
11

(12) United States Patent
Schnase et al.

(54) SYSTEM AND METHOD FOR PROVIDING A
CLIMATE DATA ANALYTIC SERVICES

APPLICATION PROGRAMMING

INTERFACE

(71) Applicant: The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, DC (US)

(72) Inventors: John L. Schnase, Laurel, MD (US);
Daniel Q. Duffy, Gambrills, MD (US);
Glenn S. Tamkin, Silver Spring, MD
(US)

(73) Assignee: The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, DC (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 518 days.

(21) Appl. No.: 14/711,295

(22) Filed: May 13, 2015

(65) Prior Publication Data

US 2016/0337479 Al Nov. 17, 2016

(51) Int. Cl.
G06F 15/16 (2006.01)
H04L 29/06 (2006.01)
H04L 29/08 (2006.01)

(52) U.S. Cl.
CPC H04L 67/42 (2013.01); H04L 67/14

(2013.01)

(58) Field of Classification Search
CPC H04L 67/42; H04L 67/14; G06F 8/60;

G06Q 30/0257; G06Q 30/0205
See application file for complete search history.

CLIMATE DATA ANALYTICS SYSTEM SYSTEM INTERFACE

401 0
0 420

MAS i

402 ~
i
i

PS —
i

SVC

404

® ®

® 412 1 413

i S
®Ii REST

HP ft, MODULE 1 MODULE

(io) Patent No.: US 10,075,562 B2
(45) Date of Patent: Sep.11, 2018

(56) References Cited

U.S. PATENT DOCUMENTS

9,411,569 B1 * 8/2016 Schnase G06F 11/36
2002/0095454 Al * 7/2002 Reed G06Q 30/0601

709/201

(Continued)

OTHER PUBLICATIONS

Li Z, Yang C, Jin B, Yu M, Liu K, Sun M, et al. (2015) Enabling
Big Geoscience Data Analytics with a Cloud-Based, MapReduce-
Enabled and Service-Oriented Workflow Framework. PLoS ONE
10(3): e0116781. doi:10.1371/journal.pone.0116781.*

Primary Examiner Anthony Mejia

Assistant Examiner Kristoffer L S Sayoc

(74) Attorney, Agent, or Firm Christopher O. Edwards;
Bryan A. Geurts; Mark P. Dvorscak

(57) ABSTRACT

A system, method and computer-readable storage devices
for providing a climate data analytic services application
programming interface. The system includes a programming
library that enables client device software to invoke the
capabilities of a climate data analytics system through
requests to various services supported by the climate data
analytics system, and also includes a client-side communi-
cations interface that enables the programming library's
methods to interact with a climate data analytics system's
server interface to obtain access to the capabilities of the
system. In one implementation, the programming library is
implemented in the Python programming language. The
programming library can include basic utilities that call a
single, server-side method implemented by one of the vari-
ous services supported by the climate data analytics system,
and extended utilities that call a series of basic utilities
and/or other extended utilities that have been placed under
programmatic control in order to create client-side conve-
nience methods and workflows.

14 Claims, 7 Drawing Sheets

405 500
CDS API

APPLICATION
410 EXTENDE

UTILITIE

406
I

409
BASIC

422 UTILITIES

NETWORK API 424

INTERFACE

407
408

423
411

400

US 10,075,562 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2004/0030741 At * 2/2004 Wolton G06F 17/30873
709/202

2011/0010509 At * 1/2011 Flores G06F 7/24
711/154

2011/0197124 At * 8/2011 Garaventa G06F 17/30893
715/234

* cited by examiner

U.S. Patent Sep.11, 2018 Sheet 1 of 7 US 10,075,562 B2

101

101.2

101.1

102

it

EzG. 1

U.S. Patent

it

of

201—

Sep.11, 2018 Sheet 2 of 7 US 10,075,562 B2

PROGRAMMING LIBRARY

MAS PS

CONVENIENCE MAX()
METHODS MIN{)

SUM()
o COUNT(}

z AVG(}

x
DIFF()

W

WEI—EXPERIMENT(}WORKFLOWS
MODEL—EXPERIMENT(}

INGEST Put(}

w
QUERY GetFileNameByAttr()

ORDER GetVarByOpTrSe()

DOWNLOAD Get(} Get
GetFileNameByAttr()

EXECUTE
AddMetoDataByName(}

DeleteObject(}

CheckStatus(} CheckStatus()STATUS

INTERFACE

EIG. 2

-1204

—203

99

U.S. Patent Sep.11, 2018 Sheet 3 of 7 US 10,075,562 B2

(HIGH—LEVEL SYNCHRONOUS OPS)

EXTENDED UTILITIES

AVG (MAS, <parameters>)

BEGIN

ORDER(MAS,GetVarByCofOpTrSe(AVERAGE),<parameters>)

LOOP UNTIL FINISHED

STATUS(MAS,ID)

m ~~
ME

(LOW—LEVEL ASYNCHRONOUS OPS)
BASIC UTILITIES

OR DER(MAS,GetVarByCofOpTrSe(AVERAGE),<parameters>)

STATUS(MAS, ID)

DOWNLOAD(MAS, ID)

TIG. 3

19

IM

CL
IM

AT
E

DA
TA
 A

NA
LY
TI
CS
 S
YS

TE
M

SY
ST
EM
 I

NT
ER

FA
CE

40
5

50
0

CD
S

AP
I

40
1
0

AP
PL
IC
AT
IO
N

0
42

0
i

41
0

EX
TE
ND
E

i
UT
IL
IT
IE

MA
S

~
-
-
w

40
2

42
1

40
9

B
A
S
I
C
-
.
-
~
-

42
2

UT
IL

IT
IE

S
-
-
~
=

PS
NE
TW
OR
K

AP
I

42
4

',
^^

IN
TE

RF
AC

E

I
40
8

~,
..

