

Trajectory Design Leveraging Low-thrust, Multi-Body Equilibria and Their Manifolds

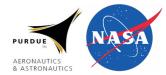
Andrew D. Cox | Kathleen C. Howell | David C. Folta

August 21, 2018
AAS/AIAA Astrodynamics Specialist Conference
Snowbird, UT

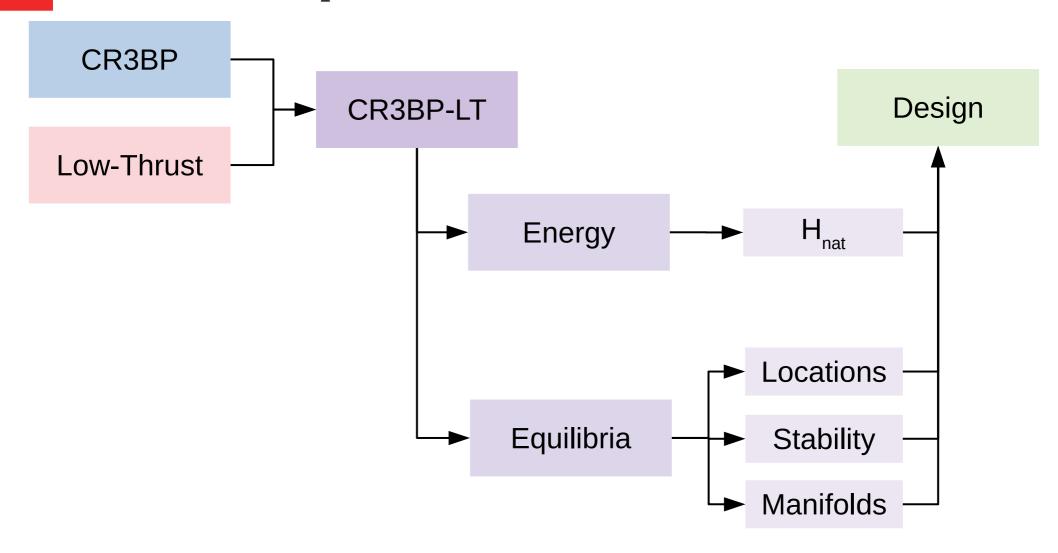
Motivation

- Low-thrust trajectory design: require position, velocity, & control histories for initial guess
- Many current methods leverage optimization → point solution
- Chaotic multi-body regimes; initial guess may strongly bias result
- Ballistic designs benefit from available dynamical structures but supply no initial control history

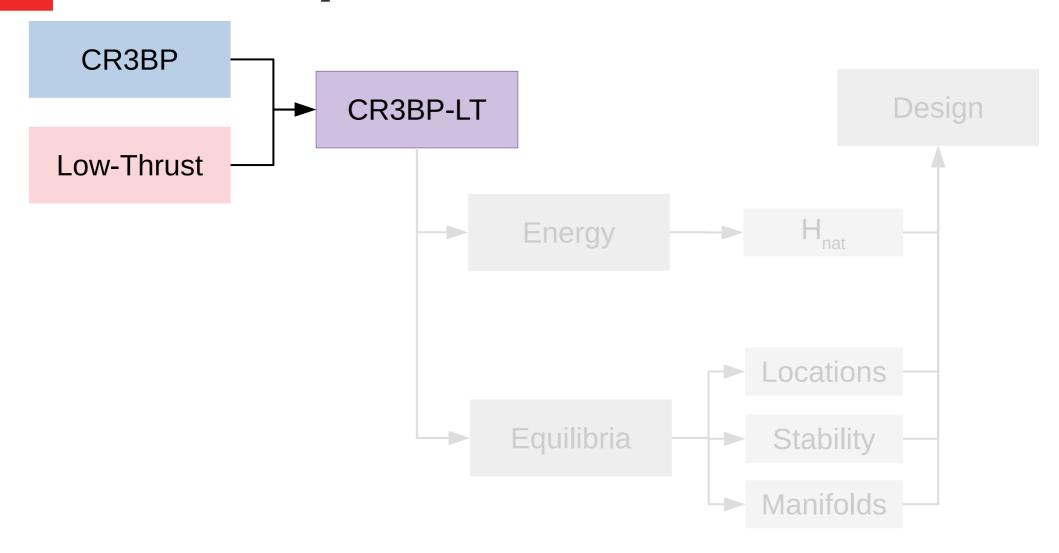
Seek a more general understanding of low-thrust + multi-body dynamics



Roadmap



Roadmap



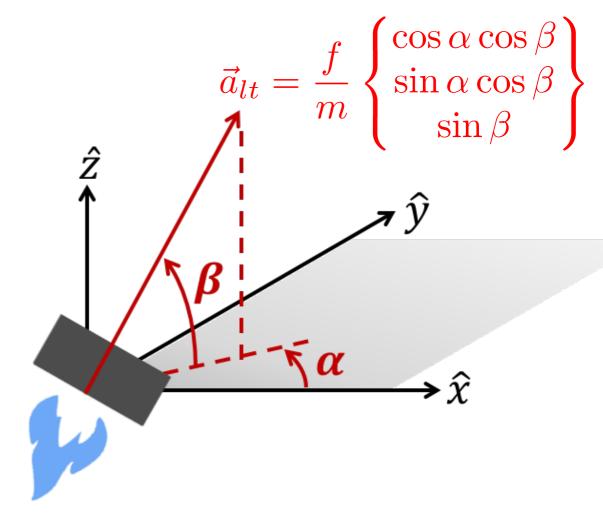
Combined Model

CR3BP + LT
$$\ddot{x} - 2\dot{y} = \frac{\partial\Omega}{\partial x} + \vec{a}_{lt} \cdot \hat{x}$$

$$\ddot{y} + 2\dot{x} = \frac{\partial\Omega}{\partial y} + \vec{a}_{lt} \cdot \hat{y}$$

