 𝜔𝜔�𝑖𝑖 and 𝜔𝜔�𝑖𝑖+1. If convergence has not yet occurred, one computes 
ei and ei+1 as in Eq. (27), solves for α using Eq. (30), and then applies Eq. (33) to obtain a new 
value for the x-component of the spin axis. The same steps are followed to find the y-component. 
One obtains the z-component from the unit norm of the vector, 𝑧𝑧∞ = [1 − 𝑥𝑥∞2 − 𝑦𝑦∞2 ]1/2. The 
components are combined to obtain 

 𝜔𝜔�∞ = [𝑥𝑥∞, 𝑦𝑦∞, 𝑧𝑧∞]𝑇𝑇.  (34) 

This new spin unit vector is used as the initial guess to restart the process. That is, begin with  𝜔𝜔�∞, 
take two normal iteration steps, check for convergence, and compute ei and ei+1 from the last three 
values, etc. When convergence is achieved, the spin axis used to compute the CM and boom angles 
will agree with the MPA from the resulting inertia tensor to within the requested tolerance. 

For a wide variety of severed boom combinations, this accelerated iteration method has been 
found to converge in one-tenth to one-third of the total number of steps as straightforward iteration, 
including accounting for the fact that there are two iteration steps for each accelerated step.  

The method presented here is closely related to the Aitken’s δ2-process for accelerating the 
convergence of series.13 Note that Aitken’s method recommends rearranging the expression in 
Eq. (33) to improve numerical stability, but that change was not found to be needed for the present 
application. 
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DETERMINATION OF LOCATION WHERE BOOM IS SEVERED 

One responsibility for the MMS AGS analysts is to estimate the direction of the MPA after every 
maneuver. When the spacecraft expends fuel, the mass distribution changes and a recalibration of 
the inertia tensor may be needed. A small change in the MPA direction has been seen after almost 
every maneuver, especially during the first two years of the MMS mission. This MPA shift is the 
result of an asymmetry in the fuel distribution. The asymmetry is caused primarily by changes in 
the shapes of the fuel tank diaphragms as they relax, plus possibly a contribution from differences 
in the fuel draw-down from the four separate tanks. This AGS capability to estimate the MPA can 
be used in the analysis of a boom break, as follows. 

The star cameras on MMS allow for accurate attitude determination; using the AGS Kalman 
filter, the uncertainty in the estimated instantaneous direction of the angular momentum vector is 
approximately 0.005 deg and the spin phase uncertainty is 0.05 deg (3σ). With this knowledge, the 
MPA direction in the OCS frame can be determined with an uncertainty of 0.003 deg (3σ).7 

Table 1.  Tilt Angles 𝝋𝝋𝟏𝟏 and 𝝋𝝋𝟐𝟐 Versus Boom Fraction. 

Fraction of Boom 
Remaining, 𝒇𝒇𝒃𝒃 𝝋𝝋𝟏𝟏 (deg) 𝝋𝝋𝟐𝟐 (deg) 

1.00 -0.010 0.019 
0.99 0.371 0.144 
0.95 0.761 0.271 

0.75 0.993 0.346 
0.50 1.215 0.417 

0.00 1.409 0.480 
 
The expected MPA direction can be computed from the inertia tensor model for various break 

locations. By comparing these values against the observed MPA direction, a mapping can be made 
from the observation to the modeled break location. The two tilt angle parameters 𝜑𝜑1 and 𝜑𝜑2, 
introduced in the section discussing the Solution for Consistent Spacecraft CM and Boom Vectors, 
are given in Table 1 as a function of break location for a single broken boom (MMS SDP #1). 
Table 1 shows that the change in body tilt angle (i.e., change in MPA direction) is predominantly 
in the direction of the 𝜑𝜑1 angle. An important aspect of Table 1 is that both angles are monotonic 
in 𝑓𝑓𝑏𝑏. This is conducive to tabulation and lookup by interpolation, which is a convenient way to 
generate these results. 

 
Figure 7.  (a) Change of MPA direction, and (b) derivative of the change of MPA direction 

versus location where the boom was severed. 
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Since the angles shown in Table 1 are monotonic, one can define a single net angular change of 
MPA direction resulting from the break, reducing the interpolation to a single independent variable. 
Figure 7a shows the dependence of this change in the direction of the MPA on the location where 
the boom is severed (given here in meters rather than boom fraction). By recalibrating the MPA 
after such an event, the MMS analysts will be able to determine the actual change in MPA direction 
and then read the location of the break in the boom from this plot. In practice, Figure 7a or an 
equivalent table would be recalculated at the time when a break occurs to account for which boom 
was severed and for the current value of the fuel tank fill-fraction (a fill-fraction of 0.3 has been 
assumed in all the examples shown in this paper). 

An error bound can be placed on the break location estimate. The uncertainty in where the boom 
was severed is related to the derivative of the curve in Figure 7a. Figure 7b shows this derivative, 
with the near-discontinuities at the locations of the preamplifier and the sensor sphere removed. 
Let Φ be the angular change in the MPA direction shown in Figure 7a, determined using the inertia 
tensor calibration procedure at the time when a break occurs.5 Let ΔΦ be the uncertainty in this 
value, taken to be 0.006 deg (twice the MPA error since this is a difference of MPAs). Denote the 
location of the break as X, measured from the boom attachment point. The uncertainty in X, 
corresponding to a given value of Φ, is 

 ∆𝑋𝑋 ≈ �𝑑𝑑𝑑𝑑
 𝑑𝑑𝑑𝑑 

�
−1
∆𝛷𝛷 . (35) 

This expression yields 3σ uncertainties in the estimate of the break location of 6 m for a break near 
the boom attachment point, approximately 50 cm for a break near the midpoint, and 20-30 cm near 
the boom tip. 

CONCLUSIONS 

The effects of a radial boom break on the spacecraft inertia tensor were shown to be observable 
and quantifiable. Further, it was shown that for a single broken boom, a mapping exists between 
the change in spacecraft MPA resulting from the break and the location of that break along the 
boom. This mapping can be tabulated for quick lookup and interpolation. Using only computations 
of the MPA direction from before and after a suspected break, an informed estimation of the break 
location and its uncertainty can be produced. 

While examples were presented only for a single severed boom, the models and techniques 
developed here are also valid when the booms are whole or when there are multiple severed booms. 
The models consider the remaining boom fraction independently for each boom, and the current 
software implementation supports this feature. One possible enhancement might be to expand the 
technique described in the previous section to map the observed MPA direction to two boom 
fraction values instead of one. 

The technique for determining the inertia tensor for a severed boom applies with very little 
modification to a boom that has not been severed but instead has failed to deploy fully. In this 
scenario, it would be necessary to add the mass of any undeployed wire to the central spacecraft 
body mass. The position of this mass would be at the location of the spool holding the wire. Also, 
the values given in Figures 3a and 3b would need to be modified to reflect the mass and CM for 
the partially deployed boom, rather than for a severed boom. 

Work is underway to integrate the prototype code for the new CM and inertia tensor models into 
the operational AGS for the MMS mission. These improvements will provide benefits for the AGS 
products needed for attitude prediction, definitive attitude estimation, and onboard maneuver 
control. Other future work is planned to investigate how best to incorporate the new models into 



17 

the AGS calibration utility that estimates corrections to the MPA direction. When this work is 
complete, the AGS will have the capability to support the MMS mission immediately in case a 
boom is severed. Routine data products will account for the boom damage, and the software will 
offer insight into the boom status. 
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