.,
..

40
7

,.
,.
,.
,

SV
C

° °
I I

42
3

40
4
0
0

41
1

41
2

i
41
3

AD
AP

TE
R

I
RE
ST

HP
 D

AP
MO
DU
LE

I M
OD

UL
E

I

40
0

40
0

F
I
G
.
 4

40
1

40
2

m
m 40

4

CL
IM

AT
E

DA
TA
 A

NA
LY
TI
CS
 S
YS

TE
M

SE
RV
IC
E

IN
TE
RF
AC
E

40
5

50
0

GD
S

AP
I

-
-
-
-
-
-

50
5

i
AP
PL
IC
AT
IO
N

42
0

i
41

0-
0E

XT
EN

DE
UT

I
MA

S
-
~
-
~

50
1

40
6

42
1

40
9 42
2

UT
I

ES
PS

NE
TW
OR

P
50

2
41
1

I

T
AC
E
—

40
6

50
4

50
3

40
7

SV
C

I I I I I I

41 (
2

i
41 (
3

°o

Q
 ~

f:z
ll

1:1

AD
AP

TE
R

i
RE

ST

HP
 D

AP
MO
DU
LE

I M
OD
UL
E

I
50

0
40

0
E
I
G

-
5

U.S. Patent Sep. 11, 2018 Sheet 6 of 7

START

ENABLING, VIA A PROGRAMMING LIBRARY, SOFTWARE
RUNNING ON A CLIENT DEVICE TO INVOKE THE

CAPABILITIES OF A CLIMATE DATA ANALYTICS SYSTEM
THROUGH REQUESTS TO THE VARIOUS SERVICES

SUPPORTED BY THE SYSTEM

ENABLING, VIA A CLIENT-SIDE COMMUNICATIONS
INTERFACE, THE PROGRAMMING LIBRARY'S METHODS
TO INTERACT WITH A CLIMATE DATA ANALYTICS

SYSTEM'S SERVER INTERFACE TO OBTAIN ACCESS TO
THE CAPABILITIES OF THE SYSTEM

FINISH

US 10,075,562 B2

602

604

76
0

S
I
G
-
 7

go
o

sr
oR

nc
E

1

DE
VI

CE
1~

73

0
74
0

75
0

~1
0D
 1

76
2

79
0

IN
PU
T

I
MO

D
2

76
4

DE
VI

CE

ME
MO
RY

RO
M

RA
NI

MO
D
3

76
6

77
0

OU
TP

UT
DE

VI
CE

BU

S

CO
MM
UN
IC
AI
IO
N

78
0

IN
TE

RF
AC

E
71
0

7
2
2
-
4
C
A
C
H
E

PR
OC

ES
SO

R
72

0

US 10,075,562 B2

SYSTEM AND METHOD FOR PROVIDING A
CLIMATE DATA ANALYTIC SERVICES

APPLICATION PROGRAMMING
INTERFACE

BACKGROUND

1. Technical Field
The present disclosure relates to access to climate data

and more specifically to a data analytic services application
programming interface for accessing climate data.

2. Introduction
Climate models generate data that are of great value to

society. Climate model outputs include retrospective analy-
ses that model the historical state of the climate, estimates of
current climate conditions, and projections of future climate
conditions. The data sets generated by climate models are
too large to be moved from the archives where they are
stored to end users where the data are typically analyzed and
used. Offering climate data analytics as a service makes it
easier to access climate model data and perform data analy-
ses where the data are stored before moving reduced, more
usable products to the end user for further study.

Currently, the ability of end users, applications, climate
researchers, or members of the public to gain meaningful
access to a climate data analytics system is limited. The
current technologies are deficient because there exists no
effective means for gaining access to the capabilities
afforded by a climate data analytics system. What is needed
is an improved approach that makes it easier to access these
capabilities.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example climate data analytic ser-
vices application programming interface (CDS API);

FIG. 2 illustrates details of a CDS API programming
library of basic and extended utilities to support a MERRA
analytic service and a persistence service;

FIG. 3 illustrates difference between CDS API basic and
extended utilities;

FIG. 4 illustrates an example overall architecture of a
climate data analytics system accessible through a CDS API;

FIG. 5 is a flowchart showing an example use of a CDS
API by a client application;
FIG. 6 illustrates an example method embodiment; and
FIG. 7 illustrates an example system embodiment.

DETAILED DESCRIPTION

A system, method and computer-readable storage devices
are disclosed which deliver a climate data analytic services
application programming interface that enables access to the
data and capabilities offered by a climate data analytics
system.
The climate data analytic services (CDS) application

programming interface (API) described herein provides an
example embodiment of a web-based API designed to
enable access to a climate data analytics system (CDAS).
Various modifications and changes may be made to this
embodiment without departing from the broader spirit and
scope of this disclosure.

FIG. 1 illustrates an example CDS API 100. A CDS API
100 is composed of a programming library 101 that contains
the programs that enable client-side software to invoke the
capabilities of a CDAS and a RESTful communications
interface 102 that connects the API to a CDAS's server. The

2
programming library 101 further includes a collection of
basic utilities 101.1 and an optional set of extended utilities
101.2. In the example implementation, these capabilities can
be implemented as Python programming language pro-

s grams, but could be implemented in any suitable program-
ming language.

Basic utilities 101.1 are client-side API methods that call
a single service-side method implemented by one of the
various services supported by the CDAS. In one aspect of

10 the API 100, these basic methods correspond to the Inter-
national Organization of Standards (ISO) Open Archival
Information System (OAIS) Reference Model data flow
categories of an operational archive, which include ingest

15 107, query 108, order 109, download 110, execute 111, and
status 112 methods. The basic utilities of the API thus
establish a direct, one-to-one correspondence between the
functional, OAIS-based capabilities of a CDAS service and
client service requests. The data objects operated upon by

20 the utilities 101.1, 101.2 also are taken to represent OAIS
Reference Model Submission, Archive, and Dissemination
Information Packages. These functional and object con-
straints can support a harmonized archive-analytics perspec-
tive advanced by the notion of climate data analytics as

25 service (CAaaS).
FIG. 2 illustrates details of a CDS API programming

library 200 having basic utility methods 201 and extended
utility methods 202 to support a MERRA analytic service
(MAS) and a persistence service (PS). The API's basic

so utilities make calls to specific server-side CDAS methods
implemented by the referenced service 203. Each call rep-
resents a single action, and a series of basic utility calls
operate asynchronously with respect to one another.
In contrast, extended utilities are scripts or programs that

35 combine a collection of basic utilities and/or other extended
utilities under programmatic control in order to perform a
specific task 204. The extended utilities 202 can be used to
implement "convenience" functions or more complex work-
flows made up of one or more basic utility and/or extended

40 methods. For example, the convenience methods and work-
flows 204 shown in FIG. 2, are client-side programs that
coordinate a series of basic utility methods 203 to perform
single, synchronous operations. The programming library
200 has an interface 205 through which external programs

45 can access the programming library 200. The programming
libraries in the current embodiment of the CDS API can
support a MERRA analytic service and persistence service.
FIG. 3 illustrates differences between basic utilities 300

and extended utilities 301 and how such programs could be
50 constructed. Here, an extended utility 301 uses the basic

utilities order, status, and download to create a convenience
"average" method that would cause the MERRA analytic
service to respond by computing the average value of a
MERRA variable over a specified spatial and temporal

55 extent. The organization of the API's library into basic and
extended utilities enables improved functionality. The API's
architecture enables client-side extensibility, making it easy
for users to fashion more complex operations from basic and
extended utilities, thereby engaging the user community in

60 the evolving construction of the API. Further, the commu-
nications protocol implemented by the RESTful client-side
API interface, like the functional organization of the API's
utilities, is also based on the OAIS Reference Model's data
flow categories, further supporting the correspondence

65 between the functional, OAIS-based capabilities of a CDAS,
CDAS services, the CDS API, and client software applica-
tion capabilities.

US 10,075,562 B2

3
The disclosure turns to a discussion of the API utilities

associated with the MERRA analytic service. The basic
utilities of the MERRA analytic service can include order
methods that dynamically create data objects in the service,
status methods for tracking the progress of an order, and 5

download methods that retrieve the data object generated by
an order request. The order methods can include a GetVari-
ableByCollection_Operation_TimeRange_SpatialExtent_
VerticalExtent request that can perform the following opera-
tions: a maximum operation that determines the maximum io
value of a climate variable according to user-specified input
parameters, a minimum operation that determines the mini-
mum value of a climate variable according to user-specified
input parameters, a sum operation that determines the sum
of the values of a climate variable according to user- 15
specified input parameters, a count operation that determines
the number of instances of a climate variable according to
user-specified input parameters, an average operation that
determines the arithmetic mean of a set of climate variables
according to user-specified input parameters, a variance 20
operation that determines the variance of the mean for a set
of a climate variables according to user-specified input
parameters, and a difference operation that determines the
difference between two climate variables according to user-
specified input parameters. The user-specified input param- 25
eters to the GetVariableByCollection_Operation_Tim-
eRange_SpatialExtent_VerticalExtent request can include
one or more of a variable list including specific MERRA
climate variables of interest, a name of a target MERRA
collection, an operation to perform, a start date for a time 30
span to process over, an end date for a time span to process
over, a minimum longitude in degrees east for a horizontal
spatial bounding box lower left corner, a minimum latitude
in degrees north for a horizontal spatial bounding box
lower-left corner, a maximum longitude in degrees east for 35
a horizontal spatial bounding box upper right corner, a
maximum latitude in degrees north for a horizontal spatial
bounding box upper right corner, a start level for a vertical
spatial extent, an end level for a vertical spatial extent, an
optional seasonal time span specification, or an optional 40
user-supplied job name. The outputs of the MERRA analytic
service basic utilities GetVariableByCollection_Operation_
TimeRange_SpatialExtent_VerticalExtent request can
include a unique session identifier for the order session that
can be used to retrieve session status information and 45
download results.
The status methods can include or invoke a CheckStatus

request that checks on the progress of an order request
according to user-specified input parameters including the
MERRA analytic service name and a unique session iden- 50
tifier for the target order request. The CheckStatus method
can generate outputs including a unique session identifier for
the status session, a one word status update of the session
identified by the input session identifier, and/or a detailed
description of the target session. 55

The download methods can include or invoke a Get
request that downloads a data object that has been dynami-
cally created by an order request according to user-specified
input parameters including the MERRA analytic service
name, a unique session identifier for the target order request, 60
and an optional name to be given the resulting data object.
The Get method can generate output including the resulting
data object.
The extended utilities can include MERRA analytic ser-

vice convenience methods that include a Maximum method 65
that determines the maximum value of a climate variable
according to user-specified parameters, a Minimum method

4
that determines the minimum value of a climate variable
according to user-specified parameters, a Sum method that
determines the sum of the values of a climate variable
according to user-specified parameters, a Count method that
determines the number of instances of a climate variable
according to user-specified parameters, an Average method
that determines the arithmetic mean of a set of climate
variables according to user-specified parameters, a Variance
method that determines the variance of the mean for a set of
a climate variables according to user-specified parameters,
and a Difference method that determines the difference
between two climate variables according to user-specified
parameters. Examples of the various user-specified param-
eters can include the method name, a variable list including
specific MERRA climate variables of interest, a name of a
MERRA collection to process over, an operation to perform,
a start date for a time span to process over, an end date for
a time span to process over, a minimum longitude in degrees
east for a horizontal spatial bounding box lower left corner,
a minimum latitude in degrees north for a horizontal spatial
bounding box lower-left corner, a maximum longitude in
degrees east for a horizontal spatial bounding box upper
right corner, a maximum latitude in degrees north for a
horizontal spatial bounding box upper right corner, a start
level for a vertical spatial extent, an end level for a vertical
spatial extent, and a download destination name. The output
of the extended utility methods can be the resulting data
obj ect.
The disclosure turns now to a discussion of the utilities

associated with the persistence service. The persistence
service basic utilities can include ingest methods that saves
data objects to the service, query methods that search for
saved data, download methods that retrieve data objects
from the service, execute methods that run service-defined
operations, and status methods for tracking the progress of
an order.
The ingest methods can include or invoke a Put request

that stores a user-specified input payload in the persistence
service. The Put request can generate outputs including a
unique session identifier for the ingest session, a one word
status update, and a detailed description of the session. The
query methods can include a GetFileNameByAttribute
request that performs a metadata search operation on the
data objects stored in the persistence service according to
user-specified selection parameters. The GetFileNameByAt-
tribute request can generate output of data object names that
have metadata attributes that match user-specified selection
parameters. The download methods can include or invoke a
Get request that downloads a previously ingested data object
according to user-specified parameters, and a GetFileName-
ByAttribute request that queries for a data object name
according to user-specified parameters. The download
requests can generate output including the selected data
object. The user-specified parameters discussed can include
a filename for a data object to be operated upon, a target
destination path for an output data object, and/or an optional
overwrite specification.
The execute methods of the persistence service can

include an AddMetaDataByName request that adds meta-
data to a data object stored in the persistence service
according to user-specified parameters, and a DeleteObject
request that removes a data object from the persistence
service according to user-specified parameters. The user-
specified parameters can include a file name for the target
data object, a name specification for the metadata key to be
associated with the target data object, and a value to be
associated with the specified key. The status methods can

US 10,075,562 B2

5
include or invoke a CheckStatus request that checks on the
progress of a service request according to user-specified
input parameters consisting of unique session identifier for
the target service request, and can generate outputs including
a unique session identifier for the status session, a one word
status update of the session identified by the input session
identifier, and/or a detailed description of the target session.

Taken together, the API utilities associated with the
MERRA analytic service and the utilities associated with the
persistence service can complement at the client-side API
level the server-side capabilities of the two services. The
entire architecture can be extended by adding services to the
climate data analytics system and exposing the new services
through the CDS API.

FIG. 4 is a diagram showing the overall architecture of a
climate data analytics system 400 that has been made
accessible to a client software application 411 through a
CDS API 407. A climate data analytics system can include
at a minimum an analytic service 401 and a persistence
service 402. The CDS API is a client-side API that can
consume CDAS Web service endpoints and abstract them
into high-level functions and methods that can improve the
ability of software developers and client applications to
access the capabilities of the underlying climate data ana-
lytics system.
CDAS capabilities are made available to the CDS API

through the CDAS's server-side system interface 405 and
the CDS API's client-side interface 408. The server-side
interface 405 and the client-side interface 408 each have an
in-facing and an out-facing component. On the services side,
the in-facing "adapter" component of the CDAS interface
412 maps service requests to specific operations imple-
mented by CDAS services. The out-facing component of the
CDAS interface is a Representational State Transfer (REST)
server 413 that exposes Web services endpoints consumable
by external clients. On the client side, the out-facing com-
ponent of the API's interface 408 communicates with the
CDAS's RESTful server to enable the API's access to
CDAS capabilities, while its in-facing component wraps the
CDAS's Web services endpoints into the library methods of
the API's basic utilities. The API's high-level extended
utilities 410 can connect the API's low-level basic utilities
409 through traditional method invocations. Client applica-
tions 411 can connect directly to the CDAS through the
system interface's raw Web service endpoints 423, and/or
connect to the CDAS through the improved access capa-
bilities of the API through traditional library bindings and
method invocations of the CDS API's basic and extended
utilities 424. The interface 405 can be accessible to outside
programs or devices via a network 406.

In one embodiment, MERRA analytic service 401 and
persistence service 402 methods, the in-facing adapter map
of the CDAS 420, the out-facing RESTful server commu-
nications protocol of the CDAS server 421, the out-facing
communications protocol of the API client interface 422,
and basic utility methods 409 of the API are all based on the
OAIS data flow categories of an operational archive.

This end-to-end coherence built around the OAIS Refer-
ence Model has several implications and can impart several
advantages. This approach can harmonize the analytics and
large-scale archive world views of how to address the big
data challenges in the climate science domain. This
approach treats the universe of data analytic services as an
environment for long-term digital preservation and targets a
designated community, climate scientists and other users
who wish to work with climate model data. The system can
provide a very regular API, which can simplify client and

6
server construction by creating a consistent component
taxonomy and simple, standard communications policies.
Individuals in the archive community can easily recognize
the OAIS constructs, which should make integrating ser-

5 vices far easier, such as integrating analytic capabilities into
an existing OAIS-compliant operational archive. This
approach supports the notion of a dynamic archive in which
the system can create realizable objects on demand rather
than creating collections of data objects that are stored as

io static data products.
This approach should reduce client/server interoperability

problems and the effort required by service providers to
integrate new capabilities into an operational context. It also
provides a template and method for allowing non-compliant

15 applications to become participating services in a climate
data analytics system. For example, integrating Earth Sys-
tem Grid Federation (ESGF), OpenDAP, Web Processing
Service (WPS), or other systems into the architecture
becomes a matter of writing a CDAS adapter that catego-

2o rizes the functionality provided by the new service into the
OAIS ingest, query, order, download, execute, and status
data flow categories and building the map between the new
functions and the appropriate RESTful OAIS server actions.

FIG. 5 is a diagram and flowchart showing an exemplary
25 use of the CDS API 407 by a client application 411. In an

example call 500 on the API's extended utilities 410 to find
the average temperature over a specified spatial and tempo-
ral span, the utility's average method would be based on 501
the average extended utility method in the basic utilities 409.

so The basic utilities 409 translate the method invocation into
RESTful service requests 502 that are communicated
through the network 503, 504 to the climate data analytics
system's interface 405, which then maps the request to the
appropriate service and operation 505, in this example, the

35 analytic service's order operation. The analytic service 400
computes the result using the CDAS's high-performance
data analytics compute-storage platform 404 and returns the
response back through the chain to the calling application
506.

40 Having disclosed some basic system components and
concepts, the disclosure now turns to the exemplary method
embodiment shown in FIG. 6. For the sake of clarity, the
method is described in terms of an exemplary system 700 as
shown in FIG. 7 configured to practice the method. The steps

45 outlined herein are exemplary and can be implemented in
any combination thereof, including combinations that
exclude, add, or modify certain steps.
A system 700 configured according to this disclosure can

include a programming library with functions that enable
50 software running on a client device to invoke the capabilities

of a climate data analytics system through requests to the
various services supported by the system (602). The pro-
gramming library can be implemented in Python or some
other suitable compiled and/or interpreted language. The

55 programming library can include basic utilities that call a
single, server-side method implemented by one of the vari-
ous services supported by a climate data analytics system, as
well as extended utilities that call a series of basic utilities
and/or other extended utilities that have been placed under

60 programmatic control in order to create client-side conve-
nience methods and workflows. In one embodiment, the
basic methods can correspond to the International Organi-
zation for Standards (ISO) Open Archival information Sys-
tem (OAIS) Reference Model data flow categories of an

65 operational archive.
For example, the OAIS reference model data flow cat-

egories can include multiple functions. One function is an

US 10,075,562 B2

7
ingest method that inputs data objects to a service, wherein
input parameters specify the name of a target service, the
name of an operation supported by the target service, and
operation-specific parameters, and output returns a unique
session identifier for the operation, a description of the
session, and a status message. Another function is a query
method that retrieves metadata relating to data objects in a
service, wherein input parameters specify the name of a
target service, the name of an operation supported by the
target service, and operation-specific parameters, and output
returns the query result and a status message. Another
function is an order method that dynamically creates data or
subset objects in a service, wherein input parameters specify
the name of a target service, the name of an operation
supported by the target service, and operation-specific
parameters, and output returns a unique session identifier for
operation, a description of the session, and a status message.
Another function is a download method that retrieves data
objects from a service, wherein input parameters specify the
name of a target service, the session identifier for the order
request that created the downloadable data object, and
output returns the downloadable data object and a status
message. Another function is an execute method that initi-
ates a service-definable operation, wherein input parameters
specify the name of a target service, the name of an
operation supported by the target service, and operation-
specific parameters, and output returns a unique session
identifier for the operation, a description of the operation
session, a status message, and the results generated by the
operation. Yet another function includes a status method that
checks the progress of an order operation, wherein input
parameters specify the name of a target service and a unique
session identifier, and output returns a unique session iden-
tifier for the operation, a description of the session, and a
status message.
The data objects used by the various functions can rep-

resent ISO OAIS Reference Model Submission Information
Packages, Archive Information Packages, and Dissemina-
tion Information Packages. The basic and extended utilities
can enable access to the specific capabilities of a climate
data analytics system, such as a Modern-Era Retrospective
Analysis for Research and Applications (MERRA) analytic
service and a persistence service. The basic and extended
utilities in the programming library can enable access to the
specific capabilities of a climate data analytics system
including a variety of additional services.
The system can include a client-side communications

interface that enables the programming library's functions to
interact with a climate data analytics system's server inter-
face to obtain access to the capabilities of the system (604).
In the client-side communications interface, the basic utility
methods can be communicatively linked to a climate data
analytics system's server device through ISO OAIS Refer-
ence Model-based representational state transfer uniform
resource locators.

Various embodiments of the disclosure are described in
detail below. While specific implementations are described,
it should be understood that this is done for illustration
purposes only. Other components and configurations may be
used without parting from the spirit and scope of the
disclosure.
A brief description of a basic general purpose system or

computing device in FIG. 7 which can be employed to
practice the concepts, methods, and techniques disclosed is
provided below.

With reference to FIG. 7, an exemplary system and/or
computing device 700 includes a processing unit (CPU or

8
processor) 720 and a system bus 710 that couples various
system components including the system memory 730 such
as read only memory (ROM) 740 and random access
memory (RAM) 750 to the processor 720. The system 700

5 can include a cache 722 of high-speed memory connected
directly with, in close proximity to, or integrated as part of
the processor 720. The system 700 copies data from the
memory 730 and/or the storage device 760 to the cache 722
for quick access by the processor 720. In this way, the cache

io provides a performance boost that avoids processor 720
delays while waiting for data. These and other modules can
control or be configured to control the processor 720 to
perform various operations or actions. Other system
memory 730 may be available for use as well. The memory

15 730 can include multiple different types of memory with
different performance characteristics. It can be appreciated
that the disclosure may operate on a computing device 700
with more than one processor 720 or on a group or cluster
of computing devices networked together to provide greater

20 processing capability. The processor 720 can include any
general purpose processor and a hardware module or soft-
ware module, such as module 1 762, module 2 764, and
module 3 766 stored in storage device 760, configured to
control the processor 720 as well as a special-purpose

25 processor where software instructions are incorporated into
the processor. The processor 720 may be a self-contained
computing system, containing multiple cores or processors,
a bus, memory controller, cache, etc. A multi-core processor
may be symmetric or asymmetric. The processor 720 can

30 include multiple processors, such as a system having mul-
tiple, physically separate processors in different sockets, or
a system having multiple processor cores on a single physi-
cal chip. Similarly, the processor 720 can include multiple
distributed processors located in multiple separate comput-

35 ing devices, but working together such as via a communi-
cations network. Multiple processors or processor cores can
share resources such as memory 730 or the cache 722, or can
operate using independent resources. The processor 720 can
include one or more of a state machine, an application

40 specific integrated circuit (ASIC), or a programmable gate
array (PGA) including a field PGA.
The system bus 710 may be any of several types of bus

structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus

45 architectures. A basic input/output (BIOS) stored in ROM
740 or the like, may provide the basic routine that helps to
transfer information between elements within the computing
device 700, such as during start-up. The computing device
700 further includes storage devices 760 or computer-

5o readable storage media such as a hard disk drive, a magnetic
disk drive, an optical disk drive, tape drive, solid-state drive,
RAM drive, removable storage devices, a redundant array of
inexpensive disks (RAID), hybrid storage device, or the like.
The storage device 760 can include software modules 762,

55 764, 766 for controlling the processor 720. The system 700
can include other hardware or software modules. The stor-
age device 760 is connected to the system bus 710 by a drive
interface. The drives and the associated computer-readable
storage devices provide nonvolatile storage of computer-

6o readable instructions, data structures, program modules and
other data for the computing device 700. In one aspect, a
hardware module that performs a particular function
includes the software component stored in a tangible com-
puter-readable storage device in connection with the neces-

65 sary hardware components, such as the processor 720, bus
710, display 770, and so forth, to carry out a particular
function. In another aspect, the system can use a processor

US 10,075,562 B2

9
and computer-readable storage device to store instructions
which, when executed by the processor, cause the processor
to perform operations, a method or other specific actions.
The basic components and appropriate variations can be
modified depending on the type of device, such as whether
the device 700 is a small, handheld computing device, a
desktop computer, or a computer server. When the processor
720 executes instructions to perform "operations", the pro-
cessor 720 can perform the operations directly and/or facili-
tate, direct, or cooperate with another device or component
to perform the operations.

Although the exemplary embodiment(s) described herein
employs the hard disk 760, other types of computer-readable
storage devices which can store data that are accessible by
a computer, such as magnetic cassettes, flash memory cards,
digital versatile disks (DVDs), cartridges, random access
memories (RAMS) 750, read only memory (ROM) 740, a
cable containing a bit stream and the like, may also be used
in the exemplary operating environment. Tangible com-
puter-readable storage media, computer-readable storage
devices, or computer-readable memory devices, expressly
exclude media such as transitory waves, energy, carrier
signals, electromagnetic waves, and signals per se.
To enable user interaction with the computing device 700,

an input device 790 represents any number of input mecha-
nisms, such as a microphone for speech, a touch-sensitive
screen for gesture or graphical input, keyboard, mouse,
motion input, speech and so forth. An output device 770 can
also be one or more of a number of output mechanisms
known to those of skill in the art. In some instances,
multimodal systems enable a user to provide multiple types
of input to communicate with the computing device 700.
The communications interface 780 generally governs and
manages the user input and system output. There is no
restriction on operating on any particular hardware arrange-
ment and therefore the basic hardware depicted may easily
be substituted for improved hardware or firmware arrange-
ments as they are developed.

For clarity of explanation, the illustrative system embodi-
ment is presented as including individual functional blocks
including functional blocks labeled as a "processor" or
processor 720. The functions these blocks represent may be
provided through the use of either shared or dedicated
hardware, including, but not limited to, hardware capable of
executing software and hardware, such as a processor 720,
that is purpose-built to operate as an equivalent to software
executing on a general purpose processor. For example the
functions of one or more processors presented in FIG. 7 may
be provided by a single shared processor or multiple pro-
cessors. (Use of the term "processor" should not be con-
strued to refer exclusively to hardware capable of executing
software.) Illustrative embodiments may include micropro-
cessor and/or digital signal processor (DSP) hardware, read-
only memory (ROM) 740 for storing software performing
the operations described below, and random access memory
(RAM) 750 for storing results. Very large scale integration
(VLSI) hardware embodiments, as well as custom VLSI
circuitry in combination with a general purpose DSP circuit,
may also be provided.
The logical operations of the various embodiments are

implemented as: (1) a sequence of computer implemented
steps, operations, or procedures running on a programmable
circuit within a general use computer, (2) a sequence of
computer implemented steps, operations, or procedures run-
ning on a specific-use programmable circuit; and/or (3)
interconnected machine modules or program engines within
the programmable circuits. The system 700 shown in FIG. 7

10
can practice all or part of the recited methods, can be a part
of the recited systems, and/or can operate according to
instructions in the recited tangible computer-readable stor-
age devices. Such logical operations can be implemented as

5 modules configured to control the processor 720 to perform
particular functions according to the programming of the
module. For example, FIG. 7 illustrates three modules Modl
762, Mod2 764 and Mod3 766 which are modules config-
ured to control the processor 720. These modules may be

10 stored on the storage device 760 and loaded into RAM 750
or memory 730 at runtime or may be stored in other
computer-readable memory locations.
One or more parts of the example computing device 700,

up to and including the entire computing device 700, can be
15 virtualized. For example, a virtual processor can be a

software object that executes according to a particular
instruction set, even when a physical processor of the same
type as the virtual processor is unavailable. A virtualization
layer or a virtual "host' can enable virtualized components

20 of one or more different computing devices or device types
by translating virtualized operations to actual operations.
Ultimately however, virtualized hardware of every type is
implemented or executed by some underlying physical hard-
ware. Thus, a virtualization compute layer can operate on

25 top of a physical compute layer. The virtualization compute
layer can include one or more of a virtual machine, an
overlay network, a hypervisor, virtual switching, and any
other virtualization application.
The processor 720 can include all types of processors

3o disclosed herein, including a virtual processor. However,
when referring to a virtual processor, the processor 720
includes the software components associated with executing
the virtual processor in a virtualization layer and underlying
hardware necessary to execute the virtualization layer. The

35 system 700 can include a physical or virtual processor 720
that receive instructions stored in a computer-readable stor-
age device, which cause the processor 720 to perform certain
operations. When referring to a virtual processor 720, the
system also includes the underlying physical hardware

40 executing the virtual processor 720.
Embodiments within the scope of the present disclosure

may also include tangible and/or non-transitory computer-
readable storage devices for carrying or having computer-
executable instructions or data structures stored thereon.

45 Such tangible computer-readable storage devices can be any
available device that can be accessed by a general purpose
or special purpose computer, including the functional design
of any special purpose processor as described above. By way
of example, and not limitation, such tangible computer-

5o readable devices can include RAM, ROM, EEPROM, CD-
ROM or other optical disk storage, magnetic disk storage or
other magnetic storage devices, or any other device which
can be used to carry or store desired program code in the
form of computer-executable instructions, data structures, or

55 processor chip design. When information or instructions are
provided via a network or another communications connec-
tion (either hardwired, wireless, or combination thereof) to
a computer, the computer properly views the connection as
a computer-readable medium. Thus, any such connection is

60 properly termed a computer-readable medium. Combina-
tions of the above should also be included within the scope
of the computer-readable storage devices.
Computer-executable instructions include, for example,

instructions and data which cause a general purpose com-
65 puter, special purpose computer, or special purpose process-

ing device to perform a certain function or group of func-
tions. Computer-executable instructions also include

US 10,075,562 B2
11

program modules that are executed by computers in stand-
alone or network environments. Generally, program mod-
ules include routines, programs, components, data struc-
tures, objects, and the functions inherent in the design of
special-purpose processors, etc. that perform particular tasks
or implement particular abstract data types. Computer-ex-
ecutable instructions, associated data structures, and pro-
gram modules represent examples of the program code
means for executing steps of the methods disclosed herein.
The particular sequence of such executable instructions or
associated data structures represents examples of corre-
sponding acts for implementing the functions described in
such steps.

Other embodiments of the disclosure may be practiced in
network computing environments with many types of com-
puter system configurations, including personal computers,
hand-held devices, multi-processor systems, microproces-
sor-based or programmable consumer electronics, network
PCs, minicomputers, mainframe computers, and the like.
Embodiments may also be practiced in distributed comput-
ing environments where tasks are performed by local and
remote processing devices that are linked (either by hard-
wired links, wireless links, or by a combination thereof)
through a communications network. In a distributed com-
puting environment, program modules may be located in
both local and remote memory storage devices.
The various embodiments described above are provided

by way of illustration only and should not be construed to
limit the scope of the disclosure. For example, the principles
herein apply generally to any other kinds of large sets of
climate data or other similar data. Various modifications and
changes may be made to the principles described herein
without following the example embodiments and applica-
tions illustrated and described herein, and without departing
from the spirit and scope of the disclosure. Claim language
reciting "at least one of a set indicates that one member of
the set or multiple members of the set satisfy the claim.

We claim:
1. A system providing a climate data analytic services

application programming interface, the system comprising:
a programming library comprising methods that enable

software running on a client device to invoke capabili-
ties of a climate data analytics system through requests
to various services supported by the climate data ana-
lytics system; and

a client-side communications interface that enables the
programming library's methods to interact with a cli-
mate data analytics system's server interface to obtain
access to the capabilities of the system; wherein the
programming library further comprises:

basic utilities that call a single, server-side method imple-
mented by one of the various services supported by the
climate data analytics system;
extended utilities that call a series of basic utilities that have
been placed under programmatic control in order to create
client-side convenience methods and workflows; and
wherein the basic utilities correspond to the International
Organization for Standards Open Archival information Sys-
tem Reference Model data flow categories of an operational
archive comprising:
ingest methods that input data objects to a service, wherein
input parameters specify a name of a target service, a name
of an operation supported by the target service, and opera-
tion-specific parameters, and output returns a unique session
identifier for the operation, a description of the session, and
a status message;

12
query methods that retrieve metadata relating to data objects
in a service, wherein input parameters specify the name of
a target service, the name of an operation supported by the
target service, and operation-specific parameters, and output

5 returns a query result and a status message;
order methods that dynamically create data or subset objects
in a service, wherein input parameters specify the name of
a target service, the name of an operation supported by the
target service, and operation-specific parameters, and output

10 returns a unique session identifier for operation, a descrip-
tion of the session, and a status message;
download methods that retrieve data objects from a service,
wherein input parameters specify the name of a target

15 service, a session identifier for the order request that created
a downloadable data object, and output returns the down-
loadable data object and a status message;
execute methods that initiate a service-definable operation,
wherein input parameters specify the name of a target

20 service, the name of an operation supported by the target
service, and operation-specific parameters, and output
returns a unique session identifier for the operation, a
description of an operation session, a status message, and the
results generated by the operation; and

25 status methods that check a progress of an order operation,
wherein input parameters specify the name of a target
service and a unique session identifier, and output returns a
unique session identifier for the operation, a description of
the session, and a status message.

so 2. The system of claim 1, wherein the data objects
represent International Organization for Standards Open
Archival Information System Reference Model Submission
Information Packages, Archive Information Packages, and
Dissemination Information Packages.

35 3. The system of claim 1, wherein the basic utilities and
the extended utilities of the programming library enable
access to specific capabilities of a climate data analytics
system comprising:

a Modern-Era Retrospective Analysis for Research and
40 Applications (MERRA) analytic service; and

a persistence service.
4. The system of claim 3, wherein MERRA analytic

service basic utilities provide methods comprising:
order methods that dynamically creates data objects in the

45 service;
status method for tracking a progress of an order; and
download methods that retrieves the data object generated
by an order request.

5. The system of claim 4, wherein order methods com-
50 prises a GetVariableByCollection_Operation_Tim-

eRange_SpatialExtent_VerticalExtent request that performs
operations comprising:

a maximum operation that determines a maximum value
of a climate variable according to user-specified input

55 parameters;
a minimum operation that determines a minimum value of

a climate variable according to user-specified input
parameters;

a sum operation that determines a sum of the values of a
60 climate variable according to user-specified input

parameters;
a count operation that determines a number of instances of

a climate variable according to user-specified input
parameters;

65 an average operation that determines an arithmetic mean
of a set of climate variables according to user-specified
input parameters;

US 10,075,562 B2

13
a variance operation that determines a variance of the
mean for a set of a climate variables according to
user-specified input parameters; and

a difference operation that determines a difference
between two climate variables according to user-speci-
lied input parameters.

6. The system of claim 5, wherein the user-specified input
parameters of the GetVariableByCollection_Operation_Ti-
meRange_SpatialExtent_VerticalExtent request comprise:

a request name;
a variable list comprising specific MERRA climate vari-

ables of interest;
a name of a target MERRA collection;
an operation to perform;
a start date for a time span to process over;
an end date for a time span to process over;
a minimum longitude in degrees east for a horizontal

spatial bounding box lower left corner;
a minimum latitude in degrees north for a horizontal

spatial bounding box lower-left corner;
a maximum longitude in degrees east for a horizontal

spatial bounding box upper right corner;
a maximum latitude in degrees north for a horizontal

spatial bounding box upper right corner;
a start level for a vertical spatial extent;
an end level for a vertical spatial extent;
an optional seasonal time span specification; and
an optional user-supplied job name.
7. The system of claim 5, wherein output of the GetVari-

ableByCollection_ Operation _ TimeRange_SpatialExtent_
VerticalExtent request comprises a unique session identifier
for an order session that can be used to retrieve session status
information and download results.

8. The system of claim 4, wherein status methods com-
prise a CheckStatus request that checks on progress of an
order request according to user-specified input parameters
comprising a MERRA analytic service name and a unique
session identifier for a target order request.

9. The system of claim 8, wherein output of the Check-
Status request comprises a unique session identifier for a
status session, a one word status update of the session
identified by an input session identifier, and a detailed
description of a target session.

10. The system of claim 4, wherein download methods
comprise a Get request that downloads a data object that has
been dynamically created by an order request according to
user-specified input parameters comprising a MERRA ana-
lytic service name, a unique session identifier for a target
order request, and an optional name to be given a resulting
data object.

14
11. The system of claim 10, wherein output of the Get

request comprises the resulting data object.
12. The system of claim 3, wherein MERRA analytic

service extended utilities include convenience methods
5 comprising:

a Maximum method that determines a maximum value of
a climate variable according to user-specified param-
eters;

a Minimum method that determines a minimum value of
10 a climate variable according to user-specified param-

eters;
a Sum method that determines a sum of the values of a

climate variable according to user-specified param-
eters;

15 a Count method that determines a number of instances of
a climate variable according to user-specified param-
eters;

an Average method that determines an arithmetic mean of
a set of climate variables according to user-specified

20 parameters;
a Variance method that determines a variance of the mean

for a set of a climate variables according to user-
specified parameters; and

a Difference method that determines a difference between
25 two climate variables according to user-specified

parameters.
13. The system of claim 12, wherein the user-specified

parameters comprise:
a method name;

30 a variable list comprising specific MERRA climate vari-
ables of interest;

a name of a MERRA collection to process over;
an operation to perform;
a start date for a time span to process over;

35 an end date for a time span to process over;
a minimum longitude in degrees east for a horizontal

spatial bounding box lower left corner;
a minimum latitude in degrees north for a horizontal

spatial bounding box lower-left corner;
40 a maximum longitude in degrees east for a horizontal

spatial bounding box upper right corner;
a maximum latitude in degrees north for a horizontal

spatial bounding box upper right corner;
a start level for a vertical spatial extent;

45 an end level for a vertical spatial extent; and
a download destination name.
14. The system of claim 12, wherein output of the

extended utilities comprises a resulting data object.

	10075562-p0001.pdf
	10075562-p0002.pdf
	10075562-p0003.pdf
	10075562-p0004.pdf
	10075562-p0005.pdf
	10075562-p0006.pdf
	10075562-p0007.pdf
	10075562-p0008.pdf
	10075562-p0009.pdf
	10075562-p0010.pdf
	10075562-p0011.pdf
	10075562-p0012.pdf
	10075562-p0013.pdf
	10075562-p0014.pdf
	10075562-p0015.pdf
	10075562-p0016.pdf