$$\ddot{z} = \frac{\partial\Omega}{\partial z} + \vec{a}_{lt} \cdot \hat{z}$$

$$\dot{m} = \text{const}$$

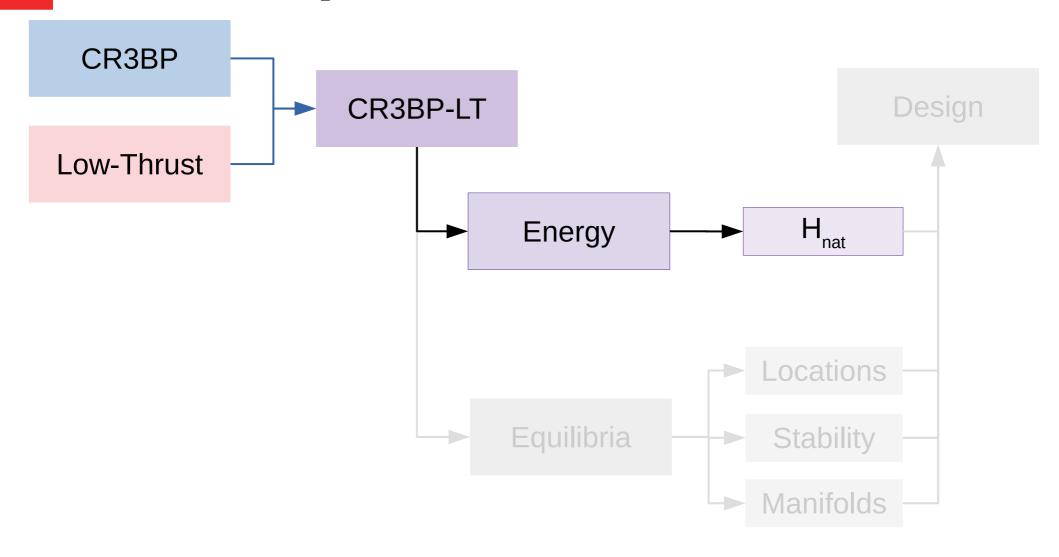


Simplifications

- $a_{lt} = \frac{f}{m} = \text{constant}$ (reasonable in Earth-Moon CR3BP-LT)
- Planar motion: $z = \dot{z} = 0, \ \beta = 0$

$$\ddot{x}-2\dot{y}=\frac{\partial\Omega}{\partial x}+a_{lt}\cos\alpha \qquad \qquad \text{Conservative}$$
 Autonomous
$$\ddot{y}+2\dot{x}=\frac{\partial\Omega}{\partial y}+a_{lt}\sin\alpha \qquad \qquad \text{Hamiltonian}$$

Roadmap



Energy-Like Integral

Hamiltonian:
$$H = \sum_{i=1}^{3} (p_i \dot{g}_i) - L(\vec{g}, \ \dot{\vec{g}}, \ \tau)$$

CR3BP (natural) system:

$$H_{nat} = \frac{1}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) - \frac{1}{2} \left(x^2 + y^2 \right) - \frac{1 - \mu}{r_{13}} - \frac{\mu}{r_{23}} = -\frac{1}{2} C$$

Constant on ballistic arcs

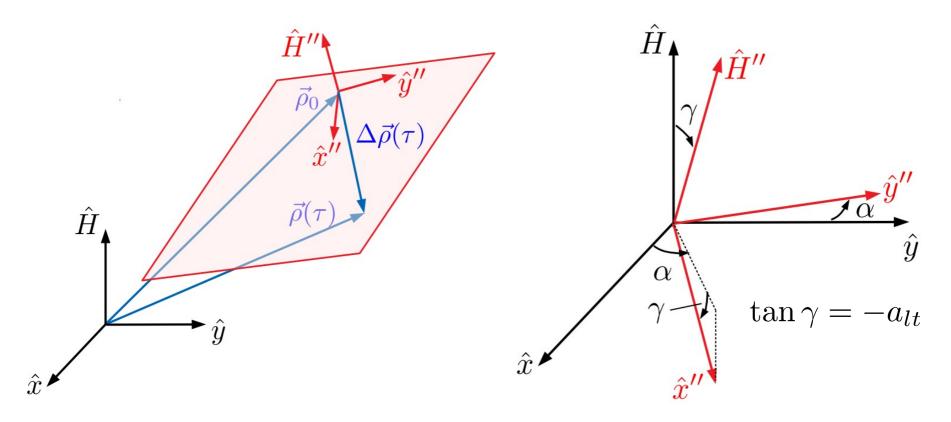
Varies on low-thrust arcs independent of path

$$H_{nat}(t_f) - H_{nat}(t_0) = \left[\vec{r}(t_f) - \vec{r}(t_0) \right] \cdot \vec{a}_{lt}$$

Energy Plane

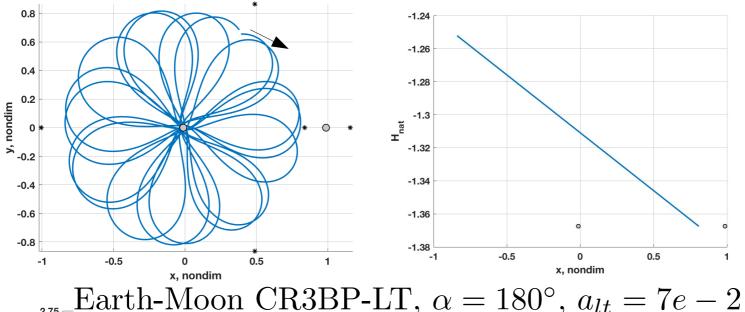
Control Point:
$$\vec{\rho} = \{x \mid y \mid H_{nat}\}$$

