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METHODS AND APPARATUS FOR
AUTONOMOUS ROBOTIC CONTROL

CROSS-REFERENCE TO RELATED PATENT
APPLICATION

This application is a bypass continuation of International
Application No. PCT/US2015/021492, filed Mar. 19, 2015,
and entitled "Methods and Apparatus for Autonomous
Robotic Control," which claims priority, under 35 U.S.C. §
119(e), from U.S. Application No. 61/955,755, filed Mar. 19,
2014, and entitled "Methods and Apparatus for Autonomous
Robotic Control." Each of these applications is hereby
incorporated herein by reference in its entirety.

GOVERNMENT SUPPORT

This invention was made with government support under
Contract No. FAS750-12-C-0123 awarded by Air Force
Research Laboratory (AFRL) and under Contract No.
NNX12CG32P awarded by NASA Phase I STTR. The
government has certain rights in the invention.

BACKGROUND

For a mobile robot to operate autonomously, it should be
able to learn about, locate, and possibly avoid objects as it
moves within its environment. For example, a ground
mobile/air/underwater robot may acquire images of its envi-
ronment, process them to identify and locate objects, then
plot a path around the objects identified in the images.
Additionally, such learned objects may be located in a map
(e.g., a world-centric, or allocentric human-readable map)
for further retrieval in the future, or to provide additional
information of what is preset in the environment to the user.
In some cases, a mobile robot may include multiple cameras,
e.g., to acquire sterescopic image data that can be used to
estimate the range to certain items within its field of view.
A mobile robot may also use other sensors, such as RADAR
or LIDAR, to acquire additional data about its environment.
RADAR is particularly useful for peering through smoke or
haze, and lidar returns can sometimes be used determine the
composition of objects within the environment.
A mobile robot may fuse LIDAR, RADAR, IR, ultra-

sound, and/or other data with visible image data in order to
more accurately identify and locate obstacles in its environ-
ment. To date, however, sensory processing of visual, audi-
tory, and other sensor information (e.g., LIDAR, RADAR)
is conventionally based on "stovepiped," or isolated pro-
cessing, with little interactions between modules. For this
reason, continuous fusion and learning of pertinent infor-
mation has been an issue. Additionally, learning has been
treated mostly as an off-line method, which happens in a
separate time frame with respect to performance of tasks by
the robot.
As opposed to this, animals perform both learning and

performance simultaneously, effortlessly segmenting sen-
sory space is coherent packets to be fused in unique object
representations. An example is a conversation between two
people in a crowded party, where the signal-to-noise ratio
(S/N) of the speaker voice is extremely low. Humans are
able to focus visual attention to the speaker, enhance S/N,
bind the pitch of the speaker to the appropriate person
speaking, and learning the joint "object" (visual appearance
and speaker identity) so that recognition of that person is
possible with one modeality alone.

2
SUMMARY

Embodiments of the present invention include a system
for automatically locating and identifying an object in an

5 environment. In one example, the system comprises at least
one sensor (e.g., an image sensor, RADAR, microphone,
etc.), a spatial attention module (aka a Where system)
operably coupled to the sensor, and a semantics module (aka
a What module) operably coupled to the spatial attention

to module. In operation, the sensor acquires sensor data rep-
resenting of at least a portion of the object. The spatial
attention module produces a foveated representation of the
object based on the sensor data, track a position of the object
within the environment based on the foveated representa-

15 tion, and selects another portion of the environment to be
sensed by the sensor based on the foveated representation of
the object. And the semantics module determines an identity
of the object based on the foveated representation of the
obj ect.

20 It should be appreciated that all combinations of the
foregoing concepts and additional concepts discussed in
greater detail below (provided such concepts are not mutu-
ally inconsistent) are contemplated as being part of the
inventive subject matter disclosed herein. In particular, all

25 combinations of claimed subject matter appearing at the end
of this disclosure are contemplated as being part of the
inventive subject matter disclosed herein. It should also be
appreciated that terminology explicitly employed herein that
also may appear in any disclosure incorporated by reference

30 should be accorded a meaning most consistent with the
particular concepts disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

35 The skilled artisan will understand that the drawings
primarily are for illustrative purposes and are not intended to
limit the scope of the inventive subject matter described
herein. The drawings are not necessarily to scale; in some
instances, various aspects of the inventive subject matter

4o disclosed herein may be shown exaggerated or enlarged in
the drawings to facilitate an understanding of different
features. In the drawings, like reference characters generally
refer to like features (e.g., functionally similar and/or struc-
turally similar elements).

45 FIG. 1 shows an example OpenSense architecture, in this
case illustrating three sensory modalities, but expandable to
other sensor types and number.
FIG. 2A is a block diagram of an example OpenEye

system.
50 FIG. 2B is a block diagram of the Where Pathway module

shown in FIG. 2A.
FIG. 2C is a block diagram of the What Pathway module

shown in FIG. 2B.
FIGS. 3A-3D illustrate a process for identifying and

55 locating objects in a robot's environment by fitting a spatial
shroud to successive images of the robot's environment.
FIG. 4 illustrates control of a robot using the OpenEye

system via a remote controller, such as a tablet or smart-
phone.

60 FIGS. 5A and 5B illustrate an implementation of the
temporal Adaptive Resonance Theory (tART) model.
FIGS. 6A and 6B illustrate operation of a high-level

Where pathway.
FIG. 7 illustrates anomaly detection based on raw data

65 match/mismatch.
FIG. 8 illustrates anomaly detection based on raw data

match/mismatch.
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FIG. 9 illustrates a search driven by the presence of a
search target.

FIG. 10 illustrates a Virt-U environment that integrates
game engine and neural computation environment.

FIG. 11 illustrates Virt-U operation in simulation mode.
FIG. 12 illustrates Virt-U operation in "no-brainer" mode.
FIG. 13 is a diagram of the sensors, actuators, and

processors in an example robotic system.
FIG. 14 is a diagram of objects within the robotic system

and their communication streams.
FIG. 15 illustrates a fine observer that scans unknown

areas and objects in an input image and a coarse observer
that bases the fine observer via fast scene segmentation.

FIG. 16 illustrates coarse and fine observer interactions
based on sensor data acquired by a robot.

FIG. 17 illustrates differences in processing with (center
column) and without (left column) a coarse observer and
with a coarse observer trained in different environments
(right column).

FIGS. 18A and 18B illustrate an example simulation of
autonomous navigation with a coarse observer.

FIG. 19 illustrates temporal continuity in the fine
observer.

DETAILED DESCRIPTION

The technology described herein provide a unified mecha-
nism for identifying, learning, localizing, and tracking
objects in an arbitrary sensory system, including data
streams derived from static/pan-tilt cameras (e.g., red-green-
blue (RGB) cameras, or other cameras), wireless sensors
(e.g., Bluetooth), multi-array microphones, depth sensors,
infrared (IR) sensors (e.g., IR laser projectors), monochrome
or color CMOS sensors, and mobile robots with similar or
other sensors packs (e.g., LIDAR, IR, RADAR), and virtual
sensors in virtual environments (e.g., video games or simu-
lated reality), or other networks of sensors. Additionally, the
technology disclosed herein allows for stable learning of the
identity of single sensor modality of multiple sensor modal-
ity objects in the above sensor data streams. Additionally, the
technology disclosed herein enables fusion of disparate
sensory information in a unified sensory object using spatial
information (location of object in 3D space) to (a) enhance
sensor information pertinent to the object and suppress
sensor information that is not pertinent (S/N enhancement)
and (b) learn joint representation of the object via online
learning.

In one example, the the technology disclosed herein
processes the input either as one or more continuous streams
representing the environment or as static sensors snapshots
of the environment. The technology applies a hierarchical
neurally-inspired mathematical model that combines several
learning systems in a reciprocally connected, feedforward/
feedback (including recurrent) architecture. This learning
technique allows networks of rate-based (neurons or nodes
or population of nodes that are represented by continuous
variables) or spike-based (neurons or nodes that are repre-
sented by continuous variables and that communicate by
spikes, or sparse binary events) neural models organized in
adaptive (learning) stackable modules to learn, in real time,
novel patterns. These techniques do not require batch learn-
ing, yet allow fast, incremental, online learning as exhibited
in fast learning models.
The technology presented herein addresses major limita-

tions in current approaches, including but not limited to: (1)
the inability to segregate discrete objects of interest to be
learned in the data stream from their "background"; (2) the

4
need to design separate sub-systems for object segregation,
object recognition, and object tracking; (3) the inability of a
system to maintain temporal continuity (identity, position)
of objects in the environment taking into account motion of

5 the object and observer; and (4) the need to separate system
learning and system use (or deployment, or performance) in
two distinct stages to prevent overriding prior learning of
object in the data stream.

Neurally Inspired Robot Perception, Object Identification,
io and Object Location

A conventional robot does not perceive its environment
like a human. For example, a robot may "see" its environ-
ment by acquiring imagery of some or all or its environment
at a uniform resolution. It then processes the imagery by

15 dividing the imagery into a grid of pixels and examining
each pixel in the grid. This process can take too much time
and too much energy to be useful for identifying objects
moving relative to the robot, especially if the robot is
moving at relatively high velocity (e.g., a drone flying at low

20 altitude). In addition, the robot may spend an inordinate
amount of time processing empty or irrelevant pixels.
A human does not process the detail of entire images on

a pixel-by-pixel basis. Instead, the human eye acquires
imagery of non-uniform resolution: the central part of the

25 retina, or fovea, which is densely packed with light-sensitive
cones, acquires the central part of each image at relatively
fine resolution. And the peripheral portion of the retina,
which is covered at lower density with light-sensitive rods
and cones, acquires the peripheral portion of each image at

30 coarser resolution. The resulting "foveated imagery" has
resolution that varies spatially across each image, with the
finest resolution at a fixation point and coarser resolution
elsewhere. This notion of obtaining imagery at a resolution
that varies spatially across each image is referred to herein

35 as "foveation."
To account for the spatial variation in image resolution, a

human moves his or her eyes rapidly among different points
in his or her field of view. For instance, a human may fixate
on points at or near an interesting portion of a scene, such

4o as a face, for relatively long periods, and fixate on points at
or near less interesting portions of the scene, such as a tree,
for shorter periods, if at all. These quick, simultaneous
movements to different fixation points, or saccades, allow a
human to identify and locate items of interest without

45 spending time or energy examining interesting portions of
the scene.

Similarly, the OpenSense technology disclosed herein
allows a robot to identify and locate objects in its environ-
ment using "foveated" data collection and "saccade" style

5o allocation of sensor resources as explained below with
respect to FIGS. 1-4. For instance, in a visual implementa-
tion of OpenSense, called "OpenEye," one or more proces-
sors may control collection and processing of visual imagery
according to a neural model inspired by the human brain. A

55 camera or other sensor acquires imagery of the robot's
environment and passes this imagery to a graphics process-
ing unit (GPU) or other suitable processor, which locates and
identifies one or more objects in the imagery (e.g., using the
What and Where pathways described in greater detail

6o below) based on the imagery itself and information about the
sensor's orientation, position, and/or field of view. In some
cases, the GPU may translate the imagery among different
frames of reference, including camera-centered, robot-based
egocentric, and allocentric frames of reference, to make

65 processing more efficient and/or more precise.
The processor also determines the next fixation point of

the sensor system based on the location and/or identity of the
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object(s). In some cases, it transmits movement vector
representing the saccade between the current fixation point
and the next fixation point to an actuator that then actuates
the sensor appropriately. For instance, the processor may
cause a pan-tilt actuator to move a camera mounted on the 5

robot so as to acquire imagery of an object from different
angles and/or positions. The robot itself may move to change
the sensor's field of view. In other cases, the processor may
cause synthetic "saccades," e.g., by processing different
portions of the same image or different portions of different io
images at different resolutions depending on the objects and
their locations. The robot may also use object information
and sensor position and orientation data to inhibit the sensor
from fixating repeatedly on the same object or the same
portion of the scene. 15

Just like human perception, robotic perception in the
OpenSense framework can extend to sources of sensory
information besides visible imagery. For instance, the
OpenSense framework can be applied to range data acquired
by RADAR, LIDAR, and SONAR. It can also be applied to 20
passive electromagnetic sensing, including audio sensing.
Moreover, the GPUs and/or other processors can allocate
sensor resources dynamically in a manner similar to the
foveation and saccading discussed above with respect to
visual imagery, e.g., by causing a nodding LIDAR to change 25
its sweep arc or rate, by processing audio data at different
spectral resolutions in different bands or detecting sound
waves emanating from a particular location, by orienting the
receptivity pattern of a radio-frequency in particular direc-
tion, etc. 30

And like a human brain, the neural-network can fuse data
from multiple sources in order to more efficiently identify
and locate objects in a robot's environment as explained
below with respect to FIG. 1. For example, a robot may use
an image sensor to take a picture of an object, then identify 35
and locate the object from the picture using a vision-oriented
What/Where system. The vision-oriented What/Where sys-
tem sends an output representing the object's identity and/or
location (e.g., "focus at x12, y32, z31") to a joint
What/Where system that also controls an audio-oriented 40
What/Where system and a RADAR-oriented What/Where
system. In some cases, the vision-oriented What/Where
system's output may be in a frame of reference defined with
respect to the robot (an egocentric reference frame) or
defined with respect to other objects in the environment (an 45
allocentric reference frame).
The joint Where system tells one or more of the other

sensory modules in the OpenSense framework (auditory,
RADAR, etc): "all focus at x=12, y=32, z=31." The auditory
system responds to this command by suppressing anything 50
in the auditory data stream that is not in x=12, y=32, z=31,
e.g., by using Interaural Time Differences (ITD) to pick up
signals from one location, and suppress signals from other
locations. Similarly, the RADAR system may focus only on
data acquired from sources at or near x=12, y=32, z=31, e.g., 55
by processing returns from one or more appropriate azi-
muths, elevations, and/or range bins.
Each lower-level Where system may generate its own

estimate of the object's location and pass this estimate to its
corresponding What system and to the joint Where system. 60
Similarly, each lower-level What system may generate its
own object identification based on the corresponding object
location estimate and pass this information to the joint
What/Where system. The robot's joint What/Where fuses
and processes this information to identify and locate the 65
object, possibly with a higher degree of confidence than any
of the lower level What/Where systems. For instance, the

6
joint Where system may select a unique spatial location in
3D space, then bias the What system module to fuse the
identity of separate sensory streams into a coherent object-
centered representation.

Because the technology disclosed herein mimics human
neural processing, it can process imagery and other sensory
data more efficiently and identify objects in the robot's
environment more quickly. This is especially useful for
robots in hazardous applications, such as planetary explo-
ration, where processing and battery efficiency are critical,
and for robots that collect large volumes of data, such
surveillance drones, where efficient sensemaking is key to
interpreting large amounts of real-time data. It also has
general application to all types of vision systems, including
simulations, such as those used in video games, flight
simulators, etc.
The OpenSense System
FIG. 1 illustrates an embodiment of the technology dis-

closed herein, called OpenSense, which allows real-time
sensing and cognitive reasoning on heterogeneous sensor
streams. OpenSense can autonomously fuse multiple sen-
sory inputs into a multisensory scene, segregate this multi-
sensory scene into objects that correspond to distinct physi-
cal sources, dynamically allocate sensor resources for fast
and automatic enhancement of high-priority targets and
noise suppression, and detect when anomalous changes
occur to known objects based on changes in low-level sensor
signature.
FIG. 1 shows that OpenSense includes several What-

Where systems (described in greater detail below). FIG. 1
shows how these What-Where systems can be combined
together in a higher-order sensory processing system
(OpenSense) that can fuse data from many sensors into a
coherent object, and continuously learn about the coherent
object while tracking it. This higher-order sensory process-
ing system goes beyond other systems as it combines online
learning, focus of attention (namely, learning only what
belongs to objects, and fuse the corresponding data, rather
than fuse all which comes to the sensors irrespective of what
in the environment generates the signal), and tracking in one
single solution.

Although FIG. 1 illustrates OpenSense system with three
sensory inputs, the OpenSense system can be generalized to
arbitrary numbers and types of sensory inputs (e.g., static/
pan-tilt cameras, wireless sensors, multi-array microphone,
depth sensors, IR laser projectors, monochrome CMOS
sensors, and mobile robots with similar or other sensors
packs e.g., LIDAR, IR, RADAR, and virtual sensors in
virtual environments e.g., video games or simulated real-
ity or other networks of sensors).

In the example shown in FIG. 1, camera inputs (100),
audio signals (500), and radio signals (600) are collected
from a camera, microphones, and radio sensors (e.g., Blu-
etooth), respectively. Visual, auditory, and radio information
is processed by three modules based on the same basic
architecture, each including mutual interactions between
respective semantic components, also called What compo-
nents (semantic, 140, 540, and 640), and respective spatial
attention components, also called Where components (spa-
tial attention, 170, 570, and 670). Individual Where path-
ways converge in a high-level Where stage (700) and
compete to grab "attentional focus" among sensory systems.
This high-level Where stage (700) allows a high-level What
system (800) to fuse pertinent multi-sensory information,
e.g., creating an objects category that maps spatially-defined
visual, auditory, and radio signals in a unique object. The
high-level What system (800) also projects back to each
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sensor raw data stages (bi-directional connections) to match
object expectation with low-level data and generate anomaly
alerts. The high-level Where system (700) narrows the
sensors' "fields of view" to collect information about the
object in the current focus of attention until the high-level
What system (800) has gained enough data for learning or
classification. The system automatically generates scene
metadata associated with each video frame summarizing
object identity and anomalies (900). Finally, analysts can
provide human-readable labels (1000) for the multi-sensory
object.
An implementation of this technology for the visual

domain is named OpenEye and uses physical or virtual
pan-tilt or static cameras to collect data. OpenEye can be
implemented as an artificial, active sensory system that
addresses limitations set forth above in a unified framework.
OpenEye may be used in both artificial environments (e.g.,
synthetically generated environments via video-game
engine) and natural environments. OpenEye learns incre-
mentally about its visual input, and identifies and catego-
rizes object identities and object positions. OpenEye can
operate with or without supervision it does not require a
manual labeling of object(s) of interest to learn object
identity. OpenEye can accept user input to verbally label
objects. OpenEye simulates a mammalian brain's dorsal
(where controlling where to look) and ventral (what
controlling the content of the image) pathways by using
simulated eye movements (in virtual or real cameras) to
learn identity of objects in complex images.

In some implementations OpenEye uses a space-variant,
log-polar representation of the input visual field to sample
the image "view" generated by each eye movement. The
log-polar representation provides some invariance to trans-
lation/rotation. The log-polar representation can also pro-
vide substantial savings in processing time with better
scalability to large datasets by employing non-uniform input
sampling and rapid scan of image segments, as opposed to
processing of the whole image at equal resolution.
OpenEye uses the what-to-where feedback to sample the

image intelligently. OpenEye does so by using knowledge of
the identity of the current object and its context to focus on
spatial locations that yield greatest disambiguation of com-
peting object identity (e.g., areas of an image that are more
unique to an object). OpenEye may be validated on natural
and synthetic images, as well as on the standard datasets
(one example is the Mixed National Institute of Standards
and Technology (MNIST) handwritten digit dataset).
As opposed to other approaches (e.g., neural networks),

the OpenSense method, and the specific OpenEye imple-
mentation, may not need to rely on extensive training (batch
training) to be able to classify correctly objects in the data
stream. OpenEye can learn new knowledge online (e.g.,
during performance) without corrupting or forgetting previ-
ously learned knowledge and without needing to retrain the
system on the whole knowledge database (batch learning).
Additionally, the system is able to autonomously search for
information in an image via an active visual search process,
which mimics the mechanism used by mammals to rapidly
and efficiently scan their visual world for information to
confirm or disprove the current hypothesis about the object
class. The OpenEye memory system allows on-line changes
of synaptic weights, which represent the memory (knowl-
edge) of the system. Additionally, OpenEye can mimic
human eye movements by reproducing human fixation pat-
terns with or without a training session where OpenEye
learns the fixation location of a human user via eye-tracker.

Visual Stream Exploration and Visual Object Learning

8
The OpenEye model proposes a method for combining

visual stream exploration and visual object learning. Each is
considered separately below.

Visual Stream Exploration Models
5 The computational model proposed by Itti and Koch

(2001) simulates aspects of human vision which predict the
probability that a particular image area will attract an
observer's attention and eye movements. The Itti and Koch
model includes only bottom-up, or sensory features, whereas

10 OpenEye also accounts for cognitive (top-down) biases on
eye movements. Additionally, the Itti and Koch model does
not include learning, object, or scene recognition, which are
instead incorporated in OpenEye, where they bias image

15 stream exploration as discussed below.
OpenEye also differs from the Riesenhuber and Poggio

(1999) neural model, which employs a spatially homog-
enous representation of the image. In contrast, OpenEye
uses both a spatially variant representation of the image and

20 sensor movement. Both the Itti & Koch (2001) and Riesen-
huber & Poggio (1999) models postulate that visual objects
need to be identified in one glance. OpenEye, instead,
accounts for the potential need to explore the input sensory
image to gather additional evidence for recognition, which

25 is particularly useful for ambiguous objects/scenes (e.g.,
occluded objects).

Visual Object Learning Models
In terms of learning, OpenEye may use two interchange-

able learning methodologies. The first method, described in
3o detail below, is based on the Baraldi and Alpaydin (1998,

2002) and Baraldi and Parmiggiani (1997) learning models,
which provide the following benefits. The second method is
based on a recurrent adaptive architecture described herein.
Both methodologies simultaneously implement fast and

35 slow learning.
Usually, fast learning (e.g., Carpenter and Grossberg,

1987) systems underperform slow-learning ones (Rumelhart
et al., 1986), but the former are much more useful in
engineered system such as robots or sensors operating in

4o real-time in a rapidly changing environment. After only
single instance of presentation of each item, humans and
other animals can learn to recognize pictures, words, names,
and faces, and recording at a local cellular level confirms
that neurons can change to reflect such fast learning (Bun-

45 zeck & Diizel, 2006; Rutishauser et al., 2006). To date, no
artificial system has been engineered to achieve this goal in
a machine.

Several object recognition algorithms have been devel-
oped over the last few decades (for reviews, see Besl and

50 Jain, 1985; Logothetis and Sheinberg, 1996; Riesenhuber
and Poggio, 2000; Bengio et al., 2012). In general, a
commonality between these algorithms is the focus on
finding the appropriate representation for the data, where the
difference among algorithms performance is due to the

55 nature of the features/input data transformations. For
instance, convolutional network models (Ranzato et al.,
2007; Jarrett et al. 2009; LeCun et al., 2010) and restricted
Boltzmann machines (Smolensky, 1986; Salakhutdinov and
Hinton, 2009) are among the best object recognition algo-

6o rithms. Both classes of algorithms perform three main steps:
(1) feature extraction, which can be either hardwired, ran-
dom, or learned; (2) non-linear transformation on the result-
ing filtered data; and (3) a pooling step on the result of step
(2). The connectivity between stages and the number of

65 filter-transform-pool stages can vary.
Deep learning networks include networks where there are

several layers of stacked filter-transform-pool, e.g., in the
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HMAX model (Riesenhuber & Poggio, 1999) and deep
belief networks (Hinton et al., 2006).

Similarly, Spratling (2008, 2009, 2012) has introduced
several recognition systems built of stackable "cortical"
modules. These models are composed of modules that work
hierarchically and perform a process called "predictive
coding", that looks very akin to matching in an ART system.
A close examination of the derivation of the learning laws in
these systems (Spratling et al., 2009) reveals that they were
developed as an incremental version of a well-known batch
coding algorithm, non-negative matrix factorization (NMF),
developed by Lee and Seung (1997, 1999). The algorithm
presented by Spratling at al. does allow incremental (fast)
learning, but does not include methods for object segrega-
tion/segmentation, scene recognition, and active vision.

However, none of the above-mentioned object recogni-
tion algorithms deals with the issues of how objects are
separated from their background, and neither of those mod-
els uses space-variant sampling.
The ARTScan (Fazl et al., 2009) Model, the Saccading

Restricted Boltzmann Machine (sRBM) (Larochelle & Hin-
ton, 2012), and the Entropy Minimization Algorithm of
Saccades (Friston et al., 2012)
The saccading restricted Boltzmann machine (Larochelle

and Hinton, 2012) uses space variant vision. However, it
does not include a mechanism that informs the system when
the system stops fixation from an object and starts fixating
on another, which is provided by a human supervisor. The
system could not tell apart two identical objects presented
side-by-side with a spatial gap separating them.
The entropy minimization algorithm of saccades (Friston

et al., 2012) includes bi-directional What-to-Where stream
interactions but does not use space-variant vision, and
suffers from the same issue as Larochelle and Hinton (2012)
in terms of object fixation memory.
The ARTScan (Fazl et al., 2009) model includes Where-

to-What interaction in guiding when the What system should
learn/stop learning, but does not include What-to-Where
interactions to inform eye movement and visual search.
Additionally, OpenEye differs from ARTScan in these addi-
tional dimensions:
OpenEye and ARTScan use a different log-polar sam-

pling;
OpenEye shroud formation is feed-forward;
OpenEye is designed to operate in 3D environment in a

noisy background;
OpenEye is designed to handle self-motion;
OpenEye employs a concept of temporal continuity to

support dynamic scenes;
OpenEye can combine multiple saliencies, endogenous

spatial attention, attention to specific features in order
to make next saccade; and

OpenEye was tested standard MNIST database, whereas
ARTScan was tested on handcrafted images.

Object learning models from Baloch and Waxman (1991),
Bradski and Grossberg, (1995), Seibert and Waxman (1992)
do use space-variant transformation, or "cortical magnifica-
tion", but only focus statically at an object's center-of-mass.
OpenEye methods discussed below employ a learning

scheme that maximizes memory efficiency in terms of
learning accuracy and capacity to enable both fast and slow
stable learning of sensory features.

Benefits and Applications
Benefits of these methods and systems disclosed herein

include providing a single process for identifying, learning,
localizing, and tracking objects in an arbitrary sensory
system (e.g., data streams derived from static/pan-tilt cam-

10
eras, cameras, LIDAR, IR, RADAR, microphones arrays, or
other networks of sensors, including sensors on one or more
mobile robots) and for learning the identity of different
sensory scenes. Exemplary embodiments allow quick and

5 stable learning of new patterns without the need to retrain
the system, while reducing network (system) size and com-
munication between system components with respect to
competing models. The technology disclosed herein is use-
ful to allow continuous learning of arbitrary sensory repre-

io sentations in hierarchies of rate-based or spike-based neural
processing stages connected by adaptive (learnable) synap-
tic weights. This technology disclosed herein is general
enough to be applicable to any sensory system, and the
learning techniques can be applied to two or multiple-stages

15 network, where a neural stage can be a sensory stage and
another neural stage can be a higher-order (e.g., categoriza-
tion) stage. Additionally, the techniquescan be applied to
higher-order processing stages, e.g., in higher-orderprocess-
ing stages where representations are more abstract than the

20 one pertaining neural stages at the sensor stage. Addition-
ally, a benefit of this technology is to allow fast learning of
new stimuli without the need to interrupt the functioning of
the machine. This allows a robot, a camera, a microphone,
or another sensor (e.g., LIDAR, RADAR, IR sensor) to

25 quickly learn the identity of a new, previously unlearned
input without the need to retrain previously seen input.
The technology presented herein has applications in

designing software to either extract information or control
mobile robots, cameras, microphones, motorized vehicles

30 (e.g., self-driving cars) or other networks of sensors. In
particular, the technology disclosed herein allows these
machines to increase their knowledge base (e.g., the number
of visual, acoustic, or other sensors object it can recognize)
over time without the need to retrain the system on the entire

35 knowledge base.
OpenEye Overview
In its first instantiation of OpenSense as a visual system

operating on visual data, the OpenEye model is comprised
of four main modules: the Environment Module, the Where

40 system, the What system, and an external module that can
provide a teaching signal to the what system. These four
components are discussed in detail below and shown in
FIGS. 1-4.
The Environment Module (e.g., camera 100, microphones

45 500, and/or wireless sensors 600) abstracts interactions
between the vision system and the environment, which can
be a virtual environment or a real environment sampled by
a fix/pan-tilt camera, a robot-mounted camera, or other
visual or non-visual sensory system. This module delivers a

50 visual image to the visual system and executes camera
movement commands, which emulate human eye move-
ments. The environment module allows OpenEye to interact
with the environment: virtual or real, static or dynamic, real
time or prerecorded.

55 One task of the Where System (130) is to decide where the
sensory system should "look" based on salient image prop-
erties extracted from the visual image, or based on infor-
mation coming from the What System pertaining to the
identity of objects in the environments, and/or the scene

60 identity as a whole. Processing of visual image by the where
system module includes aspects of the mammalian lateral
geniculate nucleus (LGN), primary visual cortex (V1), and
higher cortices (V2, MT, MST) processing. The image
obtained from the environment module in retinal coordi-

65 nates, undergoes log-polar transformation to simulate space-
variant sampling of the visual input and extraction of
features such as (but not limited to) edge, contour, color, and
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luminance. OpenEye's functioning is not limited to log-
polar sampling, and can operate with other space-variant
transformations, such as the reciprocal-wedge transform
(Tong and Li, 1995), or the pyramid method (Adelson et al.,
1984), as examples. 5

Also known as the dorsal stream in vision literature
(Mishkin and Ungerleider 1982; Webster et al., 1994),
OpenEye's Where System generates camera movements in
order to sample an image by foveation on the spatial location
it selects as the most salient, where saliency can be deter- io
mined by sensory input or semantic (What System) infor-
mation. Foveation is achieved by centering the sensor in the
object of interest, so that the object is likely to fall in the
center of the space-variant representation. A form-fitting
attentional shroud (namely a signal that fits the form, or 15
shape, of an object, similarly to the way a shroud or veil fits
the surface it rests on) is then formed around the foveated
object. The shroud serves to suppress surrounding objects in
order to isolate the object of interest for learning in the What
System, and enables the system to trigger further camera 20
movements centered exclusively on this enshrouded object.
The ability of the Where System to form this attentional
shroud around a single object has the added benefit of
detecting when a foveation has left the previous object of
interest. This change in foveated object produces a reset 25
signal that represents temporal discontinuity between the
foveations and is used by the What System to regulate
learning, with the result of allowing OpenEye to group
multiple views of an object (but not other objects, or the
background) into coherent object categories. Another func- 30
tion of the Where System is to maintain a visual working
memory of previously foveated locations such that the
camera does not persistently choose the same point of
fixation. Together with the Environment Module, the Where
System forms the Where Pathway (140) that concerns with 35
spatial interaction with the environment and spatial process-
ing.
The What System (150) includes a hierarchy of classifiers

that collectively learn to visually recognize an arbitrary
number of objects regardless of each object's position and 40
orientation relative to the sensor(s), e.g., a camera. The What
System receives an object's feature representation as input
from the Where System. Views are then clustered in an
incremental, unsupervised fashion into object representa-
tions based either on their similarity or according to their 45
temporal continuity as signaled by the Where System. The
Where System provides a shroud-based reset signal, dis-
cussed later, that informs the What System when seemingly
different views are part of the same or different object; this
signal is important to OpenEye's ability to learn pose- 50
invariant object representations (Fazl et al., 2009). An
optional external Teacher (160) provides a supervised learn-
ing environment that not only improves classification accu-
racy and learning speed but also dynamically creates a
user-friendly search interface to the visual system's learned 55
knowledge. Because of the hierarchical separation of unsu-
pervised view learning and supervised object-label learning,
the What System can be switched between unsupervised and
supervised learning modes at any time.
The What system and Teacher together form the What 60

Pathway (170), modeled upon the ventral visual processing
stream in the mammalian brain, which concerns the identity
of those objects viewed by OpenEye.

Encoding OpenEye Activity
One task for OpenEye operation is switching between the 65

coordinate systems centered on the on the robot/camera/
sensor (ego-centric), the environment (image-centric or

12
world-centric), and between metrics systems (Cartesian or
log-polar). For example, the image can be sampled using a
retinal