US010078712B2

a2 United States Patent

Bacon et al.

US 10,078,712 B2
Sep. 18, 2018

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

DIGITAL PROXY SIMULATION OF
ROBOTIC HARDWARE

Applicant: Energid Technologies Corporation,
Cambridge, MA (US)

Inventors: James A. Bacon, Bourbonnais, IL (US);

Douglas E. Barker, Watertown, MA

(US); Xi Chen, Waltham, MA (US);

James D. English, Newton, MA (US)

ENERGID TECHNOLOGIES
CORPORATION, Cambridge, MA
Us)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.
Appl. No.: 14/154,873
Filed: Jan. 14, 2014

Prior Publication Data

US 2015/0199458 A1 Jul. 16, 2015

Int. C.

GO6F 17/50 (2006.01)

GOSB 19/04 (2006.01)

B25J 9/16 (2006.01)

U.S. CL.

CPC ... GO6F 17/5009 (2013.01); GOSB 19/0405

(2013.01); B25J 9/163 (2013.01); B25J 9/1605
(2013.01); B25J 9/1664 (2013.01); B25J
971671 (2013.01); GO5B 2219/37092
(2013.01); GOSB 2219/40131 (2013.01); Y10S
901/41 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,987,527 A * 1/1991 Hamada GOS5B 19/425
345/157

5,526,254 A * 6/1996 Sato etal. 700/56

5,598,076 A * 1/1997 Neubauer et al. . 318/568.22

6,445,964 B1* 9/2002 White et al. 700/61

7,653,522 B2 1/2010 Peralta et al.

8,024,682 B2 9/2011 McConaghy et al.

8,301,421 B2* 10/2012 Bacon et al. 703/2

9,643,314 B2* 52017 Guerin B25J 9/1605

(Continued)

OTHER PUBLICATIONS

Baillieul, John, “Kinematic Programming Alternatives for Redun-
dant Manipulators,” Boston University, 1985, pp. 722-728.

(Continued)

Primary Examiner — Kibrom K Gebresilassie
(74) Attorney, Agent, or Firm — Mark H. Whittenberger,
Esq.; Holland & Knight LLP

(57) ABSTRACT

A computer-implemented method, computer program prod-
uct, and computing system is provided for a digital proxy
simulation of robotic hardware. In an implementation, a
method may include creating a digital proxy simulation for
a robotic hardware wherein the digital simulation and the
robotic hardware may share a network interface. a user may
be provided with an option to switch between the robotic
hardware and the digital proxy simulation. The switch may
be executed, upon receiving a user selection, between the
robotic hardware and the digital proxy simulation, wherein
executing the switch includes transferring input and output
signals between the digital proxy simulation and the robotic
hardware.

28 Claims, 33 Drawing Sheets

10

100

create a digital proxy simulation for a robotic hardware
wherein the digital proxy simulation and the robotic
hardware share a network interface

Y

/

102
\.__|provide a user with an option

hardware and the digital proxy simulation

to switch between the robotic

A

y

104

proxy simulation and

upon receiving a user selection, execute the switch

between the robotic hardware and the digital proxy

simulation, wherein executing the switch inctudes
transferring input and output signals between the digital

the robotic hardware

US 10,078,712 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2002/0133264 Al* 9/2002 Maiteh GOSB 19/4097
700/182
2003/0120391 Al* 6/2003 Saito ..o B25J9/1671
700/264
2004/0030449 Al* 2/2004 Solomon 700/245
2004/0199288 Al* 10/2004 Watanabe B25J9/1671
700/245
2004/0254771 Al* 12/2004 Riener et al. ... 703/7
2006/0111811 Al1* 5/2006 Okamoto et al. 700/214
2006/0184275 Al* 8/2006 Hosokawa et al. ... 700/245
2006/0274070 Al* 12/2006 Herman A63F 13/10
345/474
2007/0071310 Al1* 3/2007 Kobayashi B25J 9/1666
382/153
2007/0073442 Al* 3/2007 Aghili ..ccoooovviiiiiinn 700/245

2007/0150104 Al* 6/2007 Jang et al. ... 700/245

2007/0233280 Al* 10/2007 Bacon et al. ... 700/1
2007/0244599 Al* 10/2007 Tsaietal.coeeee. 700/245
2007/0250212 Al* 10/2007 Halloran et al. 700/245
2007/0282485 Al* 12/2007 Nagatsuka B25J9/1671
700/245

2008/0013825 Al* 1/2008 Nagatsuka B25J9/1671
382/153

2008/0094408 Al* 4/2008 Yincceeinn. GO6T 15/005
345/581

2008/0103639 Al* 5/2008 Troy GOSD 1/0027
7012

2008/0301072 Al* 12/2008 Nagatsuka B25J9/1669
706/12

2009/0182844 Al* 7/2009 Barton GOG6F 17/30905
709/219

2010/0152899 Al* 6/2010 Changetal. ... 700/262
2010/0174422 Al1* 7/2010 Jacobsen GOSD 1/0044
7012

2010/0315416 Al* 12/2010 Pretlove GO6T 7/001
345/419

2011/0046783 Al* 2/2011 Benchikh B25J9/1671
700/254

2011/0216179 A1* 9/2011 Dialameh GO6F 17/30247
348/62

2012/0166165 Al* 6/2012 Nogami B25J9/1671
703/6

2012/0290130 Al* 11/2012 Kapoor B25J9/1671
700/247

2013/0147944 Al* 6/2013 Zhang B25J9/1661
348/95

2013/0211587 Al1* 82013 Stephens, Jr.c.coee.. 700/246
2013/0211594 A1* 82013 Stephens, Jr. B25J9/1689
700/259

2014/0267273 Al* 9/2014 Kontkanen ... GO6T 15/04
345/426

2015/0057801 Al* 2/2015 Stephens, Jr. B25J9/1689
700/259

2015/0336267 Al* 11/2015 Sun ..o, B25J9/163
700/161

2015/0364060 Al* 12/2015 Guptaccoevenee B25J9/0081
434/118

2016/0046023 Al* 2/2016 Nagendran ... B25J9/1689
700/248

2016/0054868 Al* 2/2016 ROy ...ccccovvieiinnns GO6T 15/005
345/520

2016/0257000 Al1* 9/2016 Guerin B25J9/1605
2017/0203438 Al* 7/2017 Guerinc..... B25J9/1605

OTHER PUBLICATIONS

Baraff, David, “Coping with Friction for Non-penetrating Rigid
Body Simulation,” Computer Graphics, vol. 25, No. 4, Jul. 1991,
pp. 31-40.

Bergen, Gino van den, “Proximity Queries and Penetration Depth
Computation on 3D Game Objects,” pp. 1-17.

Bergen, Gino van den, “A Fast and Robust GJK Implementation for
Collision Detection of Convex Objects,” Department of Mathemat-
ics and Computing Science, Endhoven University of Technology,
Jul. 6, 1999, pp. 1-20.

Bui, Ha H., et al., “SPH-Based Numerical Simulations for Large
Deformation of Geomaterial Considering Soil-Structure Interac-
tion,” The 12th International Conference of International Associa-
tion for Computer Methods and Advances in Geomechanics (IACMAG),
Oct. 1-6, 2008, pp. 570-578.

Dai, Ran, “Path Planning of Solar-Powered Unmanned Aerial
Vehicles at Low Altitude,” Invited Paper, Aerospace Engineering
Department, Iowa State University, 2013, pp. 693-696.

Donzé, Frédéric V., et al., “Advances in Discrete Element Method
Applied to Soil, Rock and Concrete Mechanics,” EJGE, 2009, pp.
1-44.

Doty, Keith L., et al., “A Theory of Generalized Inverses Applied to
Robotics,” The International Journal of Robotics Research, vol. 12,
No. 1, Feb. 1993, pp. 1-19.

Egeland, Olav, “Task-Space Tracking with Redundant Manipula-
tors,” The Journal of Robotics and Automation, vol. RA-3, No. 5,
Oct. 1987, pp. 471-475.

English, James D., et al., “Numerical Integration and Digital-Model
Updates in the AIM-9X Simulation,” 1998, pp. 1-8.

English, James D., et al., “On the Implementation of Velocity
Control for Kinematically Redundant Manipulators,” IEEE Trans-
actions on Systems, Man, and Cybernetics—Part A: Systems and
Humans, vol. 30, No. 3, May 2000, pp. 233-237.

Featherstone, Roy, “Robot Dynamics Algorithms,” The Kluwer
International Series in Engineering and Computer Science, Robot-
ics: Vision, Manipulation and Sensors, 1987, pp. 1-211.

Fijany, Amir, et al. “An Efficient Algorithm for Computation of
Manipulator Inertia Matrix,” 1990, pp. 57-80.

Gao, Yudong, et al., “Design and Development of Hardware-in-
Loop Simulation of Spacecraft Attitude Control System Based on
Wireless Ad Hoc Networking,” 2012 International Conference on
Industrial Control and Electronics Engineering, 2012, pp. 584-587.
Holz, Daniel, et al., “Soil Deformation Models for Real-Time
Simulation: A Hybrid Approach,” Workshop on Virtual Reality
Interaction and Physical Simulation VRIPHYS, 2009, pp. 1-10.
Homen-de-Mello, Tito, et al., “Monte Carlo Sampling-Based Meth-
ods for Stochastic Optimization,” Mar. 14, 2013, pp. 1-72.
Hooke, Robert, et al., “Direct Search Solution of Numerical and
Statistical Problems,” Westinghouse Research Laboratories, 1961,
pp. 212-229.

Huang, Ming Z., et al., “Optimal Rate Allocation in Kinematically
Redundant Manipulators—The Dual Projection Method,” Proceed-
ings of the 1991 IEEE International Conference on Robotics and
Automation, Apr. 1991, pp. 702-707.

Iscen, Atil, et al., “Controlling Tensegrity Robots through Evolu-
tion,” 2013, pp. 1-8.

Ishigami, Genya, et al., “Terramechanics-based Model for Steering
Maneuver of Planetary Exploration Rovers on Loose Soil,” 2007,
pp. 1-24.

Jakob, Christian, et al., “Particle Methods,” Oct. 23, 2012, pp. 1-23.
Kenyon, Astrid S., et al., “Stochastic Vehicle Routing with Random
Travel Times,” Transportation Science, vol. 37, No. 1, Feb. 2003,
pp. 69-82.

Klein, Charles A., et al., “Review of Pseudoinverse Control for Use
with Kinematically Redundant Manipulators,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. SMC-13, No. 3, Mar./Apr.
1983, pp. 245-250.

Klesh, Andrew T., et al., “Solar-Powered Aircraft: Energy-Optimal
Path Planning and Perpetual Endurance,” Journal of Guidance,
Control, and Dynamics, vol. 32, No. 4, Jul.-Aug. 2009, pp. 1320-
1329.

Lane, John E., et al., “A Review of Discrete Element Method
(DEM) Particle Shapes and Size Distributions for Lunar Soil,” Dec.
2010, pp. 1-36.

Lichtenheldt, Roy, et al., “Locomotion on Soft Granular Soils: A
Discrete Element Based Approach for Simulations in Planetary
Exploration,” 2013, pp. 1-8.

US 10,078,712 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Loftin, Kathleen, et al., “Integration and Ruggedization of a Com-
mercially Available Gas Chromatograph and Mass Spectrometer
(GCMS) for the Resource Prospector Mission (RPM),” Presentation
to HEMS, Sep. 2013, pp. 1-83.
Luding, Stefan, “Basics of Contact Force Models and how to
perform the Micro-Macro Transition to Continuum Theory,” Intro-
duction to Discrete Element Methods, Dec. 2008, pp. 785-826.
Marhefka, Duane W., et al., “A Compliant Contact Model with
Nonlinear Damping for Simulation of Robotic Systems,” IEEE
Transactions of Systems, Man, and Cybernetics—Part A: Systems
and Humans, vol. 29, No. 6, Nov. 1999, pp. 566-572.
Nelder, J.A., et al., “A simplex method for function minimization,”
1965, pp. 308-313.
Obermayr, Martin, et al., “Prediction of draft forces in cohesionless
soil with the Discrete Element Method,” Journal of Terramechanics
48, 2011, pp. 347-358.
Ohki, Takeshi, et al., “Path Planning for Mobile Robot on Rough
Terrain based on Sparse Transition Cost Propagation in Extended
Elevation Maps,” Proceedings of 2013 IEEE International Confer-
ence on Mechatronics and Automation, Aug. 4-7, 2013, pp. 494-
499.
Patel, Nildeep, et al., “Application of Bekker Theory for Planetary
Exploration through Wheeled, Tracked and Legged Vehicle Loco-
motion,” American Institute of Aeronautics and Astronautics, 2004,
. 1-9.
glinsen, Yang, et al., “A Soil-Tool Interaction Model for Bulldozer
Blades,” Journal of Terramechanics, vol. 31, No. 2, 1994, pp. 55-65.

Seraji, Homayoun, “Configuration Control of Redundant Manipu-
lators: Theory and Implementation,” IEEE Transactions on Robot-
ics and Automation, vol. 5, No. 4, Aug. 1989, pp. 472-490.
Seraji, Homayoun, et al., “Improved Configuration Control for
Redundant Robots,” Journal of Robotic Systems, 1990, pp. 897-
928.

Torczon, Virginia, “On the Convergence of Pattern Search Algo-
rithms,” CRPC-TR93322, Jun. 1993, pp. 1-31.

Urban, Marton, et al., “Investigation of the soil-tool interaction by
SPH (Smooth Particle Hydrodynamics) based simulation,” 2013,
pp. 1-6.

Walker, M.W,, et al., “Efficient Dynamic Computer Simulation of
Robotic Mechanisms,” Journal of Dynamic Systems, Measurement,
and Control, vol. 104, Sep. 1982, pp. 205-211.

Wei, R., et al,, “High Fidelity Distributed Hardware-in-the-Loop
Simulation for Space Robot on CAN-based Network,” Proceedings
of the 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Oct. 9-15, 2006, pp. 5106-5111.

Yamane, Katsu, et al., “Stable Penalty-Based Model of Frictional
Contacts,” Proceedings of the 2006 IEEE International Conference
on Robotics and Automation, May 2006, pp. 1904-1909.

Yoshida, Kazuya, et al., “Steering Characteristics of a Rigid Wheel
for Exploration on Loose Soil,” Proceedings of 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Sep.
28-Oct. 2, 2004, pp. 3995-4000.

Yuan, Xie, et al., “Dynamic Mission-level Path Planning for Lunar
Rovers,” International Conference on Control, Automation and
Systems, Oct. 27-30, 2010, pp. 56-61.

Zghal, H., et al., “Efficient Gradient Projection Optimization for
Manipulators with Multiple Degrees of Redundancy,” 1990, pp.
1006-1011.

* cited by examiner

US 10,078,712 B2

Sheet 1 of 33

Sep. 18, 2018

U.S. Patent

L Ol

e’

e sseo0ud S4(
SOl

Smmmmnmmn. pmmmm
o’

(81) Miomiau

-
-
-
. ‘...un'
-
-
-
-

nnnnnnnnnnnnnn
o™ - .

uoneodde
BpIS-1UBHO

(9]
e}

-

PAS
uuuuuuuuuuuuuu
h .,

uonesijdde
apis-jusljo

abpliq

/ lomjau
Jejnjeo

(| uoneojdde
opIs-jusi|o

nnnnnnnnnnnnnnnnn
" e

uoieoldde
apis-jusio

H%

U.S. Patent Sep. 18, 2018 Sheet 2 of 33 US 10,078,712 B2

100 create a digital proxy simulation for a robotic hardware
N wherein the digital proxy simulation and the robotic
hardware share a network interface

102

__|provide a user with an option to switch between the robotic
hardware and the digital proxy simulation

upon receiving a user selection, execute the switch
104 between the robotic hardware and the digital proxy
N simulation, wherein executing the switch includes
transferring input and output signals between the digital
proxy simulation and the robotic hardware

FIG. 2

U.S. Patent Sep. 18, 2018 Sheet 3 of 33 US 10,078,712 B2

FIG. 3

U.S. Patent Sep. 18, 2018 Sheet 4 of 33 US 10,078,712 B2

N
-]
=

™

Steéring

Compound Shape

Polyhedron Capsule Lozenge

| Shapell‘! | s;zapgz]

Eltipsoid Box Tetrahedron

FIG. 4

U.S. Patent Sep. 18, 2018 Sheet 5 of 33 US 10,078,712 B2

Base Link

Link Level 1 - Steering
(moves relative to base)

Link Level 2 - Wheels
(moves relative to steering)

—~
.

FIG. 5

U.S. Patent

Sep. 18, 2018

Sheet 6 of 33

US 10,078,712 B2

System

Link
Indexin

Link Data:
Kinematics
Mass Properties
Physical Extent
Surface Properti
Volume Properti

Link Tree

Link Data:
Kinematics
Mass Properties
Physical Extent
Surface Propertie
Volume Properti

FIG. 6

U.S. Patent Sep. 18, 2018 Sheet 7 of 33 US 10,078,712 B2

704

Input: Output:
System | Model-Specific 54
State o Data

702

Configuration:
Link Attachment
Attachment Pose

Model-Specific Data

FIG. 7

US 10,078,712 B2

Sheet 8 of 33

Sep. 18, 2018

U.S. Patent

884 Wyjoby

s101d11sa(

8 Old

abueyn adeys pue
sa92404 Buiain wiyiob|y

2oellalu]

si03duasaq adeuns

prossy

Z 9oe4ns
P3tm

uonenwis

U.S. Patent Sep. 18, 2018 Sheet 9 of 33 US 10,078,712 B2

250 300

meters2

U.S. Patent Sep. 18, 2018 Sheet 10 of 33 US 10,078,712 B2

U.S. Patent Sep. 18, 2018 Sheet 11 of 33 US 10,078,712 B2

[

0N
fr—> A D

T et X B | FIG. 13

f

Fimary Frame A

FIG. 14

Pimary Frame B

Pimary Fame A

FIG. 15

Pimary Fame B

U.S. Patent Sep. 18, 2018 Sheet 12 of 33 US 10,078,712 B2

=
[
=R

[y

I [N
N
[y
~

FIG. 16 FIG. 17

FIG. 18

Scannper Origin

Tear ¢ ipping plane

Farclippingplane
FIG. 19

U.S. Patent Sep. 18, 2018 Sheet 13 of 33 US 10,078,712 B2

U.S. Patent Sep. 18, 2018 Sheet 14 of 33 US 10,078,712 B2

No noise 0.007 m and 0.008 m

FIG. 24 (a) FIG. 24 (b)

US 10,078,712 B2

Sheet 15 of 33

Sep. 18, 2018

U.S. Patent

FIG. 25

U.S. Patent

Sep. 18, 2018 Sheet 16 of 33

~ Sensor

Posezdif!‘;—_“:é;timatcr?

. Fi‘giéeEs@imator

FIG. 26

i Subsystem

Navigator

FIG. 27

- Subsystem

Locomotor

FIG. 28

US 10,078,712 B2

U.S. Patent Sep. 18, 2018 Sheet 17 of 33 US 10,078,712 B2

Remote
Teleoperation

Hardware, Communication through CORBA‘ Not Ig:;zr;"l?nted

FIG. 29

] MIRO Server
Instance

Laser
Scanner

Note: Hardware modules are simulated.

FIG. 30

U.S. Patent Sep. 18, 2018 Sheet 18 of 33 US 10,078,712 B2

Plugin Shared Memory Miro:: Server
Process
greste >
init spawn
EcExamplelpe
update bl struct update loo
integrate data
update grate
& . s
update | integrate dala|
“ integrate data
AT i il
endFlag g
destructor endFlag || break
i exit
< wait
destroy >

FIG. 31

US 10,078,712 B2

Sheet 19 of 33

Sep. 18, 2018

U.S. Patent

¢t Old

uollelnuIS U UG @
um e
soL- aiduny ¢

US 10,078,712 B2

Sheet 20 of 33

Sep. 18, 2018

U.S. Patent

€€ 9OlId

US 10,078,712 B2

Sheet 21 of 33

Sep. 18, 2018

U.S. Patent

v€ Old

SWU OO0 SRR . S\ OYT U0l

SUZESdd

S50 onauly
£0-onms

US 10,078,712 B2

Sheet 22 of 33

Sep. 18, 2018

U.S. Patent

809

909

€0 :onaupy
G170 oness

Ge 9old

809

€0 :onauny
g0 :onels

9

0

9

US 10,078,712 B2

Sheet 23 of 33

Sep. 18, 2018

U.S. Patent

8¢ 9Old

804 904

L€ Old 9¢€ OlId

804 904 804 90L

US 10,078,712 B2

Sheet 24 of 33

Sep. 18, 2018

U.S. Patent

o Peg

B

YIE G

&® 0.LE el (Fr « oo UMEE Aa

] suibingg A vonepwemak - w3 T |

sy pifisauy - [asERWEDPUNOIGUOQTY/Seswe ploqoyomy sowap ko peseu-ngs/aep/2] B

4

US 10,078,712 B2

Sheet 25 of 33

Sep. 18, 2018

U.S. Patent

sl o0 Rg S 7977 A0

£6'1€ Sdd

ov ©OlId

U.S. Patent Sep. 18, 2018 Sheet 26 of 33 US 10,078,712 B2

e —— 710

FIG. 41

US 10,078,712 B2

Sheet 27 of 33

Sep. 18, 2018

U.S. Patent

i

R R e e

3

g

S 101 mobn P -

FIG. 42

US 10,078,712 B2

Sheet 28 of 33

Sep. 18, 2018

U.S. Patent

W
!

A

—

FIG. 43 (a)

FIG. 43 (b)

U.S. Patent

Sep. 18, 2018

Sheet 29 of 33 US 10,078,712 B2

Actual
dt = 1122500 s t=t,

t=1+1125dt

Stmulated Frame 1
dt=130s ol
// AN
/ \
Fd
f;
/

Frame 3 ™. " Frame 2
t=to+ 2dt “"’»W’f t=to+ gt

FIG. 44

Scanner Origin

Far clipping plane

Near clipping plane

FIG. 45

US 10,078,712 B2

Sheet 30 of 33

Sep. 18, 2018

U.S. Patent

FIG. 46

U.S. Patent Sep. 18, 2018 Sheet 31 of 33 US 10,078,712 B2

FIG. 47

U.S. Patent Sep. 18, 2018 Sheet 32 of 33 US 10,078,712 B2

FIG. 48

U.S. Patent Sep. 18, 2018 Sheet 33 of 33 US 10,078,712 B2

display
(512)
12 I
] 510 display
adaptor

502 i
network

>
¢ Kl micro
controller processor
™
514 i
504

| 10

controller

1
v v

keyboard
(506) 508

FIG. 49

US 10,078,712 B2

1
DIGITAL PROXY SIMULATION OF
ROBOTIC HARDWARE

GOVERNMENT LICENSE RIGHTS TO
CONTRACTOR-OWNED INVENTIONS MADE
UNDER FEDERALLY SPONSORED RESEARCH
AND DEVELOPMENT

The U.S. Government has a paid-up license in this inven-
tion and the right in limited circumstances to require the
patent owner to license others on reasonable terms as
provided for by the terms of NASA contracts NNX10CC40P
and NNX11CA22C.

TECHNICAL FIELD

The present disclosure generally relates to robotic systems
and methods. More specifically, the present disclosure is
directed towards robotic simulation.

BACKGROUND

It is a common practice to perform field tests in prepara-
tion for lunar and planetary missions. A robot field test for
robotic lunar and planetary missions performed by NASA
may involve a number of people. There are many obstacles
that NASA may need to overcome in order to achieve a
reasonably close environment as that encountered in these
lunar and planetary missions. Maintaining a group of people
that perform the robot field test in remote locations may be
taxing on the individuals and the institution that supports
them. Also, the use of a real-world location may impose
some undesirable constraints on the field tests.

SUMMARY OF DISCLOSURE

According to an implementation, a computer-imple-
mented method may include creating, by one or more
processors, a digital proxy simulation for a robotic hardware
wherein the digital simulation and the robotic hardware may
share a network interface. The method may also include
providing a user with an option to switch between the
robotic hardware and the digital proxy simulation. The
method may also include upon receiving a user selection,
executing the switch between the robotic hardware and the
digital proxy simulation, wherein executing the switch
includes transferring input and output signals between the
digital proxy simulation and the robotic hardware.

One or more of the following features may be included.
The robotic hardware may be at least one of a mobile robot,
a fixed base articulated serial manipulator, a moving base
articulated serial manipulator, a fixed base articulated robot
with branching links, and a moving base articulated robot
with branching links. The digital proxy simulation includes,
at least in part, a sensor simulation, a kinematic simulation,
a dynamic simulation, and an environment simulation. The
method may further include executing the digital proxy
simulation using at least one of network communications
and network communications over the Internet. The network
communications and the network communication over the
Internet may be provided using Data Distribution Service
(DDS) for real-time systems. The robotic hardware and the
digital proxy simulation have the same network interface.
The environment simulation may include, at least in part, a
terrain simulation and an interaction with the robotic hard-
ware. The movement of the robotic hardware may be
rendered at least on one of a computer and a handheld

10

15

20

25

30

35

40

45

50

55

60

65

2

electronic device. The dynamic simulation may include
numerical integration of Newton’s and Euler’s dynamic
equations for moving parts.

According to another implementation, a computer pro-
gram product may include a computer readable medium
having a plurality of instructions stored thereon. When
executed by a processor, the instructions may cause the
processor to perform operations including creating a digital
proxy simulation for a robotic hardware wherein the digital
proxy simulation and the robotic hardware share a network
interface. Instructions may be included for providing a user
with an option to switch between the robotic hardware and
the digital proxy simulation. Instructions may be included
for, upon receiving a user selection, executing the switch
between the robotic hardware and the digital proxy simula-
tion, wherein executing the switch includes transferring
input and output signals between the digital proxy simula-
tion and the robotic hardware.

One or more of the following features may be included.
The robotic hardware may be at least one of a mobile robot,
a fixed base articulated serial manipulator, a moving base
articulated serial manipulator, a fixed base articulated robot
with branching links, and a moving base articulated robot
with branching links. The digital proxy simulation includes,
at least in part, a sensor simulation, a kinematic simulation,
a dynamic simulation, and an environment simulation. The
instructions may further be included for executing the digital
proxy simulation using at least one of network communi-
cations and network communications over the Internet. The
network communications and the network communication
over the Internet may be provided using Data Distribution
Service (DDS) for real-time systems. The robotic hardware
and the digital proxy simulation have the same network
interface. The environment simulation may include, at least
in part, a terrain simulation and an interaction with the
robotic hardware. The movement of the robotic hardware
may be rendered at least on one of a computer and a
handheld electronic device. The dynamic simulation may
include numerical integration of Newton’s and Euler’s
dynamic equations for moving parts.

According to another aspect of the disclosure, a comput-
ing system may include at least one processor device and at
least one memory architecture coupled with the at least one
processor device. The at least one processor device may be
configured to create a digital proxy simulation for a robotic
hardware wherein the digital proxy simulation and the
robotic hardware share a network interface. The at least one
processor device may also be configured to provide a user
with an option to switch between the robotic hardware and
the digital proxy simulation. The at least one processor
device may also be configured to, upon receiving a user
selection, execute the switch between the robotic hardware
and the digital proxy simulation, wherein executing the
switch includes transferring input and output signals
between the digital proxy simulation and the robotic hard-
ware.

One or more of the following features may be included.
The robotic hardware may be at least one of a mobile robot,
a fixed base articulated serial manipulator, a moving base
articulated serial manipulator, a fixed base articulated robot
with branching links, and a moving base articulated robot
with branching links. The digital proxy simulation includes,
at least in part, a sensor simulation, a kinematic simulation,
a dynamic simulation, and an environment simulation. The
at least one processor device may be configured to further
include executing the digital proxy simulation using at least
one of network communications and network communica-

US 10,078,712 B2

3

tions over the Internet. The network communications and the
network communication over the Internet may be provided
using Data Distribution Service (DDS) for real-time sys-
tems. The robotic hardware and the digital proxy simulation
have the same network interface. The environment simula-
tion may include, at least in part, a terrain simulation and an
interaction with the robotic hardware. The movement of the
robotic hardware may be rendered at least on one of a
computer and a handheld electronic device. The dynamic
simulation may include numerical integration of Newton’s
and Euler’s dynamic equations for moving parts.

The details of one or more implementations are set forth
in the accompanying drawings and the description below.
Other features and advantages will become apparent from
the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagrammatic view of a distributed computing
network including a computing device that executes an DPS
process according to an implementation of the present
disclosure;

FIG. 2 is a flowchart of the DPS process of FIG. 1,
according to an implementation of the present disclosure;

FIG. 3 is a diagrammatic representation of an example
DPS process of FIG. 1, according to an implementation of
the present disclosure;

FIG. 4 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 5 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 6 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 7 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 8 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 9 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 10 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 11 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 12 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 13 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 14 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 15 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 16 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 17 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 18 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 19 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 20 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 21 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 22 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 23 depicts a diagram consistent with the processes of
the present disclosure;

15

20

25

35

40

45

55

65

4

FIG. 24(a) depicts a diagram consistent with the pro-
cesses of the present disclosure;

FIG. 24(b) depicts a diagram consistent with the pro-
cesses of the present disclosure;

FIG. 25 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 26 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 27 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 28 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 29 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 30 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 31 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 32 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 33 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 34 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 35 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 36 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 37 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 38 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 39 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 40 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 41 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 42 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 43(a) depicts a diagram consistent with the pro-
cesses of the present disclosure;

FIG. 43(b) depicts a diagram consistent with the pro-
cesses of the present disclosure;

FIG. 44 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 45 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 46 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 47 depicts a diagram consistent with the processes of
the present disclosure;

FIG. 48 depicts a diagram consistent with the processes of
the present disclosure; and

FIG. 49 is a diagrammatic view of the computing device
of FIG. 1, according to an implementation of the present
disclosure.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

Generally, the present disclosure provides systems and
apparatuses for replacing robotic vehicles in field tests and
similar scenarios with a simulation. Specifically, in some
embodiments, the present disclosure may be used to switch
between a digital proxy simulation for a physical robotic

US 10,078,712 B2

5

device and the actual robotic device. In other words, an
operator of the robotic hardware may be able to either
operate the robotic hardware or operate the digital proxy
simulation of that robotic hardware. The software system
may replace robotic devices (e.g. robotic vehicles) in field
tests (and similar scenarios) with a digital simulation. A
digital simulation may allow a user to perform an action on
a computing device in order to seamlessly switch between
the robotic hardware and the digital proxy simulation of that
robotic hardware. For example, during robotic hardware
field tests, validation of the robotic hardware or training
using the robotic hardware, a user may be able to switch
back and forth between the robotic hardware, where the user
now is able to control the robotic hardware operations and
the digital proxy simulation, where the user is able to control
the digital proxy simulation of the robotic hardware.

In some embodiments, the simulation may be triggered
with an action (e.g., double-click execution) on a networked
user device (e.g., client electronic devices 28, 30, 32, 34) to
seamlessly serve as a replacement for robot communica-
tions, actuation, control systems, power systems, sensors,
environmental interactions, and behavior. The simulation
may incorporate physics-based modeling of wheel-terrain
interaction and obstacle collisions. The software used for the
simulation may be generic and may work with other existing
robotic devices (e.g., NASA’s mobile robotic vehicles, such
as the K10 and the ATHLETE and with new early and
experimental systems).

For illustration purposes, NASA will be used as an
example of a provider of robotic hardware to be seamlessly
replaced by a simulation using software, however, other
providers of robotic hardware may be used. Although the
NASA is an example of a provider of robotic hardware (e.g.,
K10 and ATHLETE) the applicability of DPS process 10,
may be used outside of NASA robotic hardware and may
support robotic systems developers across the spectrum of
robotics domains, including, but not limited to, defense,
home use, etc. DPS process 10 may also be integrated as an
add-on to one or more software applications. Additionally/
alternatively, by linking the software libraries into third-
party code, developers may have full access to all the
capability provided by the toolkit. The new capability may
allow developers to leverage terrains and remote-control
technologies into new applications.

Using the NASA example, NASA may hold field tests to
prepare for lunar and planetary missions. A robot field test
may involve three groups of 10-20 people depending on the
application. The first group may plan the mission—a process
that includes (often animated) debate among scientists,
discussion of the state of the robot, analysis of sensor data,
including lidar and visual sensor data (stitched into mosaics)
on personal and group-level screens, and prediction of robot
performance. The second group may control the operation of
the robot. This group may transition between autonomous
operation and direct control as needed, may analyze diag-
nostic data, and may monitor communications. The third
group may travel to a remote location with terrain matching
the needs of the test—such as the desert southwest, the
Arctic, or Antarctica—with robot hardware. This third group
may monitor the robot, may maintain and may repair it, and
may move it to locations that support the needs of scientists.

A digital proxy simulation may simulate the robot and
may replace the robot in the field. Maintaining the remote
field group may be taxing on the individuals and the insti-
tution that supports them, and organizing a field test without
this component will be easier and more efficient. Also, the
use of a real-world location imposes some undesirable

10

15

20

25

30

35

40

45

50

55

60

65

6

constraints on the tests. Terrain in Arizona or Antarctica may
not fit NASA’s goals for simulating the lunar and planetary
missions because constraints such as gravity, soil, and
communications. And physical operation is deficient in truth
data. A digital simulation may represent any number of
robots on a terrain that may be relevant to NASA and may
provide ground data for comparison with sensor data during
analysis.

It is understood that DPS process 10 may be implemented
in any programming language, such as Java, C, C++, C#, or
Python. DPS process 10 may interface over a variety of
network protocols, such as TCP, UDP, or others. Other
operating systems besides Linux, Windows, or Mac OS may
be used. DPS process 10, may be physics-based and may
rely on the fundamental equations of motion (Newton’s and
Euler’s formulas). It is understood that the engineering
specifications will vary from robot to robot. It is also
understood that DPS process 10, may apply to any robot. It
is understood that DPS process 10, may executes on a
computer with Linux, Windows, or Mac OS. DPS process 10
may require maintenance for upgrades to new operating
systems or new robot control systems.

According to an embodiment, methods and systems may
be provided for digital proxy simulation of a robot.

Referring to FIG. 1, there is shown a Digital Proxy
Simulation (DPS) process 10 for simulating a robotic physi-
cal device. For the following discussion, it is intended to be
understood that DPS process 10 may be implemented in a
variety of ways. For example, DPS process 10 may be
implemented as a server-side process, a client-side process,
or a hybrid server-side/client-side process.

For example, DPS process 10 may be implemented as a
purely server-side process via DPS process 10s. Alterna-
tively, DPS process 10 may be implemented as a purely
client-side process via one or more of client-side application
10c1, client-side application 10c2, client-side application
10c3, and client-side application 10c4. Alternatively still,
DPS process 10 may be implemented as a server-side/client-
side process via screen DPS process 10s in combination with
one or more of client-side application 10c1, client-side
application 102, client-side application 10¢3, and client-
side application 10c4. In such an example, at least a portion
of the functionality of DPS process 10 may be performed by
DPS process 10s and at least a portion of the functionality
of DPS process 10 may be performed by one or more of
client-side application 10c1, 10¢2, 103, and 10c4.

Accordingly, DPS process 10 as used in disclosure may
include any combination of DPS process 10s, client-side
application 10c1, client-side application 10c2, client-side
application 10¢3, and client-side application 10c4.

Referring also to FIG. 2, and as will be discussed in
greater detail below, DPS process 10, may create 100 a
digital proxy simulation for a robotic hardware wherein the
digital proxy simulation and the robotic hardware share a
network interface. The method may also provide 102 a user
with an option to switch between the robotic hardware and
the digital proxy simulation. The method may also, upon
receiving a user selection, execute 104 the switch between
the robotic hardware and the digital proxy simulation,
wherein executing the switch includes transferring input and
output signals between the digital proxy simulation and the
robotic hardware.

DPS process 10s may be a server application and may
reside on and may be executed by computing device 12,
which may be connected to network 14 (e.g., the Internet or
a local area network). Examples of computing device 12
may include, but are not limited to: a personal computer, a

US 10,078,712 B2

7

server computer, a series of server computers, a mini com-
puter, a mainframe computer, or a dedicated network device.

The instruction sets and subroutines of DPS process 10s,
which may be stored on storage device 16 coupled to
computing device 12, may be executed by one or more
processors (not shown) and one or more memory architec-
tures (not shown) included within computing device 12.
Examples of storage device 16 may include but are not
limited to: a hard disk drive; a tape drive; an optical drive;
a RAID device; an NAS device, a Storage Area Network, a
random access memory (RAM); a read-only memory
(ROM); and all forms of flash memory storage devices.

Network 14 may be connected to one or more secondary
networks (e.g., network 18), examples of which may include
but are not limited to: a local area network; a wide area
network; or an intranet, for example.

Examples of client-side applications 10c1, 102, 103,
10c4 may include but are not limited to an application
incorporated into and executed within a client-side process
incorporated into and executed with a client-side media
applications, a web browser, media decoder, such as, audio
and video decoders. It is understood that the aforementioned
may be incorporated into a mobile device platform. The
instruction sets and subroutines of client-side application
10c1, 10c2, 10c3, 10c4, which may be stored on storage
devices 20, 22, 24, 26 (respectively) coupled to client
electronic devices 28, 30, 32, 34 (respectively), may be
executed by one or more processors (not shown) and one or
more memory architectures (not shown) incorporated into
client electronic devices 28, 30, 32, 34 (respectively).
Examples of storage devices 20, 22, 24, 26 may include but
are not limited to: hard disk drives; tape drives; optical
drives; RAID devices; random access memories (RAM);
read-only memories (ROM), and all forms of flash memory
storage devices.

Examples of client electronic devices 28, 30, 32, 34 may
include, but are not limited to, personal computer 28, laptop
computer 30, mobile computing device 32, notebook com-
puter 34, a netbook computer (not shown), a server com-
puter (not shown), a gaming console (not shown), a data-
enabled television console (not shown), and a dedicated
network device (not shown). Client electronic devices 28,
30, 32, 34 may each execute an operating system.

Users 36, 38, 40, 42 may access DPS process 10 directly
through network 14 or through secondary network 18.
Further, screen capture process 10 may be accessed through
secondary network 18 via link line 52. DPS process 10 may
access a robotic device (e.g., robotic device 54) through
network 14 by one or more of the users (e.g., Users 36, 38,
40, 42).

The various client electronic devices (e.g., client elec-
tronic devices 28, 30, 32, 34) may be directly or indirectly
coupled to network 14 (or network 18). For example,
personal computer 28 is shown directly coupled to network
14. Further, laptop computer 30 is shown wirelessly coupled
to network 14 via wireless communication channels 44
established between laptop computer 30 and wireless access
point (WAP) 48. Similarly, mobile computing device 32 is
shown wirelessly coupled to network 14 via wireless com-
munication channel 46 established between mobile comput-
ing device 32 and cellular network/bridge 50, which is
shown directly coupled to network 14. WAP 48 may be, for
example, an IEEE 802.11a, 802.11b, 802.11g, 802.11n,
Wi-Fi, and/or Bluetooth device that is capable of establish-
ing wireless communication channel 46 between laptop

10

15

20

25

30

35

40

45

55

60

65

8

computer 30 and WAP 48. Additionally, personal computer
34 is shown directly coupled to network 18 via a hardwired
network connection.

Referring also to FIG. 2, and as will be discussed in
greater detail below, DPS process 10, may create 100 a
digital proxy simulation for a robotic hardware wherein the
digital proxy simulation and the robotic hardware share a
network interface. The method may also provide 102 a user
with an option to switch between the robotic hardware and
the digital proxy simulation. The method may also, upon
receiving a user selection, execute 104 the switch between
the robotic hardware and the digital proxy simulation,
wherein executing the switch includes transferring input and
output signals between the digital proxy simulation and the
robotic hardware.

Referring to FIG. 3, there is shown a network connecting
a scientist (e.g., user 38), and a controller (e.g., User 36) that
communicate and collaborate together over a communica-
tion network (e.g., network 14) to perform a digital proxy
simulation (e.g., proxy 304) that can seamlessly replace
physical robotic hardware (e.g., robotic device 54) for
testing, validation, and training with a digital proxy simu-
lation (e.g., proxy 304). DPS process 10 may allow the
switching between the robotic hardware and the digital
proxy simulation automatically or by the means of a switch.
Automatically switching may be achieved by transferring
the input and output data and signals that are communicated,
where the transfer of the input and output data or signals
may be established for either the digital proxy simulation or
the robotic hardware or both. In other words, when the
switch occurs, input and output data or signals may be
transferred to either the digital proxy simulation or the
robotic hardware or both. A virtual switch (e.g., switch 306)
may allow the switch between the digital proxy simulation
(e.g., proxy 304) and the physical robotic hardware (e.g.,
robotic device 54). Automatically switching or the use of a
virtual switch (e.g., switch 306) may use services for com-
munication such as CORBA, TCP/IP DLL, or direct link. It
is understood that the Common Object Request Broker
Architecture (CORBA) is a standard that provides for the
definition of a set of distributed services to support the
integration and interoperation of distributed objects. It is
also understood that TCP/IP is a suite of communications
protocol used to connect hosts on the Internet and that DLL,
which stands for Dynamic Link Library, is a library of
executable functions or data that can be used by an appli-
cation. DPS process 10 may execute on one or more of these
nodes of the IP network via client-side applications (e.g.,
client applications 10c1, 10¢2, 10c3).

As explained above, and for illustration purposes NASA
will be used as an example of a provider of robotic hardware
to be seamlessly replaced by a digital proxy simulation.
Throughout this disclosure references will be made to some
NASA robotic hardware such as the K10 robots or the
ATHLETE robots, however, other robotic hardware and
providers of robotic hardware may be used.

For example, and with additional reference to FIG. 3, DPS
process 10 may create 100 a digital proxy simulation for a
robotic hardware wherein the digital proxy simulation and
the robotic hardware share a network interface. For example,
a software system may be implemented to create 100 a
simulation that will act as a proxy for a robot (e.g., robotic
device 54). A proxy may be a representation of a device and
a different form. A digital proxy may be a digital program/
software that can simulate the behavior and/or the appear-
ance of a robotic hardware (e.g., robotic devices before). The
robotic device 54 may be the NASA robotic hardware such

US 10,078,712 B2

9

as the K 10 robots. The robotic hardware (e.g., robotic
device 54) and the digital proxy simulation (e.g., proxy 304)
may share the same network interface, where an operator
can connect to one or the other or both using the same
network interface/service. Some of the network protocols
that may be used are TCP/IP, UDP or others. Some of the
network interface services may CORBA, TCP/IP DLL, or
direct link. In is understood that the above are only examples
and other network interfaces and communication services
may be used.

The K10 may be a wheeled 95 kg robot with a maximum
speed of 0.9 m/s. It may have a standard lidar, color imaging,
and microsopic imaging sensors and can accommodate
many types of scientific instruments. It may take a few hours
to set up an experiment with the K10, and the K10 is
commonly used for large-scale recon experiments involving
20-30 people, making it a good candidate for proxy simu-
lation because there are clear time and resource expenditures
involved in operating the hardware.

Some of the challenges in simulating the K10 may be that
its lidar operates over a (large) range of 3-150 m and that
OpenGL would be challenged in modeling accurate dis-
tances over these ranges, and therefore would not be suitable
for lidar simulation. Motor input for the K10 may be made
through two modes: directly driving the motor position
profiles and driving through higher-level tasking. The posi-
tion profile for the motors may be given at 5 Hz, while
telemetry may be received at 25 Hz. Most interfacing maybe
achieved through CORBA, but non-CORBA communica-
tion may also be used, including writing out data from
imagers and lidar to local files (JPEG) on the robot. During
operations, data may be stored at a rate of about 100
MB/Hour (though in some configurations, this can be
higher). In one embodiment, the digital proxy simulation
may support the a robot user interface (e.g., VERVE sys-
tem). It is understood that VERVE is the Java-based front
end used by NASA to display the robot telemetry.

In one embodiment, a software architecture may be devel-
oped to support the goals of proxy simulation. This archi-
tecture may be built on the architecture used in Energid’s
commercial Actin toolkit. In one embodiment, a set of
criteria may be used in developing the architecture for the
general simulation. The set of criteria may be as follows:

a. The system may support any number of mobile robots
and any number of moving parts on each robot.

b. The system may support all methods of mobility, joint
types, and control constraints.

c. Kinematic control and dynamic simulation may be
configurable using CAD models of the robot and ter-
rain.

d. Third-party software may be supported through a
plugin interface.

Some of the components of the simulation may be shown

in the following Table 1.

TABLE 1
Data forms that may be used in the proxy simulation, which may
leverage the mechanisms available in the Actin Toolkit.
Data Form Description
Shape Any shape, including sphere, ellipsoid, capsule,
polyhedron, and so forth.
Link A single link in a mechanism, which includes the

shape,
kinematics, mass properties, and actuator properties.

10

15

20

25

30

35

40

45

50

55

60

65

10
TABLE 1-continued

Data forms that may be used in the proxy simulation, which may
leverage the mechanisms available in the Actin Toolkit.

Data Form Description

Manipulator A single mechanical system or robot, which includes
any

number of connected links.

Any number of robots, the environment, and their

states.

Stated System

Kinematic A simulation of a stated system, which includes a
stated

Simulation system,visualization properties, and a kinematic control
system.

Dynamic A simulation providing all the capability of a kinematic

Simulation simulation, but with dynamic simulation of articulation,

physical impacts, and motor control.

In one embodiment, the robotic hardware and the digital
proxy simulation have the same network interface. As
explained above, some of the network protocols that may be
used may be TCP/IP, UDP or others. Some of the network
interface services may CORBA, TCP/IP DLL, or direct link.
In is understood that the above are only examples and other
network interfaces and communication services may be
used. DPS process 10 may allow the same network interface
and/or network services to be used when an operator (e.g.,
Users 36, 38, 40, 42) switches between the robotic hardware
(e.g., robotic device 54) and the digital proxy simulation
(e.g., proxy 304).

The method may also provide 102 a user with an option
to switch between the robotic hardware and the digital proxy
simulation. For example, DPS process 10 may provide an
operator (e.g., Users 36, 38, 40, 42) with the option to switch
between the robotic hardware (e.g., robotic device 54), and
the digital proxy simulation (e.g., proxy 304), at any time
during testing, validation, and training or any other function
related to the robotic hardware or the digital proxy simula-
tion. For example, an operator using a user device (e.g.,
client electronic devices 28, 30, 32, 34) may control the
simulation or may control the actual robotic hardware (e.g.,
robotic device 54) by switching between the digital proxy
simulation and the robotic hardware.

The method may also, upon receiving a user selection,
execute 104 the switch between the robotic hardware and the
digital proxy simulation, wherein executing the switch
includes transferring input and output signals between the
digital proxy simulation and the robotic hardware. As
explained above, DPS process 10 may allow the switching
between the robotic hardware and the digital proxy simula-
tion automatically or by the means of a switch. For example,
a user (e.g. Users 36, 38, 40 or 42) may be able to control
either the digital proxy simulation, the robotic hardware or
both through DPS process 10 by first transferring the input
and output data or signals to either the digital proxy simu-
lation, the robotic hardware or both. It is understood that the
input and output data or signals may allow communication
to and from either the digital proxy simulation or the robotic
hardware or both. As also explained above, automatically
switching or the use of a virtual switch (e.g., switch 306)
may use services for communication such as CORBA,
TCP/IP DLL, or direct link. It is understood that a virtual
switch may include a digital program or software or process
that may allow for setting a path between at least two
entities. Entities may be a user, a computer, a process, and
algorithm, etc. A controller may be a user (e.g., Users 36, 38,
48, or 42), a computer, a handheld device, a process, a
software program, and algorithm, etc. Whenever a path set

US 10,078,712 B2

11

between the at least two entities, data flowing between the
at least two entities may be in the form of signals that may
be transferred between the at least two entities. Signals may
be in the form of input or output signals. For illustrative
purposes, assuming a fault was encountered during a field
test (or mission) of a robotic hardware (e.g., robotic device
54). An operator (e.g., Users 36, 38, 40 or 42) controlling the
robotic hardware (e.g., robotic device 54) may be able to
switch between the robotic hardware (e.g., robotic device
54) and a digital proxy simulation (e.g., proxy 304) using the
virtual switch (e.g., switch 306). As explained above, a
virtual switch allows a user to switch between the robotic
hardware and the digital proxy simulation in order to be able
to control one or the other or both. Control may be exercised
to debug, test, validate or any other functions that may be
necessary to be performed on the robotic hardware or the
digital proxy simulation. For example, if the operator (e.g.
Users 36, 38, 40 or 42) laws to control the digital proxy
simulation (e.g., proxy 304), DPS process 10 may provide
102, the user with the option to switch to the digital proxy
simulation (e.g., proxy 304), where now the operator may be
able to communicate and/or control the digital proxy simu-
lation (e.g., proxy 304). Further, the operator (e.g., Users 36,
38, 44, 42) may be able to send and receive signals to the
digital proxy simulation (e.g., proxy 304). As explained
above, signals may be in the form of input or output signals
between at least two entities (e.g., an operator and the proxy
simulation). Continuing with the example above, the opera-
tor (e.g., Users 36, 38, 40 or 42) may be able to debug the
problem using the digital proxy simulation (e.g., proxy 304).
The operator (e.g., Users 36, 38, 40 or 42) may then switch
another time to the robotic hardware (e.g., robotic device 54)
from the digital proxy simulation (e.g., proxy 304) to resume
the control of the robotic hardware (e.g., robotic device 54).
Another example may be where an operator (e.g., Users 36,
38, 40 or 42) may test or demonstrate new features on a
robotic hardware by performing the tests on the digital proxy
simulation (e.g., proxy 304) and then switch between the
digital proxy simulation (e.g., proxy 304) and the robotic
hardware (e.g., robotic device 54) as many times as neces-
sary to demonstrate the new features. It is understood that
the above is only an example of a debug scenario and a test
scenario and that other scenarios necessitating switching
between robotic hardware and digital proxy simulation may
be envisioned.

The method may further include executing the digital
proxy simulation using at least one of network communi-
cations and network communications over the Internet. For
example, and referring to FIG. 3, a network communication
(e.g., network 14) may allow users, such as scientists, and
controllers (e.g., Users 36 and 38), to seamlessly commu-
nicate with the physical hardware (e.g. robot device 54),
and/or the digital proxy simulation (e.g., proxy 304). The
network may be a closed network, or an open network, or a
combination thereof. A closed network may be private
network with access limited to registered users. An open
network may be accessed by users, even if not registered to
use that network. An example of a closed network may be
a network that require permission to join, and an example of
an open network may be the Internet. In one embodiment, an
operator may decide which network or combination thereof
to use for executing the digital proxy simulation.

In one embodiment, the network communications and the
network communication over the Internet are provided using
Data Distribution Service (DDS) for real-time systems. That
is, the network communications and the network commu-
nications over the Internet used between the users (e.g.,

20

35

40

45

12

Users 36, 38, 40, 42) and the robotic device (e.g., robotic
device 54) and the digital proxy simulation (e.g., proxy 304)
may be provided using Data Distribution Service (DDS) for
real-time systems. In is understood that the use of the
network communications allows connectivity between the
users (e.g., Users 36, 38, 40 and 42) and the robotic device
(e.g., robotic device 54) and the digital proxy simulation
(e.g., proxy 304). Through that connectivity, one or more of
the users (e.g., Users 36, 38, 40 and 42) may be able to
operated the robotic device (e.g., robotic device 54) and the
digital proxy simulation (e.g., proxy 304). As explained
above, a virtual switch (e.g., switch 306) may be used to
perform the switch between the digital proxy simulation
(e.g., proxy 304) and the physical robotic hardware (e.g.,
robotic device 54) whenever an operator (e.g., Users 36, 38,
40 and 42) may want to control either the digital proxy
simulation (e.g., proxy 304) or the physical robotic hardware
(e.g., robotic device 54) or both.

In one embodiment, the robotic hardware is at least one of
a mobile a fixed base articulated serial manipulator, a
moving base articulated serial manipulator, a fixed base
articulated robot with branching links, and a moving base
articulated robot with branching links. For example, a physi-
cal extent describing a rigid component of a robot may be
represented in a variety of levels of detail. In general, each
shape is formed as a combination of geometric primitives
through the compound-shape tree structure shown in FIG. 4.
The tree structure may be composed at runtime, and may be
modified (either directly or through a DLL) to support new
geometric shape primitives or branching nodes. The leaves
in the tree may be shape primitives, some examples of which
are shown in FIG. 4 (e.g., polyhedron, sphere, capsule,
lozenge, ellipsoid, box, tetrahedron, and half space).

Still referring to FIG. 4, there is shown a robot (e.g.,
robotic device 54), where the robot description leverages a
flexible capability for describing parts. For each part in the
robot, such as a wheel, steering support, or articulated link,
a compound-shape tree structure may be used to represent it.
Internal nodes may be unions or intersections, and the leaves
may be basic shapes. A common shape may be the general
polyhedron. Other basic shapes may provide a simpler
representation and faster simulation execution for some
applications. These shapes may use surface properties ref-
erenced by string tokens. Each surface property may hold a
string-string map, a string-floating-point map, and a string-
integer map. Polyhedrons may organize their polygons by
surface property, with potentially each polygon having its
own surface property.

The link may be the object representing rigid bodies that
may be used to build robot descriptions. The distal frame of
one link may be rigidly attached to the proximal frame of
each child link in a generic kinematic structure. This may
allow multiple formalisms (such as Paul or Craig’s Denavit-
Hartenberg notation), and it may support the representation
of new types of joints. Each link object may hold the
following properties:

Joint Kinematic Description
Mass Properties

Surface Properties
Spring and Damper Properties

Actuator Parameters Child Links
Physical Extent Methods for Calculating Derived
Data

The link’s mass properties may include scalars that may
be needed for rigid-body dynamics calculations. The actua-
tor parameters may include the motor friction, motor inertia,

US 10,078,712 B2

13
joint flexibility, gear ratio, and joint limits. Joint-limit
dynamics may be represented with a spring-damper model.

A robot may be constructed by connecting links in a tree
structure, as shown in FIG. 5. The structure may support any
number of links and any number of bifurcations, such as
those present on the NASA K10 robot or other NASA robots
(e.g., ATHLETE). Each individual link may move relative to
its parent. The base link may play a special role by having
its position and orientation represented explicitly. The base
link may be typically the body of a mobile robot.

Still referring to FIG. 5, there is shown a robot or
environmental object that may be defined through a link tree.
Each link may have the form described above and may move
relative to its parent. The position and orientation of the base
link may be represented explicitly. The base link may be the
body of a mobile robot. Further, FIG. 5 shows the topology
for four wheel drive, four wheel steering without a suspen-
sion. For rigid environmental objects (e.g., rocks) the base
may have no children and may be fixed or mobile, as best
suited to the scenario.

All robots and the environment may be described through
the dichotomy of system and state. The system may remain
the same, time step to time step, while the state may change.
The system may be decomposed into any number of robots,
or mechanisms. The state may be decomposed into a veloc-
ity and a position state, as well as a morphing state for
describing terrain changes. Referring to FIG. 6, which may
illustrate the above organization. A robot, such as the K10,
may be considered as a group. A rock may also be consid-
ered as a group (with only a base link). Each object may
move rigidly or morph, to allow simulation of both rigid
components and soil. FIG. 6 shows how robots, and the
environment where the robot may be operating, may be
organized into a “system” and at “state.” The state may
change from time step to time step, while the system may
remain the same. The morphing state may model terrain
change.

In one embodiment, the digital proxy simulation includes,
at least in part, a sensor simulation, a kinematic simulation,
a dynamic simulation, and an environment simulation. For
example, and referring to FIG. 7, DPS process 10, may allow
for various simulations of the actual physical robotic hard-
ware (e.g., robotic device 54), the surrounding environment
(e.g., environment 702) and the imaging sensors (e.g., sensor
704) present on a robotic hardware (e.g. on robotic device
54).

It is understood that the K10 model may have multiple
imaging sensors and at least one lidar sensor as standard
equipment. In addition to this, there may be often a demand
for the addition of new scientific instruments and other
sensors. To enable any sensor type to be used easily with the
simulation, a plug-in architecture for sensor types that
includes the ability to associate the sensor with any link and
capture relevant data at any rate may be used. The base class
for the sensor may accept a system and a state (as illustrated
in FIG. 6) and may calculate the data that the sensor may
produce. The code that does this may be different for each
sensor model type. Referring to FIG. 7, there is shown a
depiction of possible sensor configuration model that may
derive from a common base class that may accept a system
and the state as input and returns data in a form specifically
relevant to sensor model type.

Kinematic Simulation

In one embodiment, A kinematic simulation may provide
support for constraint management, including steering and
other types of control. In software, a kinematic simulation
may include a stated system, as described above combined

10

15

20

25

30

35

40

45

50

55

60

65

14

with a configurable control system that may be comprised of
a velocity control system and a position control system,
which are described below. The control system may be
robust enough to be generated automatically, yet flexible
enough to give the designer full control over behavior when
desired.

In one embodiment, the proxy simulation may use a
velocity control framework (e.g. those available from the
assignee of the present disclosure) for steering the digital
proxy simulation (e.g., proxy 304), which may include easy
configuration of kinematic constraints. The core velocity-
control framework for any mechanism in the simulation may
be based on the Jacobian equation:

V=Ja)q* M

where v is an m-length vector representation of the
motion of the end effectors (for example, linear and angular
velocity referenced to points rigidly attached to parts of the
robot); q is the vector of joint positions, q* is the n-length
vector formed by augmenting q* with the 3D linear and
angular velocity of the base link; and J is the mxn Jacobian,
a function of q. When the mechanism is kinematically
redundant, the dimension of v is less than the dimension of
q*, which includes six independent elements representing
base motion, (m<n), and (1) is underconstrained when v is
specified.

The control framework calculates joint rates and base
motion ¢* that best achieve a desired set of end-effector
motions, V, by building on the method described in “On the
Implementation of Velocity Control for Kinematically
Redundant Manipulators,” J. D. English and A. A.
Maciejewski, IEEE Trans. On Sys., Man, and Cybernetics—
Part A: Systems and Humans, vol. 30, no. 3, May 2000, pp.
233-237, which uses a scalar a, a matrix function W(q), and
a vector function F(q) to solve for q* as follows:

@

=[] [
T\ NTw] | ZanTE]

Here, N, is an n x (n—m) set of vectors that spans the null
space of J. That is, JN =0, and N, has rank (n-m). N is
generally a function of q. By just changing the values of a,
W, and F(q), many new and most established velocity-
control techniques can be implemented, including pseudo-
inverse control, weighted pseudoinverse control, augmented
Jacobian techniques, extended Jacobian techniques, and
projection methods. These can be used to optimize criteria
such as balance, collision avoidance, joint-limit avoidance,
and strength optimization. These are tailored to mobile
systems to allow robots such as the K10 to easily be moved
around the surface of the terrain just by guiding a 3D point.

Velocity control may be used for placing constraints. The
current pose of an end-effector (location and orientation for
a frame end effector, for example) and the desired pose may
be used to construct an end-effector velocity that, if fol-
lowed, may provide alignment. For point end effectors, the
desired velocity of the point may be simply a scalar gain

times the difference in position. That is, if ﬁa is the actual
position and 30, is the desired position, then the desired

velocity, v 18 given by the following, where k; is a positive
gain:

7d:kl'(Fd—Fa)- 3)

For frame end effectors, every three-dimensional rotation
can be expressed as a rotation about a single axis. Let the

US 10,078,712 B2

15

unit-norm axis of rotation between the actual and desired
frames be i and the angle of rotation be 6. Then the desired
angular velocity is given by

=
w =k, 04,

Q)

where k, is a positive gain. This approach allows the
velocity control system defined through (2) to be used
directly for position control. This is the approach that was
used for K10 steering in the Phase I demonstrations.

Dynamic Simulation

In one embodiment, a dynamic simulation may include all
the capability of a kinematic simulation discussed above,
plus numerical integration of Newton’s and Euler’s dynamic
equations for moving parts. Articulated dynamics, impact
dynamics, and the dynamics of the motor controllers may be
included. It is understood that the moving parts include the
moving parts of a robotic hardware (e.g., robotic device 54).

In one embodiment, the method of simulation used may
be the Order(N®) Composite Rigid Body Inertia Algorithm.
The method of simulation may be implemented using an
adaptation of the composite rigid-body algorithm for bifur-
cating manipulators, based on the following equation:

T=M(q)§+C(q)§+G(q)+DA+B, 5)

where T is the column vector of joint torques/forces, M(q)
is the manipulator inertia matrix, q is the vector of joint
position, C(q) represents the Coriolis forces, G(q) represents
gravitational forces, and B represents the effect of external
forces applied to the arm’s links. A, is the seen (rather than
felt) acceleration of the base link. D is a special matrix that
is a function of configuration only. Combining this equation
with direct application of Newton’s and Euler’s laws to the
base link allows solution of § and A, for mobile systems
through the solution of an (N+6) DOF linear equation.

Proxy Simulation Algorithm Organization

For use in real-time application, agreed-upon interaction
models may not sufficiently describe all the complex inter-
actions anticipated for exploring with the proxy simulation.
In one embodiment, a software architectural framework may
be constructed that may allow interaction models to be
switched depending on the nature of interaction, soil, and
mechanism surfaces.

In one embodiment, for each interaction with the new
system, a simulation algorithm may be looked up in a
database, as illustrated in FIG. 8, which shows algorithm
database and parameter lookup, where a different simulation
algorithm may be used for each type of interaction. This may
allow special algorithms to represent, for example, soft soil
contacting wheels and other algorithms to represent inter-
actions between the robot body and obstacles. In addition,
the user may want to use different algorithms for the same
interaction pair for different goals. For example, there may
be three available interaction models for a given wheel and
set of soil properties, with the three models offering different
trade-offs of speed for accuracy. The database and look-up
mechanism may provide the support for selecting a specific
model.

As an example for computing interaction forces, the
EcLinkInteractionsVector object may be a vector of
EcBaseLinkInteractions instances. The EcLinkCollision-
Force, derived from EcBaseLinkInteractions, may be
responsible for calculating interaction forces due to colli-
sions among all links (objects) in the system. All classes
derived from EcBaselinkInteractions may implement a
forceBetweenLinks method to calculate the interactions

10

15

20

25

30

35

40

45

50

55

60

65

16

between links and add the results to the outputs. Error!
Reference source not found. below lists the arguments of
this method.

TABLE 2

Example details of forceBetweenLinks method of EcBaseLinkinteractions.

Argument Type Description

The non-redundant and
redundant states of the system.
The redundant state can be
computed from the non-
redundant state

but may be computationally
expensive so

it is computed and

cached for later usage.

The system descriptions
including geometry, shapes,
surface properties, etc.

actState EcSystemActiveState

manipSystem EcManipulatorSystem

time EcReal The current time in seconds.
manipExtForce- EcManipulatorExternal- The output which is the vector
Vector ForceVector of all interaction forces after

the calculations.

In one embodiment, for data exchange, the proxy simu-
lation may use the XML formalism. XML may use tags to
describe data that is organized in a hierarchical fashion. For
example, DPS process 10, may be associated with an XML
schema. The XML schema developed may define what can
and cannot exist in the language used to exchange robot
information. This schema may be used with any commer-
cially available parser for validating data. An example
schema for mass properties’ second moment, as would be
used throughout the description of a robot, is shown in the
Text Box below.

<xs:complexType name=“EcSecondMoment”>
<xs:all>
<xs:element ref="jXX"/>
<xs:element ref="jXY"/>
<xs:element ref="jXZ"/>
<xs:element ref="jYY"/>
<xs:element ref="jYZ"/>
<xs:element ref="jZZ2"/>
</xs:all>
</xs:complexType>
<xs:element name="“secondMoment” type="EcSecondMoment”/>

For illustrative purposes and as an example, the NASA
robotic hardware (e.g., NASA K10 robot) model may be
converted for use with the digital proxy simulation. The
converted model may have eight degrees of freedom, two for
each wheel. In this example, to enable conversion of the
model with the eight degrees of freedom, several modifica-
tions to the model may be necessary:

1) The model may be further mated to constrain parts.
Parts that are not mated may have artificial degrees of
freedom. The converter may assume that these parts
may be constrained to the base which is the K10 body
for this model. That assumption may work for most of
the parts but not for the parts that are attached to the
articulated links. The parts in the articulated links may
be fully mated to enable conversion to the Actin toolkit.

2) The joints may be mated with concentric, coincident,
and angle limit mates. The concentric and coincident
mates may define the axis of rotation and the limit mate
may define the joint limit.

US 10,078,712 B2

17

3) Many parts in the model may be in a hidden state.
Hidden parts may be basically there but transparent.
These parts may be suppressed to bypass conversion of
these parts to the Actin toolkit.

4) The model may contain some parts colored with
third-party tools, and these colors may not convert.
Some parts may be re-colored to make the models
match more closely.

5) The original model converted to a 16 MB Actin model.
Several internal parts may have been removed to
reduce the model size to less than 10 MB.

In one embodiment, environmental simulation may
include general terrain parameters that may be simulated by
determining the performance of one point in the environ-
ment compared to a neighboring point in the environment.
This concept will be explained in greater detail below.

To simulate general terrain parameters, building of ran-
dom arrays with specified distance autocovariance may be
enabled. Parameters over terrain, such as height and other
soil properties may vary statistically with distance. If terrain
is highly compressible at one point, for example, it may be
likely to be highly compressible at a nearby point.

The creation of random terrain properties may be estab-
lished by building an array with a prescribed mean and
standard deviation for each point and an autocovariance
function over distance. For example, a covariance function
for height might look like that shown in FIG. 9. As shown,
FIG. 9 represents an autocorrelation function, f(d), over
terrain. The x-axis represents distance in meters, and the
y-axis represents covariance in m*. The covariance of the
parameter is given as a function of linear distance along the
ground plane.

In one embodiment, to build a two-dimensional grid using
the autocorrelation function specified, a combination of
outer products of column vectors sampled for a prescribed
covariance may be used. A column vector may be selected
as representing a series with the autocorrelation function
F(d), specified as follows:

1 6
Fld) = ——— f(d) ©

V()

In one embodiment, the column vectors used to build the
array may then represent a discrete instantiation of this
autocorrelation, with an assumed cell width (and height) of
D. These vectors have covariance M, given as follows:

F0) F(D) F2D)
| FD)y FO) F(D)
" | FeD) F(D)

(©)

F(O)

M is a symmetric Toeplitz matrix. With it, it is desired to
create random column vectors X such that
EQXN=-M M
where E(*) is the expected value. To do this, Cholesky
Decomposition is used, giving upper-triangular L., where
LiI=M (8)
With this, first a column vector Y is created by sampling
zero-mean unit-variance Gaussian distributed random vari-
ables as follows:

10

15

20

25

30

35

40

45

50

55

60

65

18

N@©, 1)
N@©, 1)

®

N@©, 1)

so that
E(YYL (10)

the identity matrix. Then X is calculated as
X=L"Y.

With this construction,

an

ECXD=ELTYL™HDH=EWLTYY'L)-

LIE(YYDHL=LIL=M, (12)

as desired. An array A is calculated using two samples of
X as follows:

A=xx". 13)

This may give a vertical and horizontal autocorrelation
function corresponding to f(d). Values of A may be calcu-
lated multiple times and sampled at random orientations, 6,
weighted, and added to calculate the final random array R as
follows:

14

N
-3
= —F— 1
VN

Where A is a random matrix, constructed as described
above, and the subscript implies resampling at an orientation
may be determined by the random variable 0, uniform over
[0,2x].

For example, to use the autocovariance given in FIG. 9 to
generate random values over a 2 km by 1 km stretch of
terrain, with one sample every 5 m, A may be sampled as
described above, with the following image (generated by
scaling the sampled values to [0,1]) as an example. This is
depicted in FIG. 10, which shows an example illustration of
a single sample of A (values are mapped to gray level [0,1]).
A single sample may be random, but patterned. This may
then be resampled at the desired scale illustration of a single
sample of A (values are mapped to gray level [0,1]). A single
sample may be random, but patterned. This may then be
resampled at the desired scale and resolution multiple times
at multiple random orientations, as shown in FIG. 11, which
is an example construction of a random array (values are
mapped to gray level [0,1]) using 200 samples of random
arrays such as that shown in FIG. 10.

This data is illustrated through plotting as a height field
(and rendered using Mathematica) as shown in FIG. 12.

In one embodiment, the capability described above may
be implemented in code delivered through two classes,
EcRandomTensorTool, used to build the random array, and
EcMultipointScalarFunction, used to describe the autocor-
relation function. The class EcRandomTensorTool may
implement the following exemplary method, which may be
used to implement an embodiment of the disclosure:

/// get a random array, with a Gaussian distribution
virtual void getGaussianRandomArray

(

EcReArray& randomArray,

EcU32 arrayWidth,

EcU32 arrayHeight,

US 10,078,712 B2

19

-continued

EcBaseScalarFunction& autoCovariance,
EcReal arrayUnitDiameter=1.0,

EcReal mean=0.0

) const;

This may take a desired array width and height, an
autocovariance function, and an optional scaling factor for
unit diameter in the array and an optional factor for the mean
of'the array, which may return a random array. The class also
may provide the ability to seed the random number genera-
tor used to create the array. This may be implemented in
ecRandomTensorTool.cpp,h.

EcMultipointScalarFunction may implement the follow-
ing exemplary methods, which may be used to implement an
embodiment of the disclosure:

/// set domain values
virtual void setDomainValues

const EcXmlRealVector& domainValues

/// set range values

virtual void setRangeValues
(
const EcXmlRealVector& rangeValues
);

/// evaluate the function

virtual EcReal evaluate

const EcReal& domainValue
) const;

These may allow an autocorrelation function to be speci-
fied using linear interpolation over a set of points. Example
code using these two methods is given in the listing below,
which may be used to implement an embodiment of the
disclosure.

LISTING 1

Example code showing random array generation for building terrains.

// setup for a random array
EcU32 width=100;
EcU32 height=50;
EcReArray randomArray;
const EcReal var=2.0;
// build a covariance function
EcMultipointScalarFunction acv;
EcXmlRealVector domainValues;
domainValues.pushBack(0.0);
domainValues.pushBack(100.0);
domainValues.pushBack(200.0);
domainValues.pushBack(1000.0);
// assign range values
EcXmlRealVector rangeValues;
rangeValues.pushBack(1.0%var);
rangeValues.pushBack(0.0);
rangeValues.pushBack(0.0);
rangeValues.pushBack(0.0);
/I set the values
acv.setDomainValues(domainValues);
acv.setRangeValues(rangeValues);
// calculate the random array
EcRandomTensorTool tool;
tool.setRandomSeed(400);
tool.setNumRandomSamples(500);
EcReal mean=0.0;
tool.getGaussianRandomArray(
randomArray,width,height,acv,20.0,mean);

In one embodiment, the movement of the robotic hard-
ware is rendered at least on one of a computer screen and a

10

15

20

25

30

35

40

45

50

55

60

20

handheld electronic device. For example, DPS process 10
may render the robotic hardware (e.g., robotic device 54),
during a simulation, which results in a digital proxy simu-
lation (e.g., proxy 304). It is understood that rendering is the
process of generating images from a model through com-
puter programs and processes. The rendering of the robotic
hardware (e.g., robotic device 54) may be performed and/or
shown in 2D or 3D on a computer (or computer screen)
and/or a handheld electronic device. A rendering device may
be a computer or a graphic processing units (GPU). A GPU
is known as a specialized electronic circuit, designed to
rapidly manipulate and alter memory to accelerate the
creation of images in a frame buffer intended for output to
a display. In general, a GPU is a purpose built device able
to assist a central processing unit (CPU) in performing
complex rendering calculations. DPS process 10 may allow
auser (e.g., Users 36, 38, 40, or 42) to perform the rendering
of the robotic hardware (e.g., robotic device 54). DPS
process 10, may present the rendered images of the robotic
hardware (e.g., robotic device 54) onto a user’s device (e.g.,
client electronic devices 28, 30, 32, 34).

In one embodiment, the environment simulation includes,
at least in part, a terrain simulation and an interaction with
the robotic hardware. For example, for simulating the
robotic hardware (e.g., NASA K10 robot), multiple simula-
tion methods may be used, across a variety of scenarios and
levels of fidelity. It is understood that the above may utilize
an example of development of fast models for real-time
application on wheeled vehicles (e.g., the NASA K10 robot)
using the tools available in Actin Toolkit and that other
examples of models may be used.

In one embodiment, all the force processors used in the
simulation may inherit from EcBaseLinkInteractions. A
vector of link interactions (EcLinklInteractionsVector) may
be traversed in EcDynamicSimulatorSystem at the time step
specified for the dynamic simulator system. If a new force
processor is developed it may need only to subclass
EcBaseLinkInteractions, and may be registered with the
EcLinkInteractions Vector.

In one embodiment, a linear spring model may be
extended to a nonlinear spring. In this model, the viscous, or
damping, force may be proportional to the penetration depth,
as shown in the formula:

S=dk,—ky), (15)

Where d is the penetration depth, k, and k,, are surface
property constants, and v is the normal velocity.

In one embodiment, methods may be tailored to wheeled
motion, with a focus on dry friction. These may be based on
a breaking spring model of interaction and recent develop-
ments in modeling friction through time-stepped simulation.

For illustration purposes, let two interacting surfaces be
labeled A and B, as shown in FIG. 13, which is a one-
dimensional example where object A may move horizontally
relative to object B. The normal force applied by surface B
on surface A is f,. The horizontal location of the block is
represented through x; the external horizontal force applied
to the block is f,, and the friction force applied to the block
is f,. The traditional coeflicients of static and kinetic friction
are L and L, respectively. The mass of the block is m.

The Coulomb friction model may give the following
constraints:

JRuf; when X=0, (16)

f~-sign(®)f; when £#0, an

US 10,078,712 B2

21

Along with the constraint that friction can do no work:

£#=0. (18)

In one embodiment, the use of a model may be extended
wherein the coefficient of kinetic friction may be moderated
by a weighting function that may decrease the friction force
as the tangential velocity approaches zero. In kinetic mode,
in the new code, the friction may be calculated as

Jsign@)wE) 19

Where w(*) is the weighting function.

In the static friction state, the friction force may be
represented using a spring-damper response. The spring and
damper parameters are k; and Ag. Both of these may be
strictly nonnegative. The force may then be calculated as
follows in static mode:

S hg (20)
The transfer function for this system is
1 e
X _ m
Fe s2 + E5 + ks
m
Let Ag be calculated as
r=2mVE, 22)

Where m is the estimate of m. With this value, the
response may be critically damped when m=m. The damp-
ing factor, T, is given by

@23

B

The settling time for an underdamped system may be
inversely proportional to the damping factor.

In one embodiment, each object in the proxy simulation
may have its own reference frame, called the Primary
Frame. For interaction of three-dimensional objects, the
situation may be illustrated in FI1G. 14, which shows that for
two intersecting 3D objects, such as a wheel and a rock, the
midpoint between the deepest intersection points is repre-

sented in both primary frames as 3 4 and 33. The contact
point may be the spatial point midway between the deepest
intersections of the two objects, such as a wheel and a rock.
The location of this point as represented in the two object

primary frames is given by 3 4 and 3 5 The normal ng_, , is
a unit vector along the axis defined by the two intersection
points.

For calculating the friction between the two objects, the
locations of the contact point in the two reference frames

(3/1 and 33) may be saved as OﬁA and 033. This is
illustrated in FIG. 15, which shows that for two intersecting
3D objects, the midpoint between the deepest intersection
points is represented in both primary frames and this rep-
resentation moves as the objects move. As the two objects
move, this point moves distinctly for the two objects, staying
constant in each object’s primary frame. The location of the
point is stored for the first time step that is part of a
static-friction mode.

10

15

20

25

30

35

40

45

50

55

60

65

22

The following quantities may be saved each from the first
occurrence of a static mode:
The locations of the contact points in primary frame

coordinates, as p, and p op, and ,p 5.

Frame A represented in frame B, ®T .

The general velocity of frame A with respect to frame B,
v,

Additionally/alternatively, to the method presented above,
a more advanced terrain simulation methods for use spe-
cifically with the K10 and similar robots may be designed
and specified as follows.

In one embodiment, to model interaction between rigid
wheel and soil, Bekker theory may be used. The inputs may
be the sinkage, the slip ratio, and the slip angle. Given these
inputs, this component then may computes the drawbar pull
(F,), the side force (F,), the vertical force (F_), and the wheel
moment (M,,) using the following equations.

or . (24)
F.=rb (1.(8)cost — o(B)sind) 4O
br
or (25)
F,= f (rbry(0) + Ry, (r — z(8)cosh)) d0
br
ﬁf . (26)
F,=rb (1+(8)sinf + a(B)cost) dO
br
@n

M, = rzbﬁfrx(e)de
6,

»

Additionally/alternatively, the force calculations may
depend on soil characteristics such as cohesion, internal
friction angle, cohesive modulus, frictional modulus, shear
deformation modulus, sinkage component, and sinkage
ratio, and these soil characteristics may be added as part of
the surface properties.

In one embodiment, the operator might not know during
execution of DPS process 10 whether the robot is real or
simulated. For example, DPS process 10, may allow for a
switch between the digital proxy simulation (e.g., proxy
304), and the robotic hardware (e.g., robotic device 54), such
that it may not be necessary for an operator (e.g., User 36
and/or User 38) to perform additional tasks when switching
between the physical hardware and a digital simulation. In
that case, an operator may be only concerned with the result
of an operation without necessarily being concerned with
whether the object of the operation is the actual robotic
hardware (e.g., robotic device 54). In whole or in the digital
proxy simulation (e.g., proxy 304).

Additionally/alternatively, DPS process 10, may perform
recently and using a virtual switch (e.g., switch 306) that
exists between the robotic hardware (e.g., robotic device 54)
in the digital proxy simulation (e.g., proxy 304). For
example, an operator (e.g., User 36 and/or User 38) may
operate either the physical robotic hardware (e.g., robotic
device 54) or the digital proxy simulation (e.g., proxy 304)
by utilizing a virtual switch (e.g., switch 306). This may be
achieved because, as explained above, both the physical
robotic hardware (e.g., robotic device 54), and the digital
proxy simulation (e.g., proxy 304) may share the same
network interface.

In one embodiment, the sensor simulation includes, at
least in part, a camera simulation provided using GPU
real-time rendering with a noise model and a lidar simula-
tion provided using GPU real-time rendering with a noise

US 10,078,712 B2

23

model. For example, a lidar sensor may be part of standard
equipment on a robotic hardware (e.g., NASA K10 robot).
Typically, it may be used to capture a 2.5-D image of a scene
by sending out thousands of laser pulses and using time-of-
flight calculations to determine the distance to the first
reflecting surface in the scene. Synthetic lidar scanners may
be necessary for simulation purposes. Assuming that a 3D
model of a scene exists, one may simulate lidar scan results
by casting rays on to the scene and measuring the distances
of the intersecting points.

In one embodiment, the lidar scanner equipped on robotic
hardware (e.g., NASA K10 robot) may be, for example, an
ILRIS-3D scanner from Optech. It is understood that this is
only an example, and other lidar scanners may be used.
Based on information from its web site, the specifications of
the ILRIS-3D scanner are listed in the following table.

TABLE 3

Specifications of ILRIS-3D scanner.

Performance

3 m-1,500 m to an 80%
target

3 m-800 m to an 20%
target

3 m-350 m to an 4% target
2,500 points per second

Dynamic scanning range

Data sampling rate (actual
measurement rate)

Beam divergence 0.00974°
Minimum spot step (X and Y axis) 0.00115°

Raw range accuracy 7 mm @ 100 m
Raw positional accuracy 8 mm @ 100 m
Laser wavelength 1,500 nm
Scanner field of view (ILRIS-3D) 40° x 40°

Considerations

In one embodiment, Ray-casting may be used. Ray-
casting may be a straightforward way to simulate the inner
workings of lidar scanners. Rays may be cast from the
scanner’s origin. When a ray hits (intersects) a surface of an
object in the scene, the intersection point and the distance
from the scanner’s origin to that point may be stored. The
scan results may be collected by casting rays in a rectangle-
patterned grid within the operating (vertical and horizontal)
fields of view (FOV) and computing the distances and
intersection points for all those rays. FIG. 16 may depict the
grid of intersection points if the rays are cast on a planar
object. It may also label the scan points in the order of
acquisition of those points. FIGS. 17 and 18 show the
vertical and horizontal fields of view, respectively. The
central sphere, where the lines project from, denotes the
lidar scanner’s origin. The min and max FOV angles need
not be equal.

Synthetic lidar scanners may be simulated by casting one
ray at a time until the entire grid is covered. However, this
approach may be slow, especially with high numbers of rays,
as the computation time grows approximately linearly with
the total number of rays (scan points).

Additionally/alternatively, OpenGL may be used to simu-
late lidar scanners. The main advantage of OpenGL is speed,
as the computation can be done on the Graphics Processing
Unit (GPU), rather than on a CPU, which is highly opti-
mized and highly parallelized for graphical applications. As
will later be shown below, OpenGL may be more than two
orders of magnitude faster than a non-OpenGL solution. A
concern may be that OpenGL would be challenged in
modeling accurate distances over large ranges (3-350 m for
the Optech lidar). However, most modern (low- and mid-
end) GPUs may support 24-bit depth buffer. Some high-end
GPUs may even support a 32-bit depth buffer. The analysis

10

20

25

30

35

40

45

50

55

60

65

24

given below may show that OpenGL with 24-bit depth
buffer may be adequate to model the lidar data of the robotic
hardware (e.g., the NASA K10 robot).

In one embodiment, the lidar simulation may be per-
formed using a depth buffer technique for measuring dis-
tances. For example, the depth buffer (also known as z-buf-
fer) may be used in OpenGL to resolve the distance between
two nearby objects to determine which objects may be
hidden behind which others. Because the z-buffer may deal
directly with distances, it may be almost directly applicable
for simulating lidar scanners.

The near and far clipping planes may be the planes
defining what objects may be rendered in the scene. Only the
objects located between the two planes may be rendered.
zNear and zFar are the distances from the eye to the near and
far clipping planes, respectively. For synthetic lidar scan-
ners, zNear and zFar can be thought of as the minimum and
maximum range values of the scanners.

The z-buffer may be nonlinear. The actual number stored
in the z-buffer memory may be expressed in terms of the
distance to the object as:

Z=(2N—1)-(a+§], 28)

Where N is the number of bits of Z precision, d is the
distance from the eye (sensor) to the object, and

Far
a= (zFar — zNear)

B zFar- zNear
- (zNear — zFar)

Note that z must be an integer so the value obtained from
the above equation (28) will be rounded down. From the
equation, one can observe that z trends inversely propor-
tional to d, and hence the precision may be better for objects
closer to the eyepoint than those farther away. This recip-
rocal behavior may be useful because objects that are close
to the eyepoint may be needed to be rendered in great detail.
However, this may also mean that distances far from the
eyepoint may not be adequately discerned. Therefore, the
smallest resolvable separation distance or resolution must be
determined to ensure that the precision from the z-buffer is
adequate for the application. To determine the resolution,
denote two successive z values with z, and z, and the
distances at those z values be d; and d,. That is,

=" —1)-(a+ d%)
b
=N~ yefasr 2
a=0"-1-(a+7)
Differencing z, and z, and setting it to unity, results in
z)
&

b
— =1= N _ | —
2-2=1=2"-D (d

Let d=d,—d, be the smallest discernable distance. Rear-
ranging the above equation yields

US 10,078,712 B2

25

d? 29)

2" -1

_ didr

" — Db

At d=350 m, zNear=3 m, and zFar=350 m, using the
above equation, the resolution for 24-bit z-buffer is
0.002413 (or 2.4 mm). Compare this with the raw range
accuracy of 7 mm at 100 m in the specifications table and the
fact that the range data in the IDL is 16-bit integers (which
translates to 5.34 mm discretization over 350 m range if
linear). Based on this analysis the OpenGL depth buffer
approach may be adequate for most anticipated purposes
even when using only 24 bits.

Simulation with the Depth Buffer

Not only the fact that the depth buffer measures the
distances lends itself nicely to simulating lidar scanners—
other aspects of OpenGL do as well. In OpenGL, a 3D
perspective view of a scene by creating a frustum may be
created. This is shown in FIG. 19, which shows the Frustum
(volume between the near and far clipping planes) and depth
buffer can be used simulate lidar scanners). Anything inside
the frustum will be rendered. Creating the right frustum may
result in almost directly using the distances returned by the
depth buffer as the distances for the synthetic lidar scanner.
The right frustum may have the following properties:

The eyepoint is at the scanner’s origin.

The near and far clipping planes are at the min and max
ranges.

The frustum has the same horizontal and vertical FOVs as
the scanner.

The frustum has the same number of (horizontal and
vertical) pixels as the number of scan points.

AR (30)

Tz-a¥ -1

The distance obtained from equation (30) may be mea-
sured perpendicular to the near clipping plane. If used
directly as the scanner distance, it may cause hemispherical
distortion; i.e., it may cause the points on a plane to look as
if they were on a hemispherical surface. This phenomenon
is illustrated in FIG. 20, which shows a Point cloud with
hemispherical distortion. Notice that the left side of the
Humvee in the point cloud appears curved.

To correct for this distortion, the ratio between the dis-
tance at each scan point on the near clipping plane and the
normal distance must be computed. This ratio is called the
stretch factor and is given by

dNear;

= =

zNear

tanz(O;) + tan2(¢;) +1

where 0, and ¢, are the horizontal and vertical angles of
ray i, respectively. FIG. 21, shows the quantities that may be
involved in computing the stretch factor.

The stretch factor may be then multiplied with the dis-
tance in equation (3) to yield the distortion-corrected dis-
tance given below.

_ b2V —1)-5; (31

T n—alv oD

FIG. 22, shows the results with distortion corrected dis-
tance obtained with equation (31) of the same Humvee.
Notice that the left side of the vehicle is now straight, as
expected.

10

15

25

30

35

40

45

50

55

60

65

26

In one embodiment, the noise model may include, at least
in part, a longitudinal and an orthogonal noise types. Lon-
gitudinal noise may represent the uncertainties in the dis-
tances along the rays. This noise may affect the range
accuracy. Orthogonal noise may correspond to the uncer-
tainties in the directions of the rays, which may affect the
position accuracy. In the digital proxy simulation, both of
these may be modeled as the Gaussian distributions with
zero mean. Each may have its own variance (standard
deviation). Longitudinal noise may be included by simply
adding the normal random length to each distance of each
ray. For orthogonal noise, a vector with random length and
direction (with the constraint that it be orthogonal to the ray
direction) may be added to the intersection point.

In one embodiment, the depth buffer approach described
above may be implemented in a C++ class named EcLidar-
RangeSensor. Some methods of this class are listed and
described in the following table. Note that each of the first
nine methods also has an associated set method to set those
properties.

TABLE 4

Selected methods of EcLidarRangeSensor.

Method Description
label() The label (identifier) of the sensor.
range() The range values (min/max) of the sensor.

verticalFieldOfView()
horizontalFieldOfView ()

numVerticalScanPoints()

The min/max vertical field of view angles.
The min/max horizontal field of view angles.
The number of scan points in the
vertical direction.
numHorizontalScanPoints () The number of scan points in the

horizontal direction.
rangeVariance() The variance of the longitudinal noise.
positionVariance()

linkAttachment()

The variance of the orthogonal noise.

Specifies how the sensor is attached to a
robot.

init()

performScan()

Initializes the sensor with a stated system.
Performs a scan. The input is the state.
scanResults() Returns the scan results of a prior call to

performScan().

EcLidarPoint may be a struct that may store the informa-
tion about the acquisition of a single scan point. It may
contain:

The coordinates of the intersection point (the point at
which the ray intersects an object in the scene) in the
form of an EcVector.

The distance from the sensor’s origin to the intersection
point in the form of a double.

A Boolean flag indicating whether the ray hits any object
in the scene.

The scan results may be simply a vector of EcLidarPoint
objects (which is typedefed to EcLidarPointVector) for all
the scan points of the sensor.

The example code below, which is an example of software
code that may be used to implement an embodiment of the
disclosure, using this capability is given in the text box
below, which shows a code snippet showing how to create
and use the synthetic lidar sensor.

US 10,078,712 B2

27

28

// create a scene with a sphere
EcIndividualManipulator manip;
EcIndividualManipulatorVector manips;
EcSphere sphere;
sphere.setRadius(1.0);
manip.setFromShape(sphere);
manip.setLabel(“spherel”);
manips.pushBack(manip);

// add a manipulator to mount the sensor on
sphere.setRadius(0.1);
manip.setFromShape(sphere);
manip.setLabel(“sensorManip”);
manips.pushBack(manip);
EcManipulatorSystem system;
system.setManipulators(manips);
statedSys.setFromSystem(system);

// move the sphere

state=stated Sys.state();

state.positionStates() [0].coordSysXForm().setTranslation(EcVector(50,0,0));

state.positionStates() [1].coordSysXForm().setTranslation(EcVector(—

0.1,0,0));

statedSys.setState(state);

const EcU32 numScanPoints = 100;

// create a synthetic lidar sensor
EcLinkAttachment link Att;
linkAtt.setManipulatorIndex(1);
linkAtt.setLinkIdentifier(“sensorManip”);
EcCoordinateSystemTransformation frame;
frame.setTranslation(EcVector(0.1,0,0));
link Att.setFrame(frame);
EcLidarRangeSensor lidar;

lidar.setLink Attachment(link Att);
lidar.setRange(EcXmlRealRealPair(3.0, 350.0));

lidar.setHorizontalFieldOfView(EcXmlRealRealPair(-20*EcDEG2RAD,

20*EcDEG2RAD));

lidar.setVerticalFieldOfView(EcXmlRealRealPair(-20*EcDEG2RAD,

20*EcDEG2RAD));

lidar.setNumHorizontal ScanPoints(numScanPoints);
lidar.setNumVertical ScanPoints(numScanPoints);
lidar.setRangeVariance(0.007);
lidar.setPositionVariance(0.008);

// initialize with the stated system
lidar.init(&statedSys);

// perform a scan with the state
lidar.performScan(state);

// obtain the scan results

const EcLidarPointVector& scanResults = lidar.scanResults();

In some embodiments, the synthetic lidar sensor imple-
mented above may be tested in different scenarios to ensure
that the accuracy and performance are satisfactory and the
noise models work as expected. Some of the tests to be
performed may be an accuracy test, a performance test,
and/or a noise test. It is understood that the above are only
examples and other tests may be performed.

Accuracy Test

In an accuracy test, a sphere with a radius of 1.0 m may
be placed at varying distances from the sensor’s origin to
determine how the distance may affect the accuracy of the
synthetic lidar sensor. The sensor properties may be set as
listed below. Note that the numbers of scan vertical and
horizontal scan points need to be odd so that there is one ray
(the center one) that will be cast directly perpendicular to the
near clipping plane.

Range: 3-350 m

Vertical FOV: £2°

Horizontal FOV: £2°

Vertical scan points: 21

Horizontal scan points: 21

Table lists the errors and expected errors (derived from
equation (2)) at various distances. The results may confirm
that the OpenGL approach may be adequate as far as
accuracy is concerned.

45

50

55

60

65

TABLE 5

Errors at varying distances.

Ideal Simulated lidar Expected
Location Distance Distance Error Error
5 4 4 0 4.92e-7
20 19 19 0 7.88e-6
100 99 99 0 1.97e-4
200 199 199 0 7.88e-4
300 299 298.998 0.002 0.00177
350 349 349.001 0.001 0.00241

Performance Test

Since the OpenGL approach was chosen primarily due to
its speed, it is essential that this decision was justified with
quantifiable results. The performance of the depth buffer
approach may be compared with the straightforward inter-
section approach. For intersection calculations, a standard
OpenSceneGraph intersection method (osgViewer::View::
compute Intersections) may be used. The tests may be
conducted on a computer with the following specifications:

CPU: AMD Phenom II X4 945 3.00 GHz

RAM: 8 GB

OS: Windows 7 64-bit

GPU: ATI Radeon HD 4650

US 10,078,712 B2

29

The sensor properties may be set as follows:

Range: 3-350 m

Vertical FOV: £20°

Horizontal FOV: £20°

it is understood that the above are only examples and
other computers with other specifications may be used as
well as other sensor properties.

The Humvee model shown in FIG. 23 may be used for
these performance tests. FIG. 23 shows the Humvee model
as used in the performance tests and the point cloud from the
synthetic sensor.

As can be seen from the table below, the depth buffer
approach may be significantly faster than the intersection
approach. The performance difference also may grow as the
number of scan points increases. For a 90x90 grid, the depth
buffer approach may be more than 300 times faster than the
intersection approach.

TABLE 1

IDLs included in PoseEstimator.idl.

Avg. scan time (s): Avg. scan time (s):

Number of Intersection Depth buffer

scan points approach approach Ratio

225 (15 x 15) 0.0410 0.00098 41.8

900 (30 x 30) 0.1246 0.00118 105.6
3600 (60 x 60) 0.4611 0.00202 2283
8100 (90 x 90) 1.0242 0.00334 306.7

In these simulations, the effects of simulated noise may be
visualized. The same Humvee model may be used and the
sensor properties may be the same as in the performance
tests, except that both the number of vertical and horizontal
scan points may be set to 100. FIGS. 24(a) and 24(b) show
the scan results with varying noise characteristics. In FIG.
24(a), there is no noise (perfect sensor). In FIG. 24(5), the
variances from the ILRIS-3D scanner are used.

In one embodiment, the simulation of a robotic hardware
(e.g., NASA K10 robot) was used for observation, with the
following sensor properties:

Range: 3-350 m

Vertical FOV: £20°

Horizontal FOV: £20°

Vertical scan points: 100

Horizontal scan points: 100

FIG. 25 shows the K10 model and the resulting synthetic
scan.

In one embodiment, DPS process 10, may provide for
digitally simulating any number of cameras that may be
rigidly attached with any position and any orientation to any
link on the robot. Additionally/alternatively, each camera
may be assigned any field of view and any size in pixels.
Noise models may also be added to the cameras to simulate
realism. A dialogue box for configuring cameras may be
used. It is understood that the other means for configuring
the cameras may also be used in the above is only an
example.

As explained above, communication services may be used
for the exchange between the robotic hardware (e.g., robotic
device 54), and digital proxy simulation (e.g., proxy 304).
Interfaces may be defined using Interface Description Lan-
guage (IDL). It is understood that IDLs may define the
interfaces for CORBA services. The IDL compiler may
create stub code for the client and skeleton code for the
server. The following may describe the IDL. files for the Pose
Estimator, Navigator, and Locomotor.

10

15

20

25

30

35

40

45

50

55

60

65

30

In one embodiment, the pose estimator interface may be
defined in PoseEstimator.idl. The following table describes
the IDLs included in PoseEstimator.idl.

TABLE 7

IDLs included in PoseEstimator.idl

IDL Description

Pose2dEstimator.idl This is a definition of an interface that is inherited
by PoseEstimator.

SPoseEstimator.idl Structure type definition for a pose and covari-

ance.
The pose is defined by Location.idl as three
positions and roll, pitch, and yaw. It also defines
a 2D location as two positions and a heading.
Location.idl includes BaseTypes.idl which defines
basic types. BaseTypes.idl includes

TimeBase.idl which is a TAO CosTime

service for managing time across all the services.

PoseEstimator may inherit from Pose2dEstimator. The
following table may describe the IDLs included in
Pose2dEstimator.idl.

TABLE 8

IDLs included in Pose2dEstimator.idl.

IDL Description

This is a definition of an interface that is inherited
by Pose2dEstimator.idl.

Described above.

Describes the exceptions available to services.
Pose2dEstimator uses ENotSupported,
EUnknownName, and ETimeout.

Sensor.idl

Location.idl
Exception.idl

Sensor.idl may be the base interface for all sensors, and it
may include the IDLs in the following table.

TABLE 9

IDLs included in Sensor.idl.

IDL Description

Entity.idl This is a definition of an interface that is inherited by Sen-

o

Sensor may inherit from Entity, which may be the base
interface for all robot interfaces. It may contain a unique
name and a property list, and it may include the IDLs in the
following table.

TABLE 10

IDLs included in Entity.idl.

IDL Description

BaseTypes.idl BaseTypes defines the basic types. BaseTypes.idl includes
TimeBase.idl which is a TAO CosTime service for

managing time across all the services.

The overall inheritance hierarchy of PoseEstimator is
shown in FIG. 26.

The IDL generator may create thirteen abstract methods
that may be defined in the table below. The getPose()method
may be used by robot user interface (e.g., VERVE) to get the
pose. For illustrative purposes, the VERVE robot user inter-
face may be referenced as an example. As explained above,
VERVE may refer to the Java-based front end used by
NASA to display the robot telemetry.

US 10,078,712 B2

31
TABLE 11

Abstract methods generated by IDL compiler.

Method IDL definition
virtual char * name (); Entity
virtual ::griz:PropertySeq * properties (); Entity
virtual char * associatedFrame (); Sensor
virtual char * referenceFrame (); Sensor

virtual ::CORBA::Boolean useOdometryProcessModel (); Pose2dEstimator

virtual ::CORBA::Boolean resetable (); Pose2dEstimator
virtual void reset (); Pose2dEstimator
virtual ::CORBA::Boolean init(); Pose2dEstimator
virtual void setReferenceFrame (); Pose2dEstimator
virtual ::gri::SPose2DEstimate getPose2d (); Pose2dEstimator
virtual ::gri::SPose2DEstimate getWaitPose2d (); Pose2dEstimator
virtual ::gri::SPoseEstimate getPose(); PoseEstimator

virtual ::gri::SPoseFEstimate getWaitPose (); PoseEstimator

The navigator interface may be defined in Navigator.idl.
The following table may describe the IDLs included in
Navigator.idl.

TABLE 12

IDLs included in Navigator.idl.

IDL Description

Subsystem.idl This is the definition for a generic interface for a
robot subsystem. It is inherited by Navigator.
Navigator status

Generic waypoint definition

Basic type definitions

SNavGoal.idl
Waypoint.idl
BaseTypes.idl

Navigator may inherit from Subsystem. The following
table may describe the IDLs included in Subsystem.idl.

TABLE 13

IDLs included in Subsystem.idl.

IDL Description

This is a definition of an interface that is inherited
by Sensor.

Describes the exceptions available to services.
Subsystem uses ENotSupported, EFailure, EBusy,
EFailure, ETimeout, and Elnterrupted.

Entity.idl

Exceptions.idl

Subsystem may inherit from Entity, which may be the
base interface for all robot interfaces. It may contain a
unique name and a property list, and may include the IDLs
defined in Table 8 above. The overall inheritance hierarchy
of Navigator is shown in FIG. 27.

The interface for the rover locomotor subsystem may be
defined in Locomotor.idl. The following table may describe
the IDLs included in Locomotor.idl.

TABLE 14

IDLs included in Locomotor.idl.

IDL Description

Subsystem.idl This is the definition for a generic interface for a robot
subsystem. It is inherited by Locomotor.

Location is defined as three positions and roll, pitch, and
yaw.

It also defines a 2D location as two positions and a heading.
Location.idl includes BaseTypes.idl which defines basic

Location.idl

types.
BaseTypes.idl includes TimeBase.idl which is a TAO
CosTime service for managing time across all the services.

15

20

25

30

35

40

45

55

60

32

The overall inheritance hierarchy of Locomotor may be
shown in FIG. 28.

For illustrative purposes, and referring to FIG. 29, which
shows a simplified view of the Rover (e.g., NASA K10
robot) software architecture. For example, the K10 robot
may be controlled through the Locomotor service which
may be controlled by polling from the Locomotor Control
client. Most of the other services may interact with robot
user interface (e.g., VERVE) using a publish/subscribe
approach that may be facilitated by the Notify Service. In
one embodiment, the following services may be imple-
mented: Pose Estimator, Motor Group, Camera, and Laser
Scanner. Referring to FIG. 30, which shows the modified
architecture for proxy simulation. The dynamic simulation
may supply the proxy data to the services may be is
displayed in VERVE. The Naming and Notify services may
be standard CORBA services. The Naming service may
enable other services to be found across networks and the
Notify service may enable the publish/subscribe mechanism
for event-driven communication. It is understood that the
above are only examples and other services may be used.

As explained above, NASA robots and tools are used in
this disclosure for illustrative purposes, applicability to other
robotic systems and tools may be achieved. In one embodi-
ment, NASA tools in the form of a Red Hat x86 virtual
machine image containing roversw source code were used.
In order to understand the process required for communi-
cating with the NASA tools, the roversw source code may be
copied from the virtual machine image onto a computer
machine (e.g., Kubuntu 10.04 amd64 machine) with the
purpose of compiling the code natively. Building on
Kubuntu may require two tasks: obtaining the necessary
third-party library dependencies, and building on the target
platform. Once these tasks were complete, an effort may be
made to port the necessary pieces of roversw to Windows.

In an embodiment, Python script for building third-party
libraries from source code may be maintained. This script
may allow the exact build configuration of each dependency
library to be revision controlled, and it may provide consis-
tency across a variety of platforms. Additionally, this script
may ease the transition to new platforms by simplifying the
process of providing native third-party library builds. To
enable integration with the NASA software, each third-party
library may have a separate Python module that may detail
its build configuration and build process. The following
table shows some of the libraries supported by the new build
scripts. Some of the Python scripts may support building
packages on the following platforms: Visual Studio 2005,
Visual Studio 2008, Mac OSX, Linux x86, and Linux
amd64. The majority of packages may be supported on all of
the platforms; however, some packages may only be sup-
ported for a subset of the platforms.

TABLE 15

Third-party library modules supported by Energid’s build scripts.

ACE + TAO eigen jsoncpp OpenCV Qt

Atlas fimpeg libde1394 OpenVRML QtPropertyEditor
Boost fitk libjpeg 0SG Qwt

bzip2 freetypel libpng osgEphemeris Tiff

Clapack freetype2 libraw1394 pere Tinyxml
collada-dom gdal libungif proj4 Vxl

Curl gsl libxml2 Qhull Zlib

Additionally/alternatively, Roversw may also be compat-
ible with other operating systems, such as Kubuntu. For

US 10,078,712 B2

33

example, Kubuntu 10.04 uses gcc version 4.4.3. Addition-
ally some of the third-party library dependencies built in the
previous step may have different versions than are being
used in the Red Hat virtual machine image. For instance,
ACE+TAO version 5.7.8, Boost version 1.41, and Qt version
4.6.2 may be used. It is understood that the above are only
examples and other systems may be applicable.

In one embodiment, Roversw may be ported to Windows.
For example, in this case, Miro may be required in addition
to the third-party library dependencies was Miro. Porting
Miro to compile with Visual Studio 2005 and 2008 may
require the renaming of a source and header file within the
Miro project. The renaming may avoid a conflict with a
system header named io.h.

In one embodiment, the Energid Actin toolkit may be
integrated with third-party tools (e.g., NASA tools), which
may require using a plug-in framework. Specifically, the
following services may be implemented as plugins: notifi-
cation service, pose estimator service, motor group service,
image sender service, and lidar service.

In one embodiment, a separate Miro::Server process may
be created for each unique robot naming context. The
multiple processes involved may imply the need for inter-
process communication. The responsibilities of each service
plugin may be as follows:

Start interprocess communication for each robot.

Start the separate Miro::Server process for each robot.

Communicate status updates via interprocess communi-
cation to each robot.

Stop the separate Miro::Server process for each robot.

Stop interprocess communication for each robot.

The plugins may implement three methods: init, update,
and reset. The init method may be called when the plugin is
first loaded. The update method may be called at each time
step during the simulation loop. The reset method may be
called whenever a new simulation is loaded. FIG. 31 shows
a graphical representation of a plugin design. For example,
the service plugins may be configured through an XML file,
EcK10ProxySimConfiguration.xml. This file may contain
the naming service IOR and event channel name in addition
to a coordinate system transformation and a robot-name-to-
manipulator-index mapping. The pose estimator service
plugin may update every 50 ms. At each update, the plugin
may transform and send the position state of each manipu-
lator to the shared memory segment associated with the
appropriate robot naming context.

In one embodiment, the proxy simulation of multiple
robots by using one dynamic simulation may be enabled as
shown in FIG. 32. Use of one simulation may simplify the
simulated interaction of the proxy robots with each other and
the environment but may have the drawback of placing the
computational burden on one processor.

In another embodiment, and referring to FIG. 33, the use
of multiple simulations to multi-process the simulation may
be achieved for simulating one or more K1 Os (e.g., robots,
K10Black and KI10Red, K10Blue, K10Orange, and
K10Purple), in one simulation and sharing the state with
other simulations. This may be an extension of the control-
ler/responder networking mode that Actin supports.

In one embodiment, the proxy simulation software may
be developed as an object-oriented toolkit. The hundreds of
classes that may used in the development of DPS process 10
software may be organized and compiled into libraries that
developers may use to create new software. A developer may
subclass from one of the classes available in the toolkit and
change it to suit a new purpose. It is understood that in such
a large programming effort, the developer may adhere to

20

25

30

40

45

34

consistent software coding standards. Additional standards
may be needed to ensure the source code will build under
Windows, Linux, and Mac OS.

In some embodiments, it may be useful to adhere to the
following C++ coding standards.

To minimize conflicts with other third-party code (e.g.,
NASA code) that may be linked to the simulation code,
values with global scope may be prefixed with the letters
“Ec”. This may include class names, macros, and utility
functions.

Classes may include implementation of the “big four”
methods: the constructor, the destructor, the copy construc-
tor, and the equal operator. The copy constructor and equal
operator will be deep (e.g., the contents of a pointer are
copied, not the pointer value itself) except where noted in
the class documentation and header files. If any of the big
four are not implemented, they may be protected in the
header file.

All classes that can be read or written as XML may have
a clone() operator. This is also called a virtual constructor—
it may return a new’ed copy of itself as a pointer of its
appropriate base class. Clone methods will make a deep
copy to allow objects to be used as prototypes. Most classes
may also implement operator==() for testing.

All member functions besides constructors and destruc-
tors may begin with a lower-case letter and use the camel-
hump style, with each word in the name beginning with a
capital, for example, printResults().

All member variables may begin with the prefix “m_",
followed by a capital letter if the variable represents a
member object or basic type. For example, m_Range.

Static member variables may begin with the prefix
“m_the”. For example, m_theCount. Class names will begin
with the prefix “Ec” followed by a capital and use the
camel-hump style. For example, EcPolygonRootFinder.

Accessors may use const type& variableName() or
getVariableName(const type& var). Mutators may use set-
VariableName(const type& var). (Basic types, like int and
double, may be passed by value, but objects will be passed
by reference.)

In some embodiments, a member variables may be pro-
tected, where no variables or methods may be private. This
may provide third-party developers (e.g., NASA’s develop-
ers) and contractors more flexibility when subclassing.
Whenever there is a chance a method might be correctly
called within another object, it may be declared public, even
if not used in a public manner in the toolkit code.

Member functions as a rule may be declared virtual. This
may provide maximum flexibility in subclassing. A few
special, basic classes may be nonvirtual to improve runtime
performance.

All member functions that do not modify member data
may be declared const. It may be appropriate to have both
const and nonconst versions of a method, such as when
returning const and nonconst pointers or references. Acces-
sors that return member variables may return const refer-
ences. Mutators may pass const references. Static member
variables that are not basic types (int, double, etc.) may be
const.

Classes may be defined in .h files, with each .h file
defining only one class. This may allow the code to be more
easily understood. The filename may be parallel, but may not
equal, the class name. For example, in some cases, the
filename may be shortened.

Pointers will always be set to 0 when they are not valid.
Member pointer variables are prefixed with “m_p”, for
example m_plmage.

US 10,078,712 B2

35

Objects may be created in virtual factory methods. That is,
“new” may not generally be used outside of methods spe-
cifically for creating objects. Factory methods may be pre-
fixed with “new”. For example, Eclmage™® newlmage(). The
use of factory methods may allow third-party (e.g., NASA)
to subclass an object and replace member variables with
subclassed versions.

In some embodiments, multiple inheritance may not be
used.

In some embodiments, all units may be SI unless the
variable or method name includes the units. For example,
lengthInches would be the length in inches, while length
would be the length in meters.

Macros and macro-like functions may be named starting
with “Ec” followed by upper-case letters.

Filenames for CPP and header files may be the same as the
class names, with “ec” as a prefix. So, “eclJointActuator.h”
may be the filename for class EclointActuator, and
“ecPolygon.h” may be the filename for EcPolygon. In all
cases, filenames may start with a lower-case letter.

Microsoft-specific extensions may be avoided. Though
third-party-specific interfacing code may work only under
Windows or Linux, the core toolkit may be cross-platform.

Exception handling may be avoided in favor of null
pointer return in most cases. This may allow general good
practice (checking pointers) to overlap with error handling
and leads to less cluttered, faster code. There may be three
areas in which exception handling may be used:

When it is required by other (third party) software.

When there is no appropriate return type to flag an error.

When an error condition requires a lot of information or

information that is different from nonexception cases.

The use of friend classes may be avoided. Friendship may
not be inherited, which may complicate reuse.

Additionally/alternatively to the examples discussed
above, several software modules may be implemented, as
will be discussed in greater detail below.

For illustrative purposes, a plugin for dynamically chang-
ing terrain-wheel friction parameters may be implemented
for demonstration, as illustrated below. Referring to FIG. 34,
which shows an exemplary illustration of the terrain-change
plugin, which supports dynamically changing the static and
kinetic friction coefficients for a dry friction model of terrain
interaction. The coefficients may be shown as rendered in
real time and the background color also made change as a
function of the parameters.

In one embodiment, the friction parameters may be
changed either with the s (static decrease), S (static
increase), k (kinetic decrease), or K (kinetic increase) keys.
Additionally/alternatively, the friction parameters may be
changed using sliders on a dialog available through a
left-click menu. A dialog with sliders may allow the coef-
ficients to be changed while the simulation is running. The
values may also be changed using keystrokes.

An illustration of using this software may be given in FIG.
35, which depicts the use of the terrain-change plugin. For
example, there may be two trains with different slopes (e.g.,
terrains 606 and 608). A robotic hardware (e.g. NASA K10
robot), may be moving from terrain 606 to terrain 608,
where the slope of terrain 608 is larger than the slope of
terrain 606. With a static friction coefficient of 0.8, the K10
may stop on the slope. When the static friction is reduced to
0.45, the K10 rolls back down the slope. It is understood that
the above is only an example and other friction coefficients
may be used.

In some embodiment, multi-vehicle simulation may be
achieved. For example DPS process 10, may be capable of

15

20

25

40

45

50

55

65

36

simulating a larger number of simultaneous robots using
different terrain properties in the same simulation. For
example, and referring to FIG. 36, where five robotic
hardware (e.g., K10 robots) lined up on terrain composed of
regions with two different sets of terrain properties. In FIG.
36, five K10s simulation on terrain with two distinct sets of
surface properties, where first terrain (e.g. terrain 706),
property may have kinetic and static friction coefficient of
0.3 and 0.8, respectively, while the second terrain (e.g.
terrain 708), may have kinetic and static friction coefficient
of values of 0.1 and 0.25, respectively.

In one embodiment, and Referring to FIG. 37, each of the
five robots shown in FIG. 36 may be tossed with an initial
velocity of, from left to right, 11, 10, 9, 8, and 7 m/s in the
forward direction. Referring to FIG. 38, there is shown the
results of tossing the five robots with the above velocities.
Those on the high-friction first terrain (e.g., terrain 706)
stop, while those on the low-friction second terrain (e.g.,
terrain 708) roll back down. In other words, on the first
terrain (e.g., terrain 706) with the higher coefficients of
friction, the robots travel up the slope in proportion to their
initial velocities. On the second terrain with lower coeffi-
cients of friction, the robots roll back down the slope.

In another embodiment, DPS process 10, may allow for
the ability to insert obstacles in the scene. For example, a
rock may be added to terrain used in the previous examples,
as seen in FIG. 39. Additionally/alternatively, DPS process
10, may allow through the use of a dialog box to reposition
the an object (e.g., a rock or any object in the scene), such
as, move, raise or lower a rock in the terrain. For example,
and referring to FIG. 40, showing a scenario with the rock
lowered 0.3 m into the terrain. However the rock is moved,
it is treated as stationary and interacts with the robots like the
terrain.

In one embodiment, Axis Aligned Bounding Box (AABB)
may be applied to each link in the rover to enable faster
performance for collision detection and dynamics. If the
AABBs of two links cross, and they are not in an exclusion
mayp, then the collision algorithms may be applied to those
two links. Effort was put into expanding the AABB algo-
rithms to new shapes and into making the AABB code faster.
As a link may be moving and reorienting, the AABBs may
need to be recalculated which may be potentially expensive.
Also, some AABB calculations may be more expensive than
others. For example, the capsule AABB calculation may be
much faster than the ellipsoid AABB calculation.

In one embodiment, for basic distance calculations, the
syntax for the distance calculations may be:

distance=terrain.distance To(xform*shape);

where “shape” may be Box, Capsule, Circularl.ozenge,
Cone, Cylinder, Ellipsoid, HalfSpace, Lozenge, Sphere,
Terrain, Tetrahedron, Triangularl.ozenge, PolyPhysicalEx-
tent, TriPhysicalExtent, and ShapeUnion. “xform” may
transform the shape into the frame of the terrain.

Previously, the following syntax may be used with the
sphere shape as an example.

distance=terrain.distanceTo(xform*
sphere.center()-sphere.radius();

In one embodiment, an approach may be used to provide
more information to the terrain distance algorithm which
may enable a subgrid to be created for reducing the number
of terrain cells needed for the calculation. Previously, every
cell in the terrain was tested for distance which may be
expensive. FIG. 41 illustrates the subgrid for a cylinder and
box. The subgrid (e.g., subgrid 710), shows the cells used in
the calculation.

US 10,078,712 B2

37

For penetration depth calculations, a similar syntax may
be used as follows:

distance=terrain.distanceTo(xform*shape,support-
Pointl supportPoint2);

Where the support points may be the closest points on the
two objects. Subgrids may also be created during the pen-
etration depth calculations.

In one embodiment, a terrain shape may be created to be
fast and flexible. The height field of the shape may be
extended to be used as a general bounding volume. FIG. 42
shows height field bounding volume generation for two
perspectives of the robotic hardware (e.g., NASA K10
robot).

Stereo Camera Simulation

In one embodiment, the general approach taken to simu-
late stereo cameras may be to render images with two virtual
cameras placed in the simulation scene and feed those
synthetic images into a stereo correspondence and 3D repro-
jection algorithm to calculate a depth map. The stereo
correspondence algorithm implemented may be based on the
Global Block Matching and Semi Global Block Matching
algorithms described in the publication by Hirschmuller, H.
(2008), Stereo Processing by Semiglobal Matching and
Mutual Information, PAMI(30), No. 2, pp. 328-341. This
algorithm may find correspondences between blocks of
pixels in the stereo image pair, may calculate the disparity
(or distance) between the corresponding blocks and may
reconstruct the depth value based on the intrinsic and
extrinsic parameters of the stereo camera rig.

The relationship between disparity of corresponding pix-
els and depth into the scene may be given by the following
expression.

7o 4T (32)

Where f is the focal length of the imagers, T is distance
between camera centers, d is the disparity between matching
pixels and Z is the depth.

The stereo camera simulation process may be conducted
as follows:

Stereo rectification: Prior to the start of the simulation the
stereo camera geometry may be selected (spacing and angle
between right and left cameras). Then the orientations of the
two image planes may be corrected to satisfy a coplanar
condition and a lookup table to apply the correction may be
created for each camera. In this process, the mapping
between depth in the scene and image disparity may be
determined.

Image remapping: At each time step of the simulation,
right and left images are rendered and these raw images may
be rectified through the rectification lookup tables.

Image filtering: A user customized chain of image filters
may be then applied to the remapped images. This may
allow the user to tailor the stereo camera simulation to better
match real conditions and real cameras.

Stereo correspondence: The stereo semi-global block
matching algorithm may be then applied to determine the
pixel correspondence between imagers and the resulting
pixel disparity map.

Point cloud reconstruction: The disparity map may be
then used to reconstruct the 3D positions of points mapped
to the corresponding image pixels. This point cloud may
consist of an array of 3D coordinates equal in size to the total
number of pixels in the disparity map. The reconstruction

15

30

35

40

45

50

38

process may be based on the transformation from disparity
to 3D location that was established during the stereo recti-
fication stage.

In one embodiment, The stereo camera simulation func-
tionality may be utilized to create a plugin for the Viewer.
When loaded into the Viewer and activated, the plugin may
bring up the stereo camera management dialog. From this
dialog the user may turn the stereo camera simulator on and
off, may adjust the stereo correspondence parameters, may
control what is being displayed by the plugin, and may
change the position and orientation of the stereo camera.

The stereo correspondence parameters that may be tuned
through the user interface include: Algorithm Preset, SAD
Window size, Number of Disparities, and Minimum Dis-
parity. The algorithm preset may be set to Basic, Narrow,
and Wide angle depending on the type of lens specified for
the cameras. The Sum of Absolute Differences (SAD) win-
dow size determines the size of the sliding window used to
establish stereo correspondence between the images. The
larger the SAD window size is the smoother and less
accurate the disparity map. The maximum number of dis-
parities defines the maximum distance in pixels between
corresponding blocks of the image. The typical number of
disparities for 320 by 240 pixel images used is 32. The
Plugin may be used as follows:

When loaded the Stereo Camera plugin can be controlled
by clicking on a dedicated icon in the tool bar.

This brings up the Stereo Camera simulation management
dialog. Licking on a button for anything the Stereo Camera
may define the key parameters of the stereo camera rig.

A stereo camera modification dialog may appear. From
this dialog the user may define the spacing between cameras,
field of view, number of channels in the images, manipulator
and link to which the stereo camera should be attached. The
offset translation and orientation values may the stereo
camera rig’s position relative to the selected link’s reference
frame.

Checking a checkbox for running the simulation may
begin streaming images from the virtual cameras and pro-
cessing through the stereo block matching algorithm. The
SAD Window size, Number of disparities, and Minimum
disparity value may be adjusted while the simulation is
running to tune the output. The view frustums of the virtual
cameras may be displayed by checking the Show Frustums
checkbox. (Note: that the frustums may be visible to the
virtual cameras and may interfere with the stereo matching
algorithm. The frustums should be turned on only to verify
the placement of the stereo rig.)

For example, the stereo camera simulation plugin may be
tested with DPS process 10 to simulate two rovers exploring
the lunar surface. In this model, the two rovers may be
traversing the surface with one following the other. The
stereo camera of the K10 rover may be simulated in real-
time and the resulting disparity map may be displayed on the
screen. For example, a rendered scene of the two rovers
traversing the surface, where the spacing between the two
imagers may be 15 cm and the resulting fields of view may
be shown with frustums attached to the K10. There may be
two raw images, one on the left and one on the right. The left
and right raw images obtained at a single time step may be
processed in the stereo camera correspondence algorithm to
produce a disparity map.

The disparity map and corresponding point cloud may be
qualitatively well representative of real output from a stereo
camera rig. The impact of selecting the averaging window
size in the block matching algorithm (SAD window size) is
shown in FIGS. 47(a) and 47(b). The window size of 5

US 10,078,712 B2

39

pixels (FIG. 43 (a)) may give higher resolution but also has
more areas where correspondence may be lost and therefore
no depth information could be established. The window size
of 11 pixels (FIG. 43 (b)) may provide a more smooth
disparity map with fewer areas of zero correspondence, but
may suffer a loss in resolution.

Laser Scanner Simulation

In one embodiment, a new laser scanner plugin may
simulate the data returns from a lidar (e.g., Velodyne HDL-
32E LIDAR) used on the robotic hardware (e.g., NASAK10
robot/rover). For example, Velodyne HDL-32E LIDAR unit
may have 32 lasers mounted vertically on a rotating head.
The LIDAR head may rotate at 600 rpm providing angular
resolution of 0.16 degree in the horizontal and 1.33 degrees
in the vertical. The unit may return 700,000 points per
second in the range of 1 to 70 meters from the head with 360
degree horizontal by 40 degree vertical field of view. The
detailed performance specifications are summarized in
Table.

TABLE 16

Performance specification for the Velodyne HDL-32F LIDAR

Parameter Specification
Measurement range 1-70 m
Number of laser/detector pairs 32

Angular velocity 600 rpm

Accuracy <2 cm (one sigma at 25 m)
1.33° (vertical), 0.16° at 600 rpm
(horizontal)

41.3° (vertical), 360° (horizontal)

Angular resolution
Field of View

The approach taken to simulate the Velodyne HDL-32E
may be to use the OpenGL Z-buffer generated by the
graphics card to obtain a representative sample of 3D points
in a 360 degree view around the LIDAR unit. The depth
buffer (also known as z-buffer) may be used in OpenGL to
resolve the distance between two nearby objects to deter-
mine which objects should be hidden behind which others.
For example, to simulate the Velodyne HDIL.-32E efficiently,
the 360 degree scene around the unit may be rendered by a
virtual camera rotated by a set angle at each simulation time
step. Further, the Z-buffer of each rendered frame may be
sampled to obtain the proper number of 3D scan points and
may be plotted in the scene as a 3D point cloud. The
simulation frame rate may be the main constraint for accu-
rate capture of motion effects. The relationship between the
scan rate (Q.,,) of the virtual camera with respect to the
simulation frame rate (r,,,) and actual LIDAR angular
velocity (®,,,) 1s as follows.

Widar(rad/s) (33)

gean(rad/frame) =
Foim(frames/s)

Therefore to achieve the desired scan rate of 10 revolu-
tions per second at a simulation frame rate of 30 Hz, the
virtual camera should scan 120 degrees at each time step.
This may pose a concern for accurate treatment of motion in
the scene since a large portion of the view must be observed
at a single instant in time, whereas the HDL-32E may scan
this zone over a period of 0.03 s with an angular resolution
of 0.16 degrees (750 time steps of 40 micro seconds each).
The difference between the actual and simulated lidar scans
are shown in FIG. 44, which shows the actual and simulated
360 degree LIDAR scan with respect to time.

The motion effects on LIDAR may blur the retrieved point
cloud if the relative motion between scanner and scanned

10

15

20

25

30

40

45

50

55

60

65

40

object is high. The result may be that the point cloud
representing an object can appear clongated or shrunk
depending on its motion relative to the direction of the
LIDAR’s rotation. For simulation, the correct account of
motion effects may depend in large part on the simulation
frame rate and specified angular velocity of the LIDAR
system as given in Equation 2. To ensure accurate simulation
of motion effects, the displacement of an object within each
simulation frame should be less than the standard uncer-
tainty for each of the scanned 3D points by the real system.
The displacement of an object with relative velocity with
respect to the scanner is given in equation 3.

w& can

Ad=U, (34)

Wiidar

Where Ad is the displacement of an object with a relative
velocity of U, with respect to the scanner after one simula-
tion time step (the scan rate in rad/frame, a,,,,, divided by
the LIDAR angular velocity, w;,,,). For K10 rovers on the
lunar surface, any relative motion between scanner and
objects may be almost entirely due to the ground speed of
the rover itself, which is approximately 0.3 m/s at top speed.
For example, for a single K10 the maximum displacement of
a scanned object can be up to 9 mm within the simulation
time step of 0.03 seconds. For example, for two K10s the
maximum combined speed and corresponding displacement
may be roughly double this. For example, this estimate of
maximum object displacement may be within the specified
position uncertainty of 2 cm for the Velodyne HDL-32E at
25 m. Therefore, using the OpenGL approach to render the
depth field using a rotating virtual camera may be well suited
to capture the motion effects expected by a typical lunar
rovet.

A concern may be that the OpenGL would be challenged
in modeling accurate distances over large ranges. However,
most modern (low- and mid-end) GPUs may support 24-bit
depth buffer. The analysis given below may show that
OpenGL with 24-bit depth buffer may be adequate to model
K10 LIDAR data. The near and far clipping planes, as
shown in FIG. 45, may define what objects will be rendered
in the scene, with only the objects located between the two
planes being rendered. zZNear and zFar are the distances from
the scanner origin to the near and far clipping planes,
respectively. For simulated LIDAR scanners, zNear and
zFar may be analogous to the minimum and maximum range
values of the scanners.

The z-buffer may be nonlinear and the actual number
stored in the z-buffer memory may be expressed in terms of
the distance to the object as

R 1)(“ 2) 35)

Where N is the number of bits used to store each depth
value z, d is the distance from the scanner origin to the
object, and a and b are constants for each scanner given in
the equation below.

Far (36
aq@= —
(zFar — zNear)
zFar- zNear

= (zNear — zFar)

From equation (35) it may be observed that z is inversely
proportional to d, and hence the precision may be better for
objects closer to the scanner origin than those farther away.

US 10,078,712 B2

41

To determine the resolution, two successive z values are
denoted z, and z, and the distances at those z values as d,
and d,. It follows from equation (35) that the smallest
discernible distance B is given by

didr d 37

TN oD T2V -

At d=70 m, zNear=1 m, and zFar=70 m, using the above
equation, the resolution for 24-bit z-buffer is 0.000288 m (or
0.288 mm). This compares favorably with the raw range
accuracy off 2 cm at 25 m for the Velodyne HDL-32E. Based
on this analysis, the OpenGL depth buffer approach may be
adequate for most anticipated purposes even when using
only 24 bits.

Hemispherical distortion may be an additional consider-
ation for OpenGL-based LIDAR modeling. A 3D perspec-
tive view of a scene may be created through a view frustum.
Anything inside the frustum may be rendered and a distance
value may be calculated as

2V -1 (38)

Tz-a@VN -1

The distance obtained from OpenGL may not directly be
used as the scanner distance, as it may cause hemispherical
distortion. Instead the ratio between the distance at each scan
point on the near clipping plane and the normal distance may
be computed. This ratio is called the stretch factor (s;) and
is given by

dNear;

= =

zNear

tanz(O;) + tan2(¢;) +1 69

where 0, and ¢, are the horizontal and vertical angles of
ray i, respectively. The stretch factor is multiplied with the
initial distance to yield the distortion-corrected distance in
the Phase II code.

In one embodiment, the ability to render 3D point clouds
in the simulation scene directly in Actin Viewer using Open
Scene Graph (OSG) may be added. The class Ec::Point-
CloudOSG may maintain the container structures and pro-
cessing methods to generate an osg::Geode object which
may be added as a child to the main OSG scene node. In
practice this class may be first initialized with the maximum
size of the point cloud using Ec::PointCloudOSG::init, then
the Ec::PointCloudOSG::setPointCloud method may be
called to add the scanned points, and finally Ec::PointClou-
dOSG::geode method may be called to return a reference
pointer to the generated OSG Geode object. Internally the
class may have two containers; a vector of 3D point loca-
tions and a vector of RGB values for the color of each point.
Initially, all of the colors may have been set to red, but the
class does provide support for changing the color of each
point based on a predefined color map.

In one embodiment, a LIDAR simulation plugin may be
created for Energid’s Actin toolkit. This section will provide
instructions for using the LIDAR simulation plugin.

When loaded the LIDAR plugin may be controlled by
clicking on specific icon in the tool bar.

10

25

35

40

45

42

The LIDAR simulation manager widget may appear on
the left side of the viewer followed by the LIDAR modifi-
cation dialog for initialization of the LIDAR parameters.

The LIDAR modification dialog may be used to change
the key parameters of the scanner including: field of view,
number of scan points, range and manipulator link and
offset.

To run the LIDAR simulation, Run Lidar simulation
checkbox in the Manage Lidar Simulation dialog may be
clicked. At this point the LIDAR simulation may begin
scanning. With the simulation running, the scan points may
be displayed or hidden by clicking the Show scan points
checkbox. The rotation of the scanner may also be turned on
and off with the Scan 360 degrees checkbox.

To edit the LIDAR parameters, the simulation may be
stopped by unchecking the Run Lidar simulation checkbox
and then clicking Edit LIDAR. This may bring back the
LIDAR modification dialog. Results

In one embodiment, a simulation of two K10 rovers on
rough terrain may be used to test the LIDAR simulation
plugin resulting in a single view scan with a horizontal and
vertical field of view set at 20 degrees. In this mode, the
LIDAR was attached to the base of the first rover with an
offset of [0.1, 0.0, —0.5] m and orientation of [-1.57, 0, 0]
(roll, pitch, yaw). This may result in 3D point cloud of
scanned points, matching the contours of the terrain and
other rover.

The results for a 360 degree scan are shown in FIG. 46.
To match the Velodyne HDL-32E’s angular scan rate of 600
rpm, the 360 degree view had be imaged at a rate o, equal
to 2.09 radians per frame (120 degrees per frame). FIG. 46
shows three consecutive frames used to scan the full scene
around the rover. The simulation frame rate achieved was
~20 to 25 frames per second on an Intel Core 17 2.3 GHz
processor.

Simulate Differential

In one embodiment, a method for simulating a rocker
suspension using constraint of the dynamic equations of
motion may be presented. For example, the approach may be
formulated in such a way that it could be used to also
simulate other closed-chain mechanisms that might be of
interest to third-party developers (e.g., NASA). In another
embodiment, dynamic simulation may be extended and the
feedforward controller may be expanded to include it.

The constraint dynamics calculations for simulation may
be repeated here for use in the derivation of the feedforward
controller. The composite rigid-body inertia algorithm equa-
tion of motion is the following:

P
Dy Mg llal”

where 1, is the 6x6 composite rigid-body inertia of the
entire robot; q is the Nx1 joint values; D(q) is a special Nx6
(N=10 in this case) dynamics matrix depending only on joint
values (not their derivatives); M(q) is the NxN inertia
matrix; A, is the 6x1 base acceleration; § is the Nx1 joint
accelerations; Fe is the external force applied directly to the
base; F,,., F,,, F,,. represent the forces due to Coriolis and
centripetal terms, gravity, and external forces applied by the
manipulator to the base, respectively; T is the column vector
of joint torques; C(q) is the Coriolis forces; G(q) is the
gravitation forces; and B is the external forces applied to the
links.

Fe+ Finc + Fing + Fine

T-Clgg-Gg)+B |

(40)

US 10,078,712 B2

43
A restriction on the system is written as follows:
Ag.T)=0

Where T is the position and orientation of the base link.
Taking the derivative of this equation gives

@D

KG+K'V,=0

Where K is the Jacobian of f(q,T) with respect to the joint
variables, and K' reflects the differential change in f(q) as a
function of the linear and angular velocity of the base. That

iS, in (3),
b
b

where 71, and 31, are the linear and angular velocity of
the base, respectively. Taking the derivative of (42) gives

“42)

43)

sl <]

Vb =

KG+KG+K'V,+K'd,=0 (44)

This motion equation is imposed through torques on the

joints due to the constraints established through

=K'B “s)

And a force on the base due to the constraints established
through

F=KB (46)

where f§ is an arbitrary vector of the same dimension as
the dimension of the constraints. With these changes, equa-
tion (40) becomes

£ D@ K@U [Ay [FetFnctFug+Fme] @D
Dig) Mg K@ || 4 |=|7-C@i-C@+B]|
K'(q) K@ 0 -8 -K@g-K'v,

This has a solution that does not require inverting the
matrix on the left. Let

M KA] [X “48)
x o|B| |7
Where
_ [If D(q)T} (49)
“pg M@
K=[K(K@] 0
[Ab } 1)
1y
B=-p (62
Fo+ Fre+ Fing + Fpe (53)
| r-cy-G@+B
Y =-Kipg- K (@Vs (54

And
With this, equation (48) can be solved for A and B by first
solving for A in terms of B using the top portion of (48), then
substituting this into the lower portion of (48) to solve for B
as follows:
B=[KM 'K "' ®M'X-T) (55
Using p=-B this allows additive torques and base force/
moments to be calculated from (45) and (46) that can then
be used in the original formulation of (40).

10

15

20

25

30

35

40

45

50

60

65

44

Feedforward Controller in the Presence of Constraints

Feedforward control may involve using simulation algo-
rithms to achieve exactly 1) desired joint accelerations
where specified and 2) desired joint torques where specified.
Since control on the robot may be implemented through
torques, this may require calculating control torques that
may give the desired accelerations. (The values for the
torque-control joints may be simply those specified.)

In one embodiment, the torque vector may be divided into
the specified (or known) values and unspecified (or
unknown values). Similarly, the accelerations may be seg-
regated in known and unknown values. For any joint, one of
the torque and acceleration may be known and the other may
be unknown. With this, we decompose (48) into the follow-
ing:

o _pa— _
My Mp K| Al X (36)
My, My Kil| Ac|=|Xu
K K, 0| B Y

Note this in general may require rearrangement of the
order of the joints so that the known and unknown accel-
erations and torques group in this way. The rearrangement,
which does not fundamentally affect the formulas, may be
left out of this derivation. In (56), A, X,, and B may be
unknown, while A,, X,, and Y may be known.

Rearranging the rows and columns to group them may
give the following:

My K| Mupl[A,] [Xe 57
K. 0 K| B|=|Y
My Ky Mnl|l A [Xu
Define the following quantities:
- Mll F{ (58)
M = o
K 0
My=Mx 59
=T T
k=M, K] 9
LA, 61
Au=|
B
A=A (62)
. [X (63)
Xe=| _
Y
%=X, (64
With these definitions, (57) may become
w KA [Xe ©5)
K #1, J| Ag X,

Where, now, only A, and X, may be not directly known.
These may be solved as follows:

A,-¥, (R -RTA) (66)

X =RA,+M4, (67)
With this all the needed values of the control torques may
be calculated (through X,).
Note that M, ~* should not be explicitly calculated for use

in (66) because M, may have a block of zeros as shown in

US 10,078,712 B2

45

(58). Instead, (66) may be calculated using (58) and (61) as
follows:

. A, My, 76{ B zZ (68)
A, = = _
B X 0| |2
Where 7Z,=A;,-M,A, and Z,=Y-K,A,.
This gives
B=K M, RO '®RM,"2-Z,) (69)
And
4,=M,,""Z\-K,"B) (70)

Explicit use of (69) and (70) may require only inversion
of symmetric positive definite matrices in the typical case.

In one embodiment, a new plugin may be created to
provide a user interface to edit, view, and manage surface
properties, including material type and friction properties of
shapes in the simulation. Once the surfacePropertiesPlugin
is loaded an icon may appear on the toolbar of Actin Viewer.
Clicking on this icon may bring up the Surface Property
Editor. The Surface Property Editor may contain a tree of
shapes in the scene grouped by manipulator and link. For
each shape, the index, shape type, surface property (material
type) and number of surfaces may be displayed. The shape
identifier (unique name) and material type may be changed
by selecting the shape (or shapes to change many at a time)
then selecting the values to be applied.

The friction forces between two contacting surfaces may
be calculated based on the combined static and kinetic
friction coeflicients given in a lookup table. The friction
lookup table may be edited by clicking the a button (e.g., in
Edit Friction Properties button) on the Surface Property
Editor. This may bring up the Friction Properties Editor,
which may display the available materials and the set of
friction properties for each unique pair. Each value may be
edited by clicking on the table and typing in a new value.
New materials may be added by clicking the plus button and
materials may be deleted from the table by clicking the
minus button. The friction properties that need to be defined
for each material pair and their default values are given in
the table below. It is understood that the values given in the
table below are only examples and other values may be used
depending on the application.

TABLE 4

Friction properties required for each material pair.

Friction Model Property Default Value

Normal Static Friction Coefficient 0.35
Tangential Static Friction 0.90
Coeflicient

Kinetic Friction Coeflicient 0.80
Viscous Friction Coefficient 0.50
Rotational Friction Scale Factor 1.00
Assumed Mass 40.0 kg

10

45

55

46
DDS Abstraction Library

Data-Distribution Service (DDS) is a specification for
publish-subscribe data-distribution systems. The DDS speci-
fication may provide a common application-level interface
that may defined the data-distribution service. DDS may be
used in many types of applications, such as, military com-
mand systems, financial trading platforms, unmanned
vehicles, and medical devices.

Several different DDS implementations may be investi-
gated, including OpenDDS, OpenSplice, and RTI NDDS. In
one embodiment, a DDS abstraction library, or DDSAL,
may be developed to abstract away as many key differences
as possible to provide a consistent interface independent of
the chosen DDS implementation.

Each DDS implementation may have its own IDL code
generator. Unfortunately, the generated type support type
names may not be standard. As an example, OpenDDS may
generate “rapid::JointSampleTypeSupportlmpl” as the type
support for “rapid::JointSample”, while NDDS may gener-
ate “rapid::JointSampleTypeSupport”. In one embodiment,
and to provide a consistent type support type, a typedef may
be provided for each DDS implementation. In the example,
both “rapid::JointSampleTypeSupportlmpl” and “rapid::
JointSampleTypeSupport” may be type defined to “EcRapi-
dJointSampleTypeSupport”. This is shown in Listing 2
below, which is an example of software code that may be
used to implement an embodiment of the disclosure.

LISTING 2

Example type support abstraction for "rapid::JointSample”.

#if defined(ECDDSAL_OPENDDS)
#include."JointSampleTypeSupportImpl.h”
typedef.rapid::JointSampleTypeSupportImpl.
EcRapidJointSampleTypeSupport;

#elif defined(ECDDSAL_OPENSPLICE)
#include."JointSampleDeps_impl.h"
typedef.rapid::JointSampleTypeSupport.
EcRapidJointSampleTypeSupport;

#elif defined(ECDDSAL_NDDS)
#include."JointSampleSupport.h”
typedef.rapid::JointSampleTypeSupport.
EcRapidJointSampleTypeSupport;

#else

#error." A.valid.DDS.implementation.must.be.defined"
#endif

Domain Participant Factory

Listing 3, which is an example of software code that may
be used to implement an embodiment of the disclosure,
shows the interface for getting the domain participant fac-
tory, and it may be located in “ddsal/impl/ecDdsalPartici-
pantFactory.h”. The function may be contained in the
“EcDdsal::impl” namespace, and it may return a shared
pointer to “DDS::DomainParticipantFactory”.

LISTING 3

DDSAL interface for accessing the domain participant factory.

typedef.boost::shared_ptr<DDS::DomainParticipantFactory>DomainParticipantFactoryPtr;
EC_FOUNDATION_DDSAL_DECL.DomainPartiticantFactoryPtr.participationFactory

o
R

US 10,078,712 B2

47

In an embodiment, the shared pointer may ensure that
appropriate implementation-dependent cleanup may be done
when the domain participant factory goes out of scope.

Domain Participant

Listing 4, which is an example of software code that may
be used to implement an embodiment of the disclosure,
shows the interface for creating domain participants, and it
may be located in “ddsal/ecDdsalParticipant.h”. The func-
tions may be all contained in the “EcDdsal” namespace and
may return a shared pointer to “DDS::DomainParticipant”.

LISTING 4

DDSAL interface for creating domain participant DDS entities.

typedef boost::shared_ptr
<DDS::DomainParticipant>.DomainParticipatPtr;
EC_FOUNDATION_DDSAIL DECL.
DomainParticipantPtr.createParticipant

(

.DDS::DomainParticipantFactory* pFactory,
.DDS::Domainld t......... domainId
);

EC_FOUNDATION_DDSAIL DECL.
DomainParticipantPtr.createParticipant

(

.DDS::DomainParticipantFactory*. pFactory,
DDS::DomainID_t....... domainId
const DDS::DomainParticipantQos& qos

)

EC_FOUNDATION_DDSAIL DECL.
DomainParticipantPtr.createParticipant

(

.DDS::DomainParticipantFactory*. pFactory,
.DDS::Domainld t........... domainId
.const DDS::DomainParticipantQos& qos
.DDS::Domain ParticipantListener®. pListener,
.DDS::StatusMask mask

)

EC_FOUNDATION_DDSAIL DECL.
DomainParticipantPtr.createParticipant

(

.impl::DomainParticipantFactoryPtr. factoryPtr,
DDS:Domainld t................. domainId
)

EC_FOUNDATION_DDSAIL DECL.
DomainParticipantPtr.createParticipant

(

.impl::DomainParticipantFactoryPtr factoryPtr,
.DDS:Domainld t............... domainlID,
...const DDS::DomainParticipantQos& . . qos

D3

EC_FOUNDATION_DDSAIL DECL.
DomainParticipantPtr.createParticipant

(

impl::DomainParticipantFactoryPtr factoryPtr,
DDS::DomainID _t..... domainld,
const DDS::DomainParticipantQos& qos,
.DDS::Domain ParticipantListener®. pListener,
.DDS::StatusMask mask

i

In one embodiment, the shared pointer may ensure that
appropriate implementation-dependent cleanup may be done
when the domain participant goes out of scope. For example,
there may be two sets of functions that may take a varying
number of arguments. The first set may require a pointer to
the domain participant factory, while the second set may
require a shared pointer to the domain participant factory.
The shared pointer variants may ensure that the domain
participant factory may remain in scope until after the
domain participant scope ends. If the quality-of-service
value is not specified, then the default domain participant
quality-of-service value from the domain participant factory
may be used.

10

15

20

25

30

35

40

45

50

55

60

65

48

Type Registration

Listing 5, which is an example of software code that may
be used to implement an embodiment of the disclosure,
shows the interface for registering a type with a domain
participant, and it may be located in “ddsal/ecDdsalPartici-
panth”. The functions may all be contained in the
“EcDdsal” namespace.

LISTING 5

DDSAL interface for registering types with a domain participant.

EC_FOUNDATION_DDSAL_DECL bool participantAttachment
(

..DomainParticipantPtr. . .
..const.boost::any& . . .

participantPtr,
attachment

template <typename.T>
const.char* getTypeName

template.<typename.T>
bool.registerType

..DomainParticipantPtr.
const.char*

I

participantPtr,
typeName

template.<typename.T>
bool.registerType
(
DomainParticipanyPtr.participantPtr
Yo

In one embodiment, The “registerType” function tem-
plates may take the type support class as a template argu-
ment. Each DDS implementation in the abstraction library
may have the corresponding functions shown in Listing 6,
which is an example of software code that may be used to
implement an embodiment of the disclosure. Some DDS
implementations may have a scope requirement for the type
being registered. For instance, OpenDDS may require that
the type being registered may remain in scope until after the
domain participant may be destroyed. In such a case, the
specific implementation’s “registerType” function can set a
value for the “attachment” that may be guaranteed to remain
in scope until the domain participant may be destroyed. The
attachment may be added to the domain participant inside
the “registerType” function using the “participantAttach-
ment” function; however, “participantAttachment” may be
exposed in the public interface to allow attaching any object
that may need to remain in scope until after the domain
participant may be destroyed.

LISTING 6

DDSAL implementation-specific interface for
registering types with a domain participant.

J/:
template.<typename.T>
const.char*. getTypeName
o (
)

J/:

template.<typename.T>

bool.registerType

cee

DDS::DomainParticipant® .pParticipant,
. . const.char*

... boost:any&

US 10,078,712 B2

49
LISTING 6-continued

50
LISTING 7-continued

DDSAL implementation-specific interface for
registering types with a domain participant.

O)

J/:

template.<typename.T>

bool.registerType

o

DomainParticipantPtr.participantPtr,

.. const.char® typeName,
: attachment

Topic

Listing 7, which is an example of software code that may
be used to implement an embodiment of the disclosure,
shows the interface for creating topics, and it may be located
in “ddsal/ecDdsalTopic.h”. The functions may all be con-
tained in the “EcDdsal” namespace and may return a shared
pointer to “DDS::Topic”.

LISTING 7

DDSAL interface for creating topic DDS entities.

typedef.boost::shared_ptr<DDS::Topic>. TopicPtr;
EC_FOUNDATION_DDSAL_DECL.TopicPtr.createTopic

.

...DDS::DomainParticipant*. pParticipant,
..const.char*. topicName,
..const.char*. typeName

EC_FOUNDATION_DDSAL_DECL.TopicPtr.createTopic

.DDS::DomainParticipant™®. pParticipant,
const char®. . . topicName,
const.char*. . . typeName,

. const DDS::TopicQos& qos

EC_FOUNDATION_DDSAL_DECL.TopicPtr.createTopic

..DDS::DomainParticipant*. pParticipant,
..const char* topicName,
.const.char* typeName,
..const DDS::TopicQos& . . . qos,
DDS::TopicListener* pListener,

10

15

20

30

35

40

DDSAL interface for creating topic DDS entities.

..DDS::StatusMask mask

s

EC_FOUNDATION_DDSAL_DECL.TopicPtr.createTopic
(
..DomainParticipantPtr . participantPtr,
.const char*. topicName,
.const.char*. typeName
BB

EC_FOUNDATION_DDSAL_DECL.TopicPtr createTopic
(
..DomainParticipantPtr . participantPtr,
.const char*. topicName,
.const.char*. typeName,
const DDS::TopicQos& . qos

)i
EC_FOUNDATION_DDSAL_DECL.TopicPtr createTopic

(0

DomainParticipantPtr . participantPtr,
.const char*. topicName,
.const.char*. typeName,
const DDS::TopicQos& . qos,
..DDS::TopicListener* . pListener,
.DDS::StatusMask . . . mask

J;

In one embodiment, the shared pointer may ensure that
appropriate implementation-dependent cleanup may be done
when the topic goes out of scope. For example, there are two
sets of functions that take a varying number of arguments.
The first set may require a pointer to the domain participant,
while the second set may require a shared pointer to the
domain participant. The shared pointer variants may ensure
that the domain participant may remain in scope until after
the topic scope ends. If the quality-of-service value is not
specified, then the default topic quality-of-service value
from the domain participant may be used.

Content Filtered Topic

Listing 8, which is an example of software code that may
be used to implement an embodiment of the disclosure,
shows the interface for creating content filtered topics, and
may be located in “ddsal/ecDdsalContentFilteredTopic.h”.
The functions may all be contained in the “EcDdsal”
namespace and may return a shared pointer to “DDS::
ContentFiltered Topic™.

LISTING 8

DDSAL interface for creating content filtered topic DDS entities.

typedef.boost::shared_ptr<DDS::ContentFiltered Topic>.ContentFiltered TopicPtr;
EC_FOUNDATION_DDSAIL_DECL.ContentFilteredTopicPtr.createContentFilteredTopic

o

...DDS::DomainParticipant* . pParticipant,
.const char* topicName,
WTopiePtr L related Topic,
..const char* filterExpression

):
EC_FOUNDATION_DDSAIL_DECL.ContentFilteredTopicPtr.createContentFilteredTopic

W

..DDS::DomainParticipant® . pParticipant,
const char* . topicName,
TopicPtr related Topic,
.const char* . filterExpression,
const DDS::StringSeq& expressionParams

):
EC_FOUNDATION_DDSAIL_DECL.ContentFilteredTopicPtr.createContentFilteredTopic

..DomainParticipantPtr

participantPtr,
..const.char® topicName,
LTopiePtr L related Topic,
...const char* filterExpression

)3

US 10,078,712 B2

51
LISTING 8-continued

52

DDSAL interface for creating content filtered topic DDS entities.

EC_FOUNDATION_DDSAIL_DECL.ContentFilteredTopicPtr.createContentFilteredTopic

{

...DomainParticipantPtr . participantPtr,
...const char* topicName,
.TopicPtr . . . related Topic,
.const char* . filterExpression,
const.DDS::StringSeq& expressionParams
BH

In one embodiment, the shared pointer may ensure that
appropriate implementation-dependent cleanup may be done
when the content filtered topic goes out of scope. For
example, there are two sets of functions that take a varying
number of arguments. The first set may require a pointer to
the domain participant, while the second set may require a
shared pointer to the domain participant. The shared pointer
variants may ensure that the domain participant remains in
scope until after the content filter topic scope ends. Addi-
tionally, all variants may ensure that the related topic
remains in scope until after the content filter topic scope
ends.

Publisher

Listing 9, which is an example of software code that may
be used to implement an embodiment of the disclosure,
shows the interface for creating publishers, and it may be
located in “ddsal/ecDdsalPublisherh”. The functions may
all be contained in the “EcDdsal” namespace and may return
a shared pointer to “DDS::Publisher”.

LISTING 9

DDSAL interface for creating publisher DDS entities.

typedef.boost::shared_ptr<DDS::Publisher>PublisherPtr;
EC_FOUNDATION_DDSAL_DECL.PublisherPtr createPublisher

(
DDS::DomainParticipant™®

pParticipant
)
EC_FOUNDATION_DDSAL_DECL.PublisherPtr.createPublisher

..DDS::DomainParticipant® . .
..const DDS::PublisherQos& .

pParticipant,
qos

)i
EC_FOUNDATION_DDSAL_DECL.PublisherPtr.createPublisher
(

DDS::DomainParticipant™® . . pParticipant,
.const DDS::PublihserQos& . qos,
..DDS::PublisherListener* . . pListener,
.DDS::StatusMask mask

i
EC_FOUNDATION_DDSAL_DECL.PublisherPtr.createPublisher
(
participantPtr

DomainParticipantPtr

-
EC_FOUNDATION_DDSAL_DECL.PublisherPtr.createPublisher

(
.DomainParticipantPtr . . participantPtr,
const-DDS::PublisherQos& qos

)i
EC_FOUNDATION_DDSAL_DECL.PublisherPtr.createPublisher

.

...DomainParticipantPtr participantPtr,
..const-DDS::PublisherQos& . qos,
DDS::PublisherListener* pListener,
.DD3::StatusMask mask

K

In one embodiment, the shared pointer ensures that appro-
priate implementation-dependent cleanup may be done
when the publisher goes out of scope. For example, there are

15

25

30

35

40

45

50

55

60

65

two sets of functions that take a varying number of argu-
ments. The first set may require a pointer to the domain
participant, while the second set may require a shared
pointer to the domain participant. The shared pointer vari-
ants may ensure that the domain participant remains in scope
until after the publisher scope ends. If the quality-of-service
value is not specified, then the default publisher quality-of-
service value from the domain participant may be used.

Subscriber

Listing 10, which is an example of software code that may
be used to implement an embodiment of the disclosure,
shows the interface for creating subscribers, and it is located
in “ddsal/ecDdsalSubscriber.h”. The functions are all con-
tained in the “EcDdsal” namespace and return a shared
pointer to “DDS::Subscriber”.

LISTING 10

DDSAL interface for creating subscriber DDS entities.

typedef.boost::shared_ptr<DDS::Subscriber>.SubscriberPtr;
EC_FOUNDATION_DDSAL_DECL.SubscriberPtr.createSubscriber

(
.DDS::DomainParticipant®

pParticipant
):
EC_FOUNDATION_DDSAL_DECL.SubscriberPtr.createSubscriber

DDS::DomainParticipant™® . . .
const DDS::SubscriberQos& .

pParticipant,
qos

EC_FOUNDATION_DDSAL_DECL.SubscriberPtr.createSubscriber
(

...DDS::DomainParticipant® . . pParticipant,
.const DDS::SubscriberQos& . qos
.DDS::SubscriberListener* . pListener,
DDS::StatusMask . mask

):
EC_FOUNDATION_DDSAL_DECL.SubscriberPtr.createSubscriber
(

DomainParticipantPtr participantPtr

EC_FOUNDATION_DDSAL_DECL.SubscriberPtr.createSubscriber

(
DomainParticipantPtr participantPtr,
const DDS::SubscriberQos& . qos

):
EC_FOUNDATION_DDSAL_DECL.SubscriberPtr.createSubscriber

(
DomainParticipantPtr . participantPtr,
const DDS::SubscriberQos& . qos
DDS::SubscriberListener® . pListener,
DDS::StatusMask mask
):

¥

In one embodiment, the shared pointer may ensure that
appropriate implementation-dependent cleanup may be done
when the subscriber goes out of scope. For example, there
are two sets of functions that take a varying number of
arguments. The first set may require a pointer to the domain
participant, while the second set may require a shared

US 10,078,712 B2

53

pointer to the domain participant. The shared pointer vari-
ants may ensure that the domain participant remains in scope
until after the subscriber scope ends. If the quality-of-service
value is not specified, then the default subscriber quality-
of-service value from the domain participant may be used.

Data Writer
The interface for creating data writers may be located in

“ddsal/ecDdsalDataWriter.h”, and it may be subdivided into
a base interface and a generic interface.

Base Interface

Listing 11, which is an example of software code that may
be used to implement an embodiment of the disclosure,
shows the base interface for creating data writers. The
functions may all be contained in the “EcDdsal” namespace
and may return a shared pointer to “DDS::DataWriter”.

LISTING 11

DDSAL base interface for creating data writer DDS entities.

typedef.boost::shared_ptr<DDS::DataWriter>DataWriterPtr;
EC_FOUNDATION_DDSAL_DECL.DataWriterPtr.createDataWriter

(
DDS::Publisher*
. TopicPtr

pPublisher,
..... topicPtr

D3
EC_FOUNDATION_DDSAL_DECL.DataWriterPtr.createDataWriter

(
...DDS::Publisher*

.......... pPublisher,
. TopicPtr topicPtr,
...const-DDS::DataWriterQos& . qos

)3
EC_FOUNDATION_DDSAL_DECL.DataWriterPtr.createDataWriter

(
..DDS::Publisher*

....... pPublisher,

TopicPtr topicPtr,

.const-DDS::DataWriterQos& . qos,

..DDS::DataWriterListener* . . pListener,

..DDS::StatusMask mask

);
EC_FOUNDATION_DDSAL_DECL.DataWriterPtr.createDataWriter

L

..PublisherPtr . publisherPtr,

TopicPtr. . .. topicPtr

)3
EC_FOUNDATION_DDSAL_DECL.DataWriterPtr.createDataWriter

L

PublisherPtr . publisherPtr,

.TopicPtr topicPtr,

const-DDS::DataWriterQos& qos

);
EC_FOUNDATION_DDSAL_DECL.DataWriterPtr.createDataWriter

L

ublisherPtr publisherPtr,

TopicPtr . . topicPtr,

.const-DDS::DataWriterQos& qos,

..DDS::DataWriterListener* . pListener,

..DDS::StatusMask mask

D5

In one embodiment, the shared pointer may ensure that
appropriate implementation-dependent cleanup may be done
when the data writer goes out of scope. For example, there
are two sets of functions that take a varying number of
arguments. The first set may require a pointer to the pub-
lisher, while the second set may require a shared pointer to
the publisher. The shared pointer variants may ensure that
the publisher remains in scope until after the data writer
scope ends. All variants may ensure that the topic remains in
scope until after the data writer scope ends. If the quality-
of-service value is not specified, then the default data writer
quality-of-service value from the publisher may be used.

10

15

20

25

30

35

40

45

50

55

54

Generic Interface

Listing 12, which is an example of software code that may
be used to implement an embodiment of the disclosure,
shows the generic interface for creating data writers. The
functions may all be contained in the “EcDdsal” namespace
and may return a shared pointer to the template argument.
The template argument may be the data writer class from a
specific IDL-generated type support implementation.

LISTING 12

DDSAL generic interface for creating data writer DDS entities.

J/:
template.<typename.T>
typename.boost::shared_ptr<T>.createDataWriter

o
.. . DDS::Publisher*.pPublisher,
... TopicPtr topicPtr

SN CEN)

J/:
template.<typename.T>
typename.boost::shared_ptr<T>.createDataWriter

o (

.. . DDS::Publisher* pPublisher,

... TopicPtr topicPtr,
.. const. DDS::DataWriterQos&.qos

)
I

template.<typename.T>
typename.boost::shared_ptr<T>.createDataWriter

- (
. . DDS::Publisher*
. . TopicPtr
. . const. DDS::DataWriterQos&.qos,
.. DDS::DataWriterListener* . . pListener,
. DDS::StatusMask mask

N
1/

template.<typename.T>
typename.boost::shared_ptr<T>.createDataWriter

pPublisher,
topicPtr,

o
.. . PublisherPtr . . publisherPtr,
... TopicPtr topicPtr

SHCEN)

J/:
template.<typename.T>
typename.boost::shared_ptr<T>.createDataWriter

o (

. .. PublisherPtr

... TopicPtr
.. const. DDS::DataWriterQos&.qos

)
y

template.<typename.T>
typename.boost::shared_ptr<T>.createDataWriter

publisherPtr,
topicPtr,

- (
. . PublisherPtr
. . TopicPtr
. . const. DDS::DataWriterQos&.qos,
. DDS::DataWriterListener* . . pListener,
......... mask

publisherPtr.
topicPtr,

For example, each function in the base interface may
contain a corresponding function in the generic interface.
The generic function may call the corresponding base func-
tion to create the data writer. Following creation, the generic
function may narrow the data writer to the appropriate type
and may return the narrowed shared pointer.

Data Reader

The interface for creating data readers may be located in
“ddsal/ecDdsalDataReader.h”, and it may be subdivided into
a base interface and a generic interface.

US 10,078,712 B2

55

Base Interface

Listing 13, which is an example of software code that may
be used to implement an embodiment of the disclosure,
shows the base interface for creating data readers. The
functions may all be contained in the “EcDdsal” namespace
and may return a shared pointer to “DDS::DataReader”.

LISTING 13

DDSAL base interface for creating data reader DDS entities.

EC_FOUNDATION_DDSAL _ DECL.DataReaderPtr.createDataReader

...SubscriberPtr
...ContentFiltered TopicPtr .

subscriberPtr,
topicPtr

)3
EC_FOUNDATION_DDSAL _ DECL.DataReaderPtr.createDataReader

.SubscriberPtr . subscriberPtr,

.ContentFilteredTopicPtr . . . topicPtr

...const DDS::DatatReaderQos& . qos

);
EC_FOUNDATION_DDSAL _ DECL.DataReaderPtr.createDataReader

(

.SubscriberPtr subscriberPtr,

...ContentFiltered TopicPtr . . . topicPtr,

...const DDS::DatatReaderQos& . qos,

...DDS::DataReaderListener* . . pListener,

...DDS::StatusMask mask

D3
EC_FOUNDATION_DDSAL _ DECL.DataReaderPtr.createDataReader

...SubscriberPtr
. TopicPtr

subscriberPtr,
................ topicPtr

)3
EC_FOUNDATION_DDSAL _ DECL.DataReaderPtr.createDataReader

..SubscriberPtr

......... subscriberPtr,
WTopiePtr L topicPtr,
..const. DDS::DatatReaderQos& . qos
)3

EC_FOUNDATION_DDSAL _ DECL.DataReaderPtr.createDataReader

.SubscriberPtr subscriberPtr,
TopicPtr. topicPtr,
const DDS::DatatReaderQos& . qos
..DDS::DataReaderListener* pListener,
.DDS::StatusMask mask

);

In one embodiment, the shared pointer may ensure that
appropriate implementation-dependent cleanup may be done
when the data reader goes out of scope. For example, there
are two sets of functions, and they take a varying number of
arguments. The first set, not shown in the listing to keep it
brief, may require a pointer to the subscriber, while the
second set may require a shared pointer to the subscriber.
The shared pointer variants may ensure that the subscriber
may remain in scope until after the data reader scope ends.
All variants may ensure that the topic or content filtered
topic remains in scope until after the data reader scope ends.
If the quality-of-service value is not specified, then the
default data reader quality-of-service value from the sub-
scriber may be used.

Generic Interface

Listing 14, which is an example of software code that may
be used to implement an embodiment of the disclosure,
shows the generic interface for creating data readers. The
functions may all be contained in the “EcDdsal” namespace
and may return a shared pointer to the template argument.
The template argument may be the data reader class from a
specific IDL-generated type support implementation.

10

15

20

25

30

35

40

45

50

55

60

65

56
LISTING 14

DDSAL generic interface for creating data reader DDS entities.

J/:
template.<typename.T>
typename.boost::shared_ptr<T>.createDataReader

- (
... SubscriberPtr. subscriberPtr,
. . . ContentFiltered TopicPtr.topicPtr

)

J/:
template.<typename.T>
typename.boost::shared_ptr<T>.createDataReader

o
... SubscriberPtr subscriberPtr,
.. . ContentFilteredTopicPtr topicPtr,

. . const. DDS::DataReaderQos&.qos
)
/1

template.<typename.T>
typename.boost::shared_ptr<T>.createDataReader

- (
.. SubscriberPtr. subscriberPtr,
. ContentFilteredTopicPtr topicPtr,

. . const.DDS::DataReaderQosé&.qos,
.. DDS::DataReaderListener* . . pListener,
. DDS::StatusMask mask

SNCEN)

J/:
template.<typename.T>
typename.boost::shared_ptr<T>.createDataReader
(

SubscriberPtr.subscriberPtr,

... TopicPtr topicPtr

) D)

J/:
template.<typename.T>
typename.boost::shared_ptr<T>.createDataReader

- (
... SubscriberPtr subscriberPtr,
o TopiePtr . topicPtr,
. . const.DDS::DataReaderQosé&.qos,
)

J/:
template.<typename.T>
typename.boost::shared_ptr<T>.createDataReader

- (
. SubscriberPtr subscriberPtr,
CTopicPtr .o topicPtr,

. const. DDS::DataReaderQosé&.qos,
. DDS::DataReaderListener* . . pListener,
mask

For example, each function in the base interface may
contain a corresponding function in the generic interface.
The generic function may call the corresponding base func-
tion to create the data reader. Following creation, the generic
function may narrow the data reader to the appropriate type
and may return the narrowed shared pointer.

Sample

Listing 15, which is an example of software code that may
be used to implement an embodiment of the disclosure,
shows the interface for creating a sample, and it may be
located in “ddsal/impl/ecDdsalSample.h”. The function may
be contained in the “EcDdsal::impl” namespace, and it may
return a shared pointer to a sample.

US 10,078,712 B2

57
LISTING 15

DDSAL interface for creating samples.

/1
template.<typename. TypeSupport,.typename. T>

58

tion, a topic may be created that may be used by the data
writer and the data reader.

Data Writer

Listing 17, which is an example of software code that may
be used to implement an embodiment of the disclosure,
shows a code example for creating a data writer that pub-
lishes a sample on a topic.

LISTING 17

Example showing how to create a data writer and publish a sample.

//.Create.a.publisher

.EcDdsal::PublisherPtr.publisherPtr.=
..EcDdsal::createPublisher(participantPtr);

J// Create.a.data.writer for.EcRapidJointSampleTypeSupport

.boost::ishared_ptr<rapid::JointSampleDataWriter>.dwPtr.=
...EcDdsal::createDataWriter<rapid::JointSampleDataWriter>(publisherPtr,.topicPtr);

J// Create.a.sample

.boost::shared_ptr<rapid::JointSample>.samplePtr.=
EcDdsal::impl::createSample<EcRapidJointSample TypeSupport, rapid::JointSample>();

J//.Fill in the sample

I

// Publish the sample
dwPtr->write(*samplePtr, DDS::HANDLE_NIL);

LISTING 15-continued

DDSAL interface for creating samples.

typename.boost::shared_ptr<T>.createSample
- (
)

In one embodiment, the “createSample” function template
may take the type support class and the sample type as
template arguments. The shared pointer may ensure that
appropriate implementation-dependent cleanup is done
when the sample goes out of scope.

DDSAL Example

This example shows the typical usage of the DDS abstrac-
tion layer for creating both a data writer and a data reader.

Common

Listing 16, which is an example of software code that may
be used to implement an embodiment of the disclosure,
shows a code example that may be common for creating
both data writers and data readers.

LISTING 16

Common code used for creating the data writer and the data reader.

// Get.the.domain.participant.factory
EcDdsal::impl::DomainParticipantFactoryPtr.dpfPtr.=
EcDdsal::impl::participantFactory();
J/.Create.the.domain.participant.on.domain 0
.EcDdsal::DomainParticipantPtr.participantPtr.=
..EcDdsal::createParticipant(dpfPtr,.0);
J//.Register.EcRapidJointDampleTypeSupport
.EcDdsal::register Type
<EcRapidJointSampleTypeSupport>(participantPtr);
J/Get.the.type.name.from.EcRapidJointSample TypeSupport
.const.char*.typeName.=
..EcDdsal::get TypeName<EcRapidJointSample TypeSupport>();
//.Create.a.topic for.EcRapidJointSampleTypeSupport
EcDdsal:: TopicPtr topicPtr.=
EcDdsal::createTopic(participantPtr, rapid::
JOINT_SAMPLE_TOPIC, typeName);

In the example, the domain participant factory may be
used to create a domain participant. A type may be registered
with the new domain participant. Following type registra-

25

30

35

40

45

50

55

60

65

In the example, the domain participant may be needed to
create the publisher, and the publisher and topic may be
needed to create the data writer.

Data Reader

Listing 18, which is an example of software code that may
be used to implement an embodiment of the disclosure,
shows a code example for creating a data writer that may
listen for samples.

LISTING 18

Example showing how to create a data reader that listens for samples.

// Create.a.content. filtered.topic. for.EcRapidJointSampleTypeSupport
EcDdsal::ContentFiltered TopicPtr.contentFiltered TopicPtr.=
.EcDdsal::createContentFiltered Topic

....participantPtr,
..... "K10Red_joing sample",
....topicPtr,
..... "hdr/assetName.=."K10Red"
/I Create.a.subscriberPtr =
.EcDdsal::SubscriberPtr.subscriberPtr =
...EcDdsal::createSubscriber(participantPtr);
J/ Get.the.data.reader.QOS
DDS::DataReaderQos.drQos;
.subscriberPtr->get_default_datareader_qos(drQos);
// Create.a.data.reader. for. EcRapidJointSamle TypeSupport
.boost::shared_ptr<rapid::JointSampleDataReader>.drPtr.=
.EcDdsal::createDataReader<rapid::JointSampleDataReader>

....... subscriberPtr,
...contentFiltered TopicPtr,

....... pListener,
EcDdsal::impl::EcDefaultStatusMask

):

In the example, a content filtered topic may be used to
listen to a filtered subset of samples on a topic. The domain
participant may be needed to create the content filtered topic
and the subscriber. The topic may be also needed to create
the content filtered topic and the subscriber. The subscriber
and the content filtered topic may be needed to create the
data reader.

Multi-Channel Camera Simulation

In one embodiment, DPS process 10, may perform a
multi-channel camera simulation. For illustrative purposes,

US 10,078,712 B2

59

and discussion often eight channel camera simulation will be
presented. It is understood that the above eight channel
camera simulation is only an example, and any number of
channels may be envisioned. The approach taken may be to
apply a monochrome texture for each channel to the terrain
node and then view these textures through custom OpenGL
vertex and fragment shaders. The EcColorlmageSensor and
EclmageSensorDisplay classes may be used to complete the
implementation. The main challenge may lay in allowing the
new multi-texture camera to view the applied textures with
all other cameras viewing the scene normally. For example,
to achieve this, a shallow copy of user specified geometry
nodes may be created with a unique node mask bit
(0x0800000). The display mask of the multi-texture camera
may be then set to view only nodes with the node mask with
the 0x080000 bit set. An exemplary result may be illustrated
in FIG. 47, which shows a multi-texture camera set to view
channel 1 on the right and main window view on the left. In
this case, channel 1 shows the texture marked with “1”.

The multi-texture camera implementation approach may

adhere to the following steps:

1. Create a new EclmageSensorDisplay based on the
parameters read in from the multi-texture camera xml
file.

2. Attach the custom vertex and fragment shaders (Text
Box 1 and Text Box 2) to the new display and set the
display mask to 0x0800000. It is understood that the
custom vertex and fragment shaders presented in Text
Box 1 and 2 are examples of software code that may be
used to implement an embodiment of the disclosure.

3. Create a texture uniform for sampling and a integer
uniform for channel selection

4. Identify and make a shallow copy of each EcMulti-
TextureNode defined by the user in the EcMultiTex-
tureCamera xml file, and add the copies at the same
level as the original nodes, then set the node mask to
0x0800000.

5. Load eight single channel images from file and com-
bine into two RGBA four channel images for each node
(see FIG. 48).

6. Create two textures from the RGBA images and apply
to texture units 0 and 1 of each node

TEXT BOX 1

Vertex shader.

static const EcString vertexShaderSource =
"#version 130\n"
"void main ()"
H{\HH

gl_Position = ftransform () ;\n”

gl_TexCoord[0] = gl TextureMatrix[0] * gl_MultiTexCoord0;\n"
gl_TexCoord[1] = gl_TextureMatrix[1] * gl_MultiTexCoord1;\n"
H}\HH;

TEXT BOX 2

Fragment shader using texture sampler uniform for RGBA
texture selection and integer uniform for channel selection.

static const EcString fragmentShaderSourceChannelSelector =
"#version 130\n"

"uniform sampler2D texArray; \n"

"uniform int channel; \n"

e

"void main ()\n"

H{\HH

' int chanIndex = channel % 4; \n"

10

15

20

25

30

35

40

45

50

55

60

65

60
TEXT BOX 2-continued

Fragment shader using texture sampler uniform for RGBA
texture selection and integer uniform for channel selection.

' vecd pixel = texture(texArray, gl_TexCoord[0] .xy) ; \n"
gl_FragColor = vec4 (pixel [chanlndex] , pixel [chanIndex] ,

pixel[chanIndex], 1.0) ; \n"

iE

In one embodiment, the multiTextureCameraPlugin may
be created to demonstrate the camera in Actin Viewer with
the proxy_simulation/data/proxySimulation.ecx model.
Once the plugin is loaded it may create a camera and may
apply eight sample texture images to the terrain geometry
node and rock geometry node. The terrain images may be
derived from the proxy_simulation/data/ AmesMarsS-
cape.10 cm.ortho.tif, and the rock images may be derived
from proxy_simulation/data/jewlfull.jpg. By default the
camera may be attached to the K10’s base link at an offset
placing it high above and overlooking the terrain so the
change in textures will be apparent.

In one embodiment, a DDS plugin (multiTextureCam-
eraDdsPlugin) may also be created to allow objects to
subscribe to the stream of images taken by the multi-texture
camera. DDS topics may be created for each of the camera’s
eight channels and may be named as follows: rapid_imag-
esensor_sample-<manipLabel>MultiTextureCamera-
ch<channellndex>, where <manipLabel> is the label of the
manipulator to which the camera is attached and <chan-
nellndex> is the index from 0-7 of the channel.

The proxy simulation tool may have application to third-
party robotic work and missions, such as, NASA’s robotic
missions. Additionally/alternatively, since DPS process 10,
may be developed as a toolkit, with modules that may be
reused, it may also have the potential for broader application
for lunar and planetary exploration.

Although the NASA is robotic hardware (e.g., K10 an
ATHLETE) were used above applicability of DPS process
10, may be used outside of NASA robotic hardware and may
support robotic systems developers across the spectrum of
robotics domains, from defense to home use. DPS process
10 may also be integrated in other software products as an
add-on. Additionally/alternatively, by linking the software
libraries into third-party code, developers may have full
access to all the capability provided by the toolkit. The new
capability may allow developers to leverage terrains and
remote-control technologies into new applications.

Referring also to FIG. 49, there is shown a diagrammatic
view of computing system 12. While computing system 12
is shown in this figure, this is for illustrative purposes only
and is not intended to be a limitation of this disclosure, as
other configuration are possible. For example, any comput-
ing device capable of executing, in whole or in part, DPS
process 10 may be substituted for computing device 12
within FIG. 5, examples of which may include but are not
limited to client electronic devices 28, 30, 32, 34.

Computing system 12 may include microprocessor 502
configured to e.g., process data and execute instructions/
code for screen capture process 10. Microprocessor 502 may
be coupled to storage device 16. As discussed above,
examples of storage device 16 may include but are not
limited to: a hard disk drive; a tape drive; an optical drive;
a RAID device; an NAS device, a Storage Area Network, a
random access memory (RAM); a read-only memory
(ROM); and all forms of flash memory storage devices. 10
controller 504 may be configured to couple Microprocessor
502 with various devices, such as keyboard 506, mouse 508,

US 10,078,712 B2

61

USB ports (not shown), and printer ports (not shown).
Display adaptor 510 may be configured to couple display
512 (e.g., a CRT or LCD monitor) with microprocessor 502,
while network adapter 514 (e.g., an Ethernet adapter) may
be configured to couple Microprocessor 502 to network 14
(e.g., the Internet or a local area network).

As will be appreciated by one skilled in the art, the present
disclosure may be embodied as a method (e.g., executing in
whole or in part on computing device 12), a system (e.g.,
computing device 12), or a computer program product (e.g.,
encoded within storage device 16). Accordingly, the present
disclosure may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, the present disclosure may take the
form of a computer program product on a computer-usable
storage medium (e.g., storage device 16) having computer-
usable program code embodied in the medium.

Any suitable computer usable or computer readable
medium (e.g., storage device 16) may be utilized. The
computer-usable or computer-readable medium may be, for
example but not limited to, an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system, appa-
ratus, device, or propagation medium. More specific
examples (a non-exhaustive list) of the computer-readable
medium may include the following: an electrical connection
having one or more wires, a portable computer diskette, a
hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device. The computer-usable or computer-
readable medium may also be paper or another suitable
medium upon which the program is printed, as the program
can be electronically captured, via, for instance, optical
scanning of the paper or other medium, then compiled,
interpreted, or otherwise processed in a suitable manner, if
necessary, and then stored in a computer memory. In the
context of this document, a computer-usable or computer-
readable medium may be any medium that can contain,
store, communicate, propagate, or transport the program for
use by or in connection with the instruction execution
system, apparatus, or device. The computer-usable medium
may include a propagated data signal with the computer-
usable program code embodied therewith, either in baseband
or as part of a carrier wave. The computer usable program
code may be transmitted using any appropriate medium,
including but not limited to the Internet, wireline, optical
fiber cable, RF, etc.

Computer program code for carrying out operations of the
present disclosure may be written in an object oriented
programming language such as Java, C#NET, PHP, C++ or
the like. However, the computer program code for carrying
out operations of the present disclosure may also be written
in conventional procedural programming languages, such as
the “C” programming language or similar programming
languages. The program code may execute entirely on the
user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote
computer or server. In the latter scenario, the remote com-
puter may be connected to the user’s computer through a
local area network/a wide area network/the Internet (e.g.,
network 14).

10

15

20

25

30

35

40

45

50

55

60

65

62

The present disclosure is described with reference to
flowchart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord-
ing to embodiments of the disclosure. It will be understood
that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, may be implemented by
computer program instructions. These computer program
instructions may be provided to a processor (e.g., processor
502) of a general purpose computer/special purpose com-
puter/other programmable data processing apparatus (e.g.,
computing device 12), such that the instructions, which
execute via the processor (e.g., processor 200) of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored
in a computer-readable memory (e.g., storage device 16) that
may direct a computer (e.g., computing device 12) or other
programmable data processing apparatus to function in a
particular manner, such that the instructions stored in the
computer-readable memory produce an article of manufac-
ture including instruction means which implement the func-
tion/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer (e.g., computing device 12) or other pro-
grammable data processing apparatus to cause a series of
operational steps to be performed on the computer or other
programmable apparatus to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide steps
for implementing the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowcharts and block diagrams in the figures may
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods and computer
program products according to various embodiments of the
present disclosure. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical func-
tion(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustrations, and combinations of
blocks in the block diagrams and/or flowchart illustrations,
may be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the disclosure. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
“comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

US 10,078,712 B2

63

The corresponding structures, materials, acts, and equiva-

lents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present disclosure has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the disclosure in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the disclosure. The embodiment was chosen and
described in order to best explain the principles of the
disclosure and the practical application, and to enable others
of ordinary skill in the art to understand the disclosure for
various embodiments with various modifications as are
suited to the particular use contemplated.
Having thus described the disclosure of the present appli-
cation in detail and by reference to embodiments thereof, it
will be apparent that modifications and variations are pos-
sible without departing from the scope of the disclosure
defined in the appended claims.

What is claimed is:

1. A computer-implemented method comprising:

creating, by one or more processors, a digital proxy

simulation for a robotic hardware wherein the digital
proxy simulation and the robotic hardware share a
network interface;

providing, by one or more processors, a user with an

option to switch between the robotic hardware and the
digital proxy simulation; and

upon receiving a user selection, executing, by one or more

processors, the switch between the robotic hardware
and the digital proxy simulation, wherein executing the
switch includes transferring sensor or user-interface
driven input and output signals during or before opera-
tion between the digital proxy simulation and the
robotic hardware, wherein the digital proxy simulation
includes receiving a plurality of channel images for
multi-channel camera simulation, wherein, after the
switch, the user is controlling one of the robotic hard-
ware or the digital proxy simulation but not both at a
given point in time.

2. The method of claim 1, wherein the robotic hardware
is at least one of a mobile robot, a fixed base articulated
serial manipulator, a moving base articulated serial manipu-
lator, a fixed base articulated robot with branching links, and
a moving base articulated robot with branching links.

3. The method of claim 1, wherein the digital proxy
simulation includes, at least in part, a sensor simulation, a
kinematic simulation, a dynamic simulation, and an envi-
ronment simulation.

4. The method of claim 1, further includes executing, by
one or more processors, the digital proxy simulation using at
least one of network communications and network commu-
nications over the Internet.

5. The method of claim 4, wherein the network commu-
nications and the network communication over the Internet
are provided using Data Distribution Service (DDS) for
real-time systems.

6. The method of claim 1, wherein the robotic hardware
and the digital proxy simulation have the same network
interface.

7. The method of claim 3, wherein the environment
simulation includes, at least in part, a terrain simulation and
an interaction with the robotic hardware.

25

30

40

45

55

60

64

8. The method of claim 1, wherein the movement of the
robotic hardware is rendered at least on one of a computer
and a handheld electronic device.

9. The method of claim 3, wherein the dynamic simulation
includes numerical integration of Newton’s and Euler’s
dynamic equations for moving parts.

10. A computer program product comprising a non-
transitory computer readable medium having a plurality of
instructions stored thereon, which, when executed by a
processor, cause the processor to perform operations includ-
ing:

creating a digital proxy simulation for a robotic hardware

wherein the digital proxy simulation and the robotic
hardware share a network interface;
providing a user with an option to switch between the
robotic hardware and the digital proxy simulation; and

upon receiving a user selection, executing the switch
between the robotic hardware and the digital proxy
simulation, wherein executing the switch includes
transferring sensor or user-interface driven input and
output signals during or before operation between the
digital proxy simulation and the robotic hardware,
wherein the robotic hardware includes one or more of
a stereo camera and a lidar sensor, wherein, after the
switch, the user is controlling one of the robotic hard-
ware or the digital proxy simulation but not both at a
given point in time.

11. The computer program product of claim 10, wherein
the robotic hardware is at least one of a mobile robot, a fixed
base articulated serial manipulator, a moving base articu-
lated serial manipulator, a fixed base articulated robot with
branching links, and a moving base articulated robot with
branching links.

12. The computer program product of claim 10, wherein
the digital proxy simulation includes, at least in part, a
sensor simulation, a kinematic simulation, a dynamic simu-
lation, and an environment simulation.

13. The computer program product of claim 10, further
includes executing, by one or more processors, the digital
proxy simulation using at least one of network communi-
cations and network communications over the Internet.

14. The computer program product of claim 13, wherein
the network communications and the network communica-
tion over the Internet are provided using Data Distribution
Service (DDS) for real-time systems.

15. The computer program product of claim 10, wherein
the robotic hardware and the digital proxy simulation have
the same network interface.

16. The computer program product of claim 12, wherein
the environment simulation includes, at least in part, a
terrain simulation and an interaction with the robotic hard-
ware.

17. The computer program product of claim 10, wherein
the movement of the robotic hardware is rendered at least on
one of a computer and a handheld electronic device.

18. The computer program product of claim 12, wherein
the dynamic simulation includes numerical integration of
Newton’s and Euler’s dynamic equations for moving parts.

19. A computing system comprising:

at least one processor, and at least one memory architec-

ture coupled with the at least one processor; the at least
one processor configured to:

create a digital proxy simulation for a robotic hardware

wherein the digital proxy simulation and the robotic
hardware share a network interface;

provide a user with an option to switch between the

robotic hardware and the digital proxy simulation; and

US 10,078,712 B2

65

upon receiving a user selection, execute the switch
between the robotic hardware and the digital proxy
simulation, wherein executing the switch includes
transferring sensor or user-interface driven input and
output signals during or before operation between the
digital proxy simulation and the robotic hardware,
wherein the robotic hardware includes one or more of
a stereo camera and a lidar sensor, wherein, after the
switch, the user is controlling one of the robotic hard-
ware or the digital proxy simulation but not both at a
given point in time.

20. The computing system of claim 19, wherein the
robotic hardware is at least one of a mobile robot, a fixed
base articulated serial manipulator, a moving base articu-
lated serial manipulator, a fixed base articulated robot with
branching links, and a moving base articulated robot with
branching links.

21. The computing system of claim 19, wherein the digital
proxy simulation includes, at least in part, a sensor simula-
tion, a kinematic simulation, a dynamic simulation, and an
environment simulation.

22. The computing system of claim 19, further includes
executing, by one or more processors, the digital proxy
simulation using at least one of network communications
and network communications over the Internet.

20

66

23. The computing system of claim 22, wherein the
network communications and the network communication
over the Internet are provided using Data Distribution Ser-
vice (DDS) for real-time systems.

24. The computing system of claim 19, wherein the
robotic hardware and the digital proxy simulation have the
same network interface.

25. The computing system of claim 21, wherein the
environment simulation includes, at least in part, a terrain
simulation and an interaction with the robotic hardware.

26. The computing system of claim 19, wherein the
movement of the robotic hardware is rendered at least on one
of' a computer and a handheld electronic device.

27. The computing system of claim 21, wherein the
dynamic simulation includes numerical integration of New-
ton’s and Euler’s dynamic equations for moving patts.

28. The method of claim 1, wherein digital proxy simu-
lation includes:

receiving, by one or more processors, at least one channel

image for multi-channel camera simulation;
applying, by one or more processors, one or more textures
to a terrain node for each channel image; and

viewing, by one or more processors, the one or more
textures through one or more of a custom vertex shader
and a custom fragment shader.

#* #* #* #* #*

	10078712-p0001.pdf
	10078712-p0002.pdf
	10078712-p0003.pdf
	10078712-p0004.pdf
	10078712-p0005.pdf
	10078712-p0006.pdf
	10078712-p0007.pdf
	10078712-p0008.pdf
	10078712-p0009.pdf
	10078712-p0010.pdf
	10078712-p0011.pdf
	10078712-p0012.pdf
	10078712-p0013.pdf
	10078712-p0014.pdf
	10078712-p0015.pdf
	10078712-p0016.pdf
	10078712-p0017.pdf
	10078712-p0018.pdf
	10078712-p0019.pdf
	10078712-p0020.pdf
	10078712-p0021.pdf
	10078712-p0022.pdf
	10078712-p0023.pdf
	10078712-p0024.pdf
	10078712-p0025.pdf
	10078712-p0026.pdf
	10078712-p0027.pdf
	10078712-p0028.pdf
	10078712-p0029.pdf
	10078712-p0030.pdf
	10078712-p0031.pdf
	10078712-p0032.pdf
	10078712-p0033.pdf
	10078712-p0034.pdf
	10078712-p0035.pdf
	10078712-p0036.pdf
	10078712-p0037.pdf
	10078712-p0038.pdf
	10078712-p0039.pdf
	10078712-p0040.pdf
	10078712-p0041.pdf
	10078712-p0042.pdf
	10078712-p0043.pdf
	10078712-p0044.pdf
	10078712-p0045.pdf
	10078712-p0046.pdf
	10078712-p0047.pdf
	10078712-p0048.pdf
	10078712-p0049.pdf
	10078712-p0050.pdf
	10078712-p0051.pdf
	10078712-p0052.pdf
	10078712-p0053.pdf
	10078712-p0054.pdf
	10078712-p0055.pdf
	10078712-p0056.pdf
	10078712-p0057.pdf
	10078712-p0058.pdf
	10078712-p0059.pdf
	10078712-p0060.pdf
	10078712-p0061.pdf
	10078712-p0062.pdf
	10078712-p0063.pdf
	10078712-p0064.pdf
	10078712-p0065.pdf
	10078712-p0066.pdf
	10078712-p0067.pdf
	10078712-p0068.pdf
	10078712-p0069.pdf