Every low-thrust arc (with single a_{lt} & α) is confined to an *energy plane*

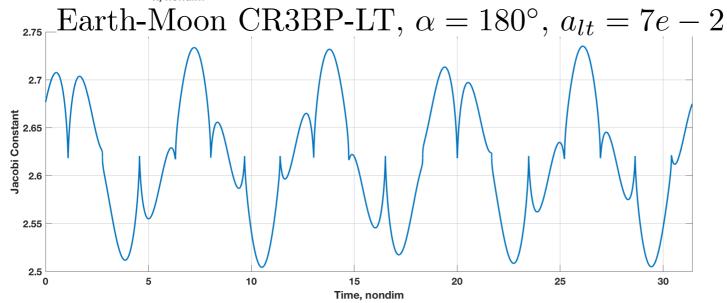


21 Aug 2018 Cox, Howell, Folta 9 / 38

Energy Plane Example



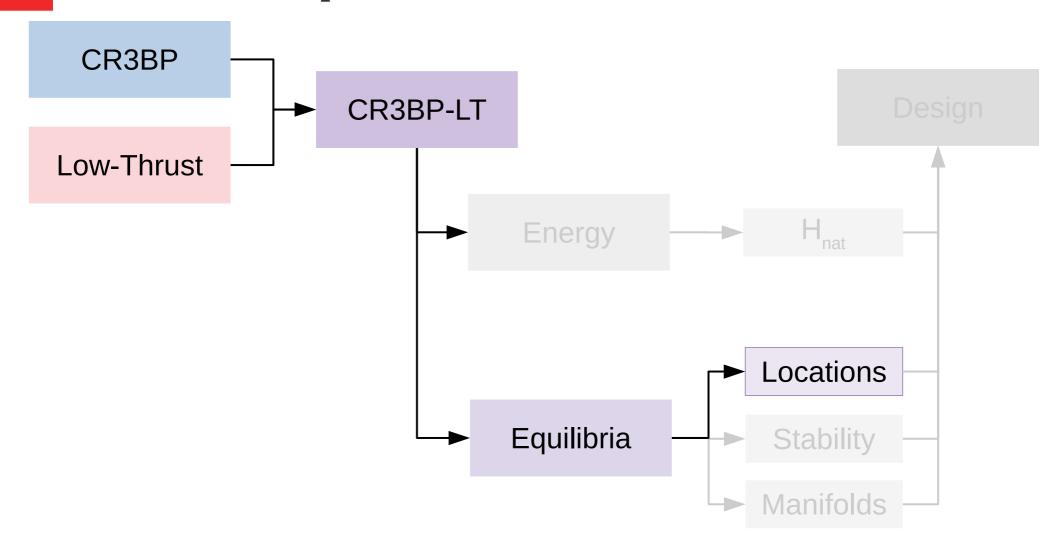
Simple Intuitive

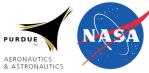


Complex Unintuitive

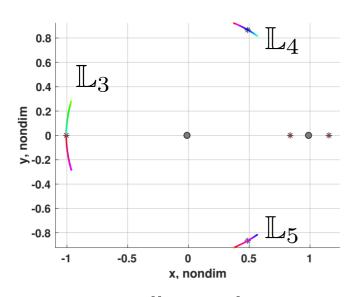
21 Aug 2018 Cox, Howell, Folta 10 / 38

Roadmap

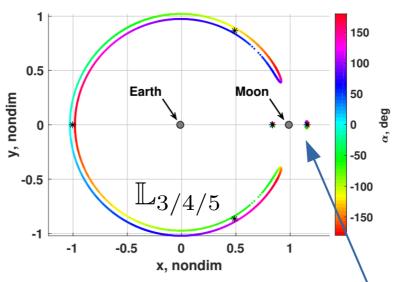




Planar Low-Thrust Equilibria

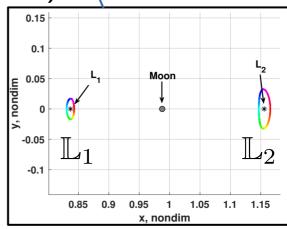


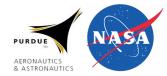
Small a_{lt} value $a_{lt} = 8.73e-3$



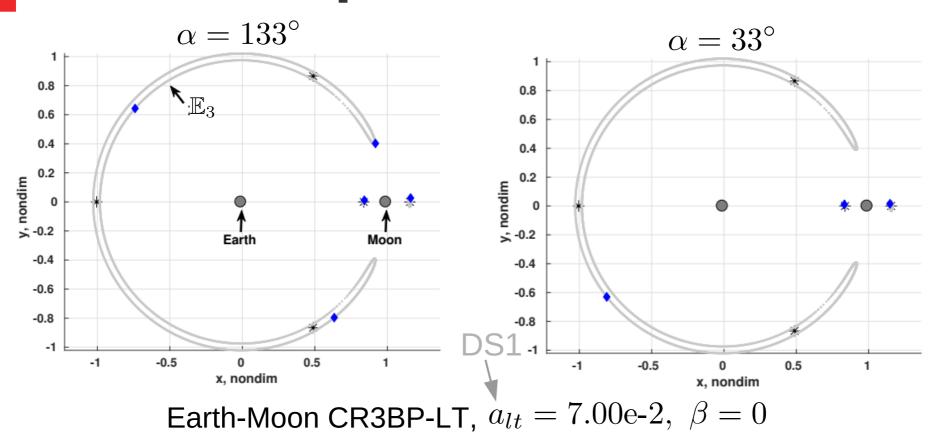
Larger a₁₁ value (DS1)

 $a_{lt} = 7.0e-2$

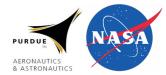




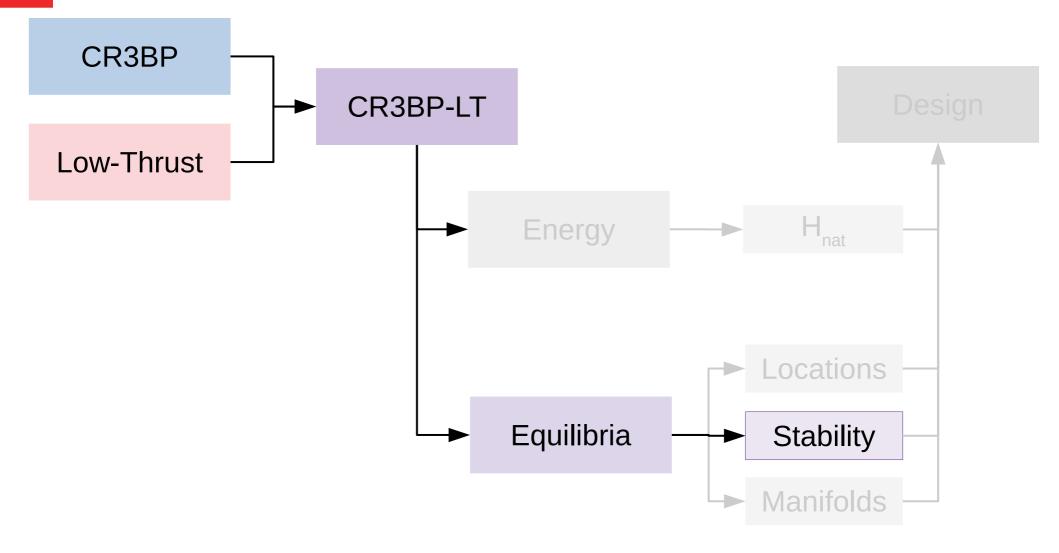
Distinct Equilibrium Points

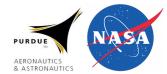


Accel. Mag. and direction determine equilibria locations and count

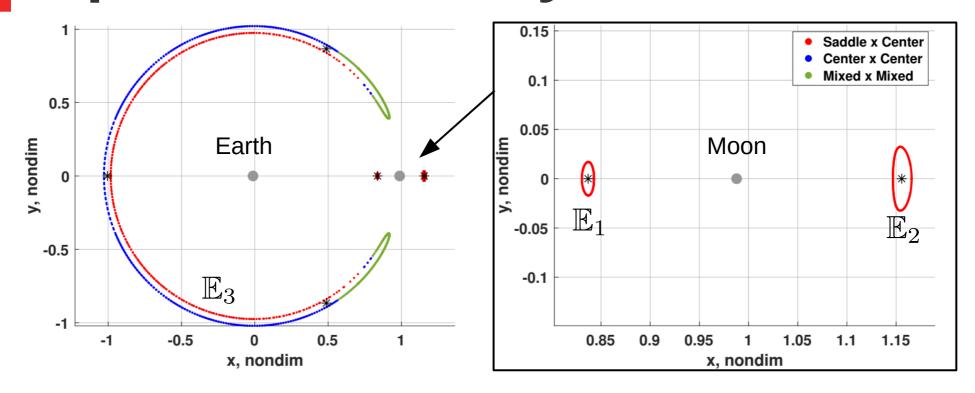


Roadmap





Equilibria Stability

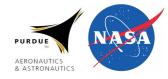


Natural CR3BP

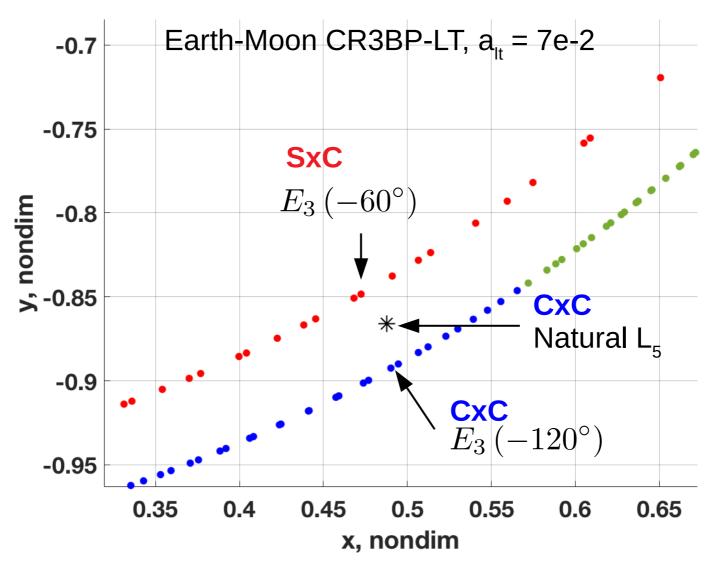
- L₁, L₂, L₃ **SxC**
- L₄, L₅ CxC

CR3BP-LT for $a_{tt} = 7e-2$

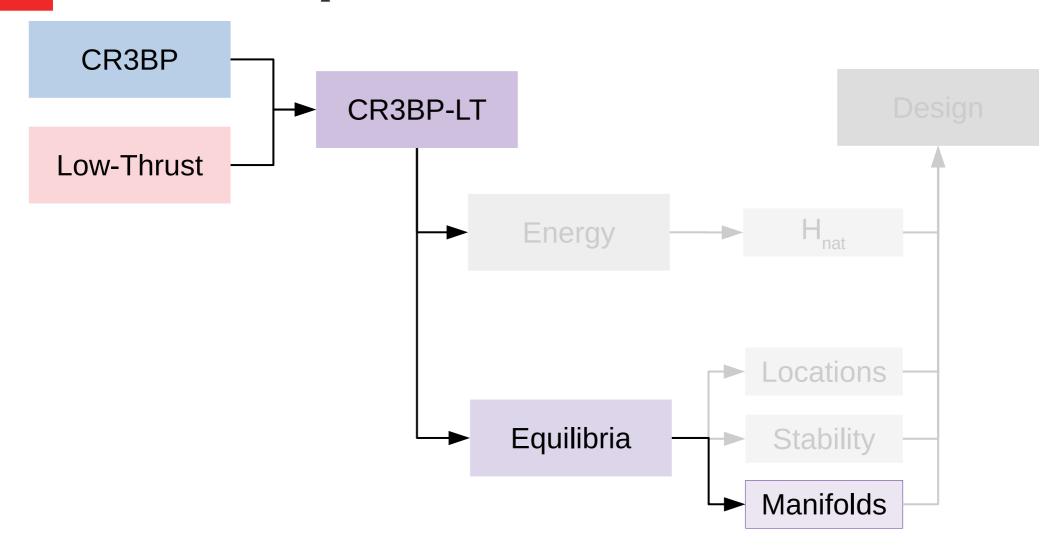
- $\mathbb{E}_1, \mathbb{E}_2$ SxC
- \mathbb{E}_3 CxC, SxC, & MxM



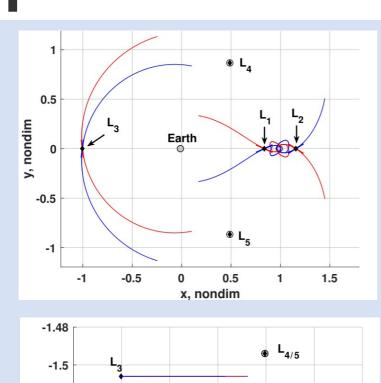
Near L₅



Roadmap

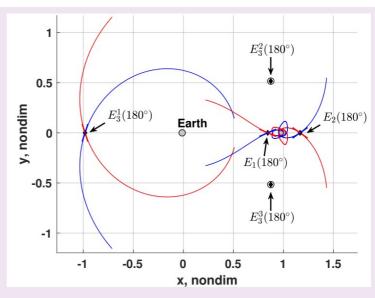


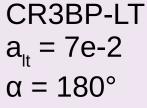
Equilibria Manifolds

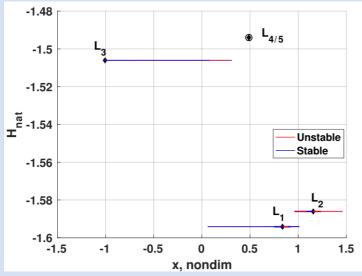


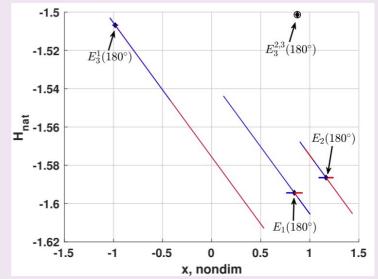
Natural

CR3BP

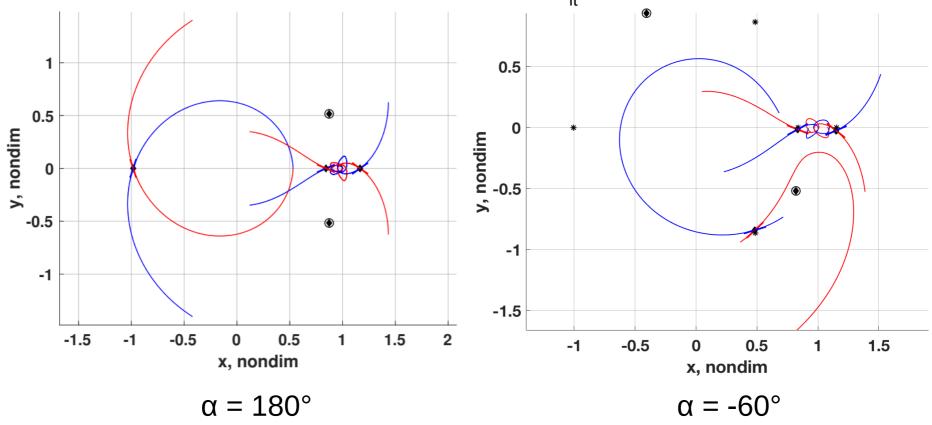


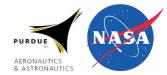




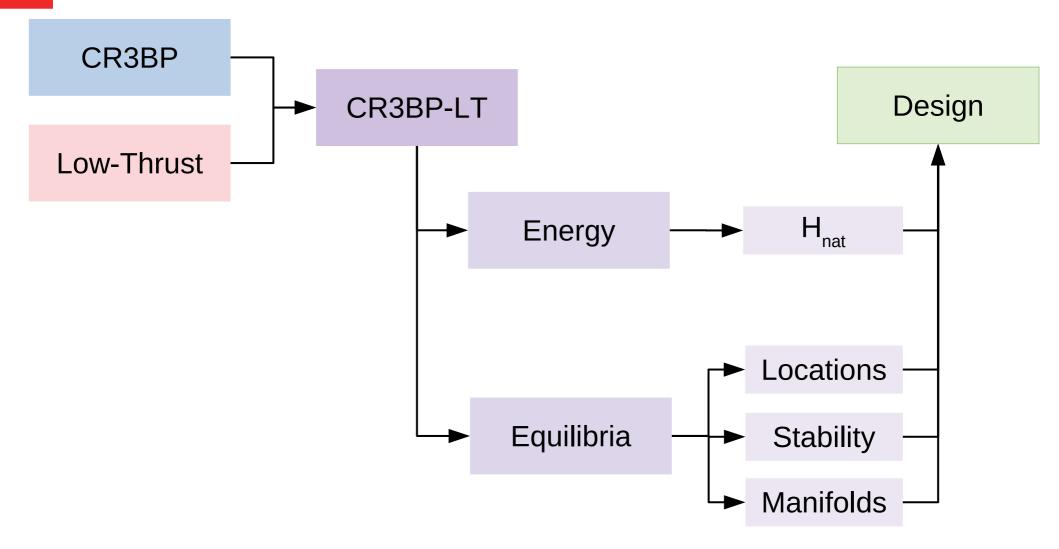


Equilibria Manifolds



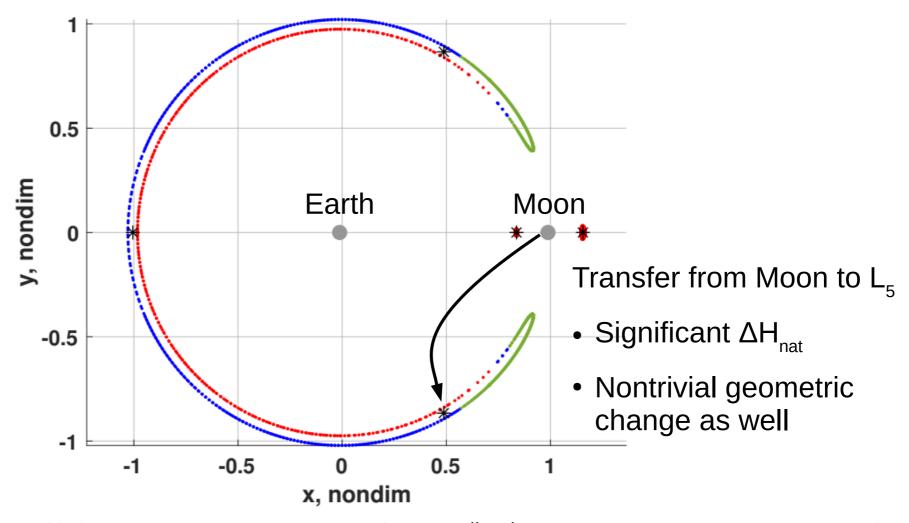


Roadmap



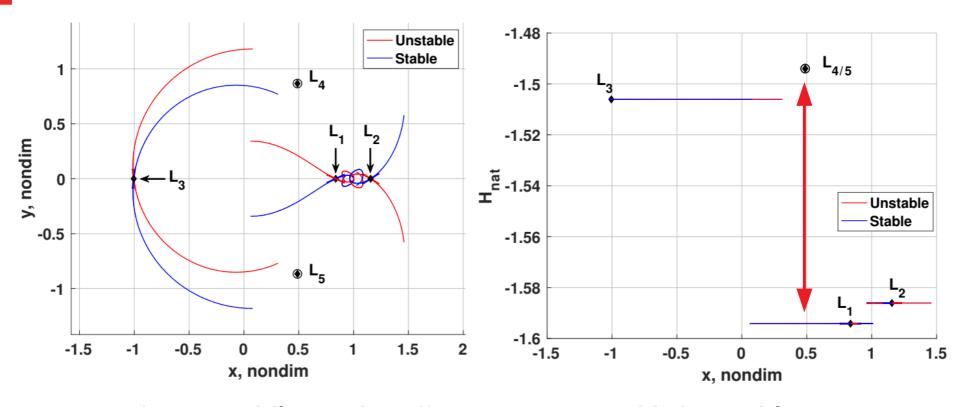
Transit Design: Setup

• Demonstrate use of dynamical structures and techniques



21 Aug 2018 Cox, Howell, Folta 21 / 38

Use Natural Structures?

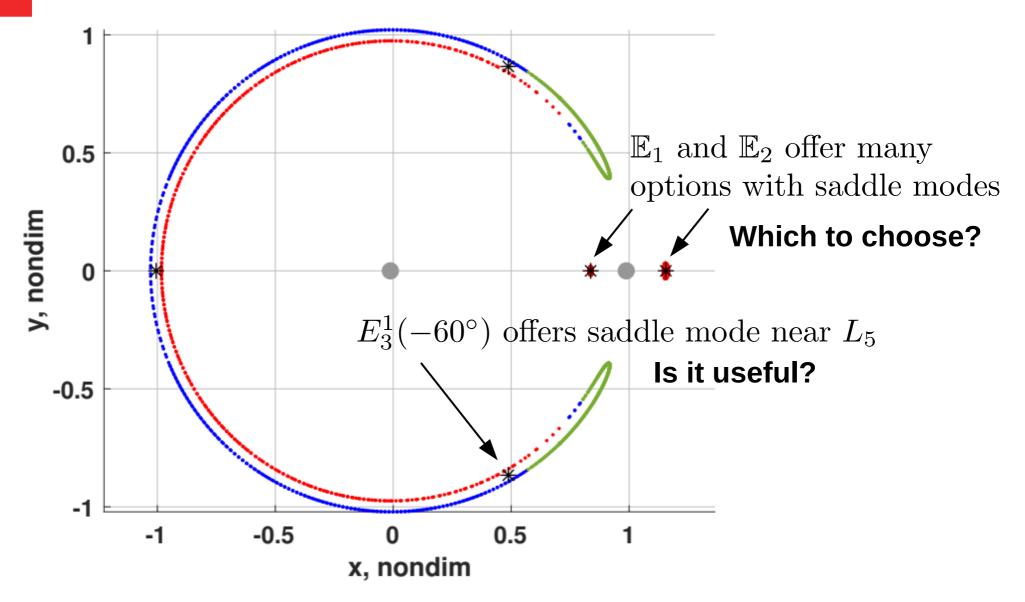


- L₁ and L₂ saddle mode, offer access to moon
- L₅ no saddle mode

- Even with favorable geometry, energy difference is large
- Natural manifolds do not supply energy change



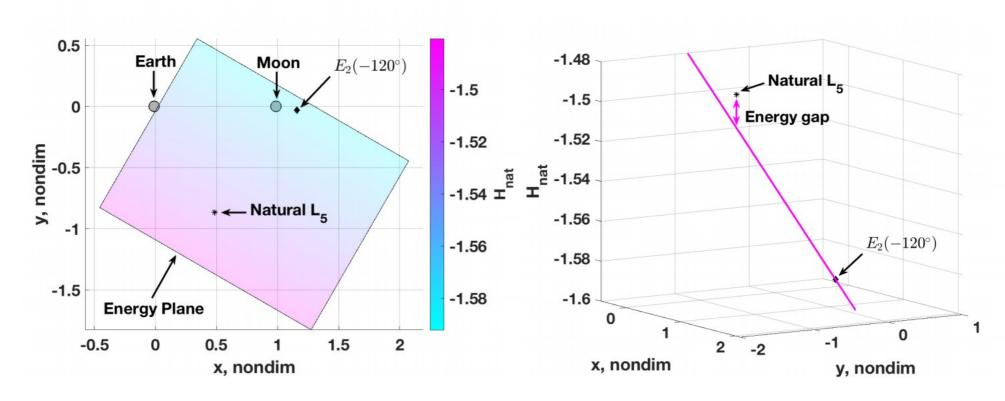
Use Low-Thrust Structures?

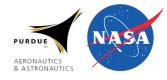


21 Aug 2018 Cox, Howell, Folta 23 / 38

Low-Thrust Structures

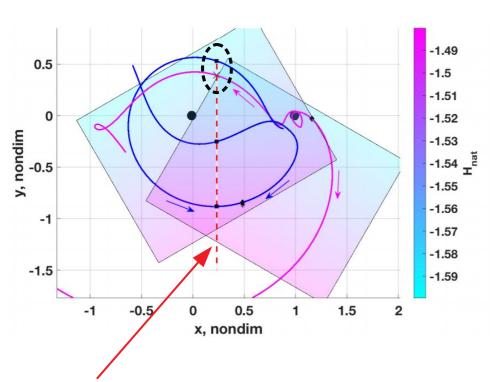
- 1. Choose \mathbb{E}_2 (arbitrary)
- 2. Use energy plane to select equilibrium point with maximum H_{nat} increase



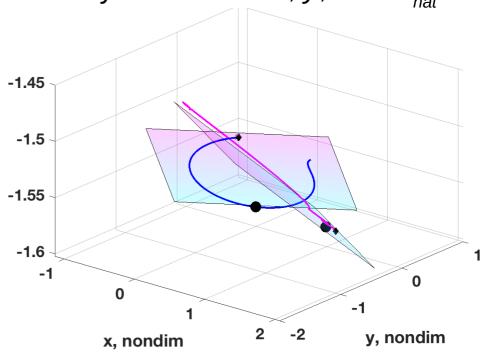


Additional Structures

3. Include $E_3^1(-60^\circ)$ stable manifolds (blue)

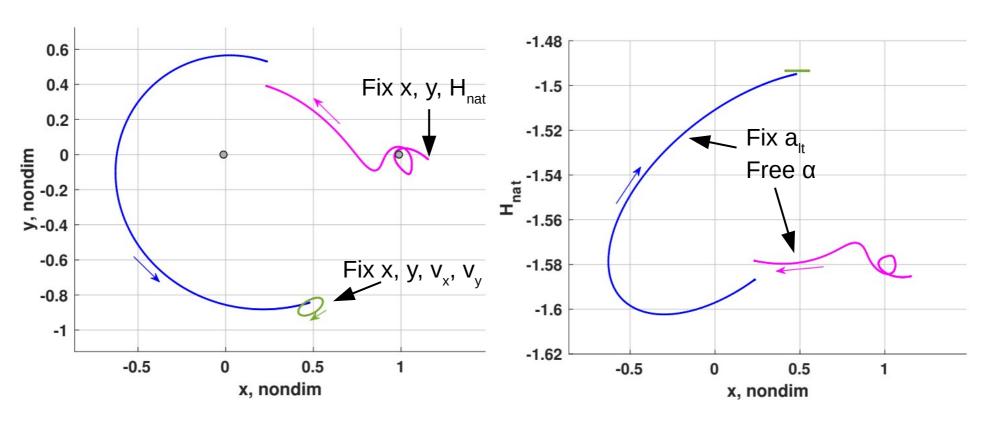


4. Select candidate arcs that nearly intersect in x, y, and H_{nat}



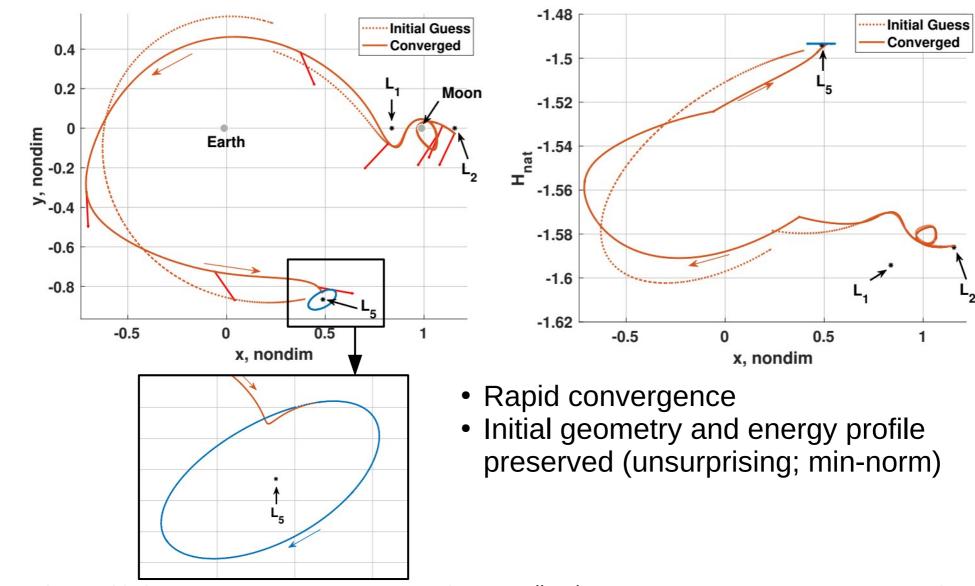
Intersection of two energy planes is convenient hyperplane: nearby points possess similar positions *and* energies

Sample Transfer: Initial Design



- 5. Include $L_{\scriptscriptstyle 5}$ short period orbit (SPO) near destination to maintain proximity to $L_{\scriptscriptstyle 5}$
- 6. Discretize into smaller arcs
- 7. Correct for continuity

Sample Transfer: Feasible Sol'n



21 Aug 2018 Cox, Howell, Folta 27 / 38

Conclusions

- Reasonable assumptions yield conservative, autonomous CR3BP-LT
- Low-thrust equilibria possess diverse locations & stability, function of thrust vector magnitude and orientation
- Energy along low-thrust arc confined to a plane oriented by thrust vector properties
- Links between thrust vector and arc geometry & energy facilitate initial design for thrust vector



Acknowledgements

Purdue Multi-Body Dynamics Research Group

Purdue University School of Aeronautics and Astronautics

JPL Mission Design and Navigation Branch

Dan Grebow

This work was supported by a NASA Space Technology Research Fellowship, grant number NNX16AM40H

Trajectory Design Leveraging Low-thrust, Multi-Body Equilibria and Their Manifolds

Andrew D. Cox | Kathleen C. Howell | David C. Folta

August 21, 2018
AAS/AIAA Astrodynamics Specialist Conference
Snowbird, UT

Backup Slides

Thrust Magnitude

$$f = \frac{Ft_*^2}{1000l_*M_{3,0}}$$

Spacecraft	$M_{3,0}$	F	a_{lt}	f (Earth-Moon)	f (Sun-Earth)
	kg	mN	m/s^2	nondim	nondim
Deep Space 1 ¹	486	92.0	1.893e-4	6.95e-2	3.19e-2
Hayabusa ²	510	24.0	4.706e-5	1.73e-2	0.79e-2
$Dawn^3$	1218	92.7	7.611e-5	2.79e-2	1.28e-2
Lunar IceCube ⁴	14	1.0	7.143e-5	2.62e-2	1.20e-2

Nondimensional magnitude between 1e-2 and 1e-1 is "reasonable"

21 Aug 2018 Cox, Howell, Folta 32 / 38

Hamiltonian Time Derivative(s)

$$H_{lt} = H_{nat} - \vec{r} \cdot \vec{a}_{lt}$$

$$\frac{\partial H_{nat}}{\partial \tau} = \vec{v} \cdot \vec{a}_{lt}$$

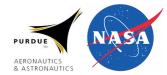
$$\frac{\partial}{\partial \tau} [\vec{r} \cdot \vec{a}_{lt}] = \vec{v} \cdot \vec{a}_{lt} - \vec{r} \cdot \dot{\vec{a}}_{lt}$$

$$\hat{u} \perp \vec{v}$$
 $H_{\text{nat}} = \text{const.}$

$$\hat{u} \parallel \vec{v}$$
 Maximize H_{nat} rate of change

If
$$\dot{\vec{a}}_{lt}=\vec{0}$$
 then $\frac{\partial}{\partial \tau}\left[\vec{r}\cdot\vec{a}_{lt}\right]=\vec{v}\cdot\vec{a}_{lt}$ and $\mathbf{H}_{\mathrm{lt}}=\mathrm{const.}^{\star}$

*Demonstrated reasonable via Monte Carlo with variable a, in Earth-Moon system



Energy-Like Quantities

CR3BP-LT system:

$$H_{lt} = H_{nat} - \vec{r} \cdot \vec{a}_{lt}$$

- Constant on low-thrust arcs when \mathbf{a}_{lt} is const. (mag., angle)
- Rapidly changed by varying a_{tt} or α

21 Aug 2018 Cox, Howell, Folta 34 / 38

Energy Plane Proof

$$\Delta \vec{\rho} = \vec{\rho}(\tau_2) - \vec{\rho}(\tau_1) = (x_2 - x_1)\hat{x} + (y_2 - y_1)\hat{y} + (H_{nat,2} - H_{nat,1})\hat{H}$$

$$= \Delta x \hat{x} + \Delta y \hat{y} + \Delta H \hat{H}$$

$$= \left[\Delta x C_{\alpha} C_{\gamma} + \Delta y S_{\alpha} C_{\gamma} - \Delta H S_{\gamma}\right] \hat{x}'' + \left[\Delta y C_{\alpha} - \Delta x S_{\alpha}\right] \hat{y}'' + \left[\Delta x C_{\alpha} S_{\gamma} + \Delta y S_{\alpha} S_{\gamma} + \Delta H C_{\gamma}\right] \hat{H}''$$

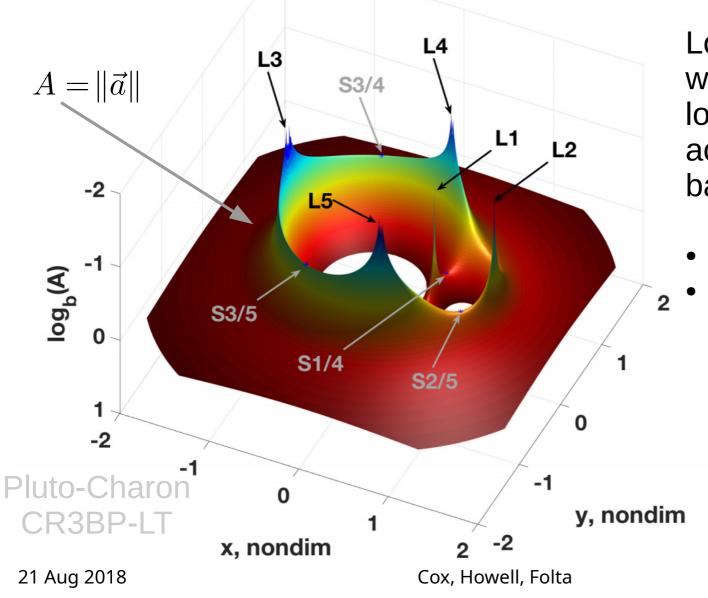
For in-plane motion: $\Delta \vec{\rho} \cdot \hat{H}^{"} = 0$

$$\Delta \vec{\rho} \cdot \hat{H}'' = 0 = \Delta x C_{\alpha} S_{\gamma} + \Delta y S_{\alpha} S_{\gamma} + \Delta H C_{\gamma}$$
$$= \Delta H + \tan \gamma \left[\Delta x C_{\alpha} + \Delta y S_{\alpha} \right]$$
$$= \Delta H - \vec{r} \cdot \vec{a}_{lt}$$

Substitute H_{nat} path invariance to yield zero on LHS



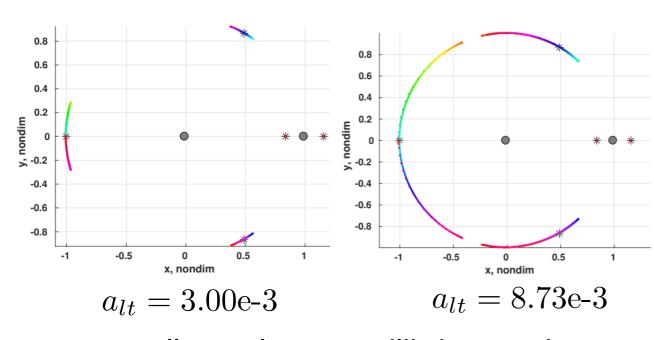
Low-Thrust Equilibria: Balance

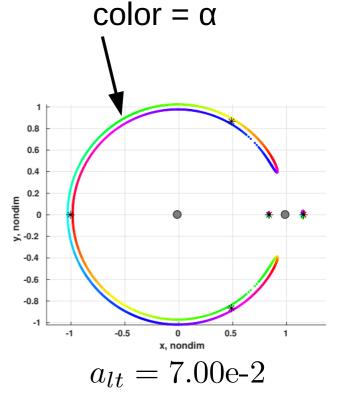


Low-thrust equilibria where natural and low-thrust accelerations balance: $\vec{a}_{lt} = -\vec{a}$

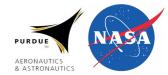
- Horizontal slice
- Equilibria shift with magnitude (a_{lt}) and orientation (α)

Equilibria, Cont'd

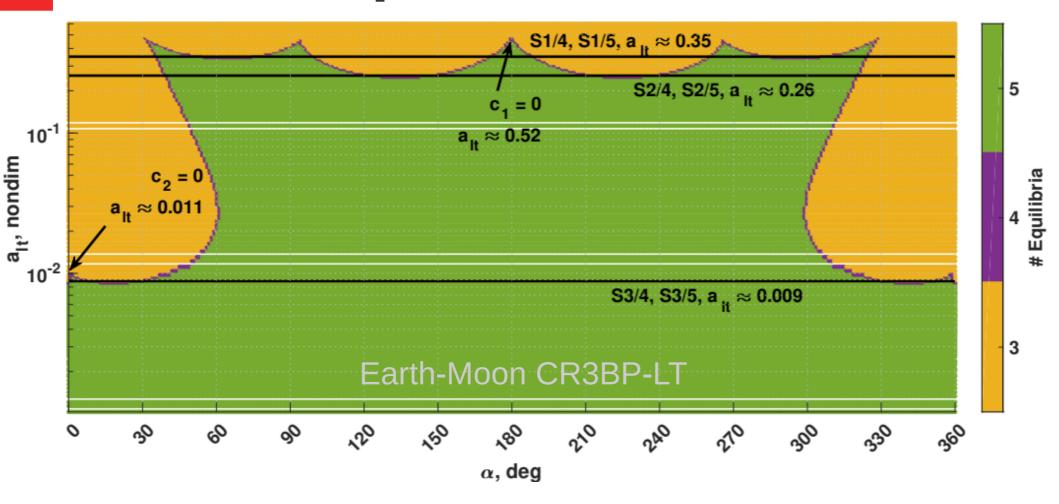




- At small a_{lt} values: equilibria remain near CR3BP L pts (asterisks)
- Larger a_{II} values: equilibria form larger contours
 - "Zero Acceleration Contours" (ZACs) balance accelerations



Distinct Equilibria



Number of distinct solutions varies with $a_{{}_{\!{}^{H}}}$ and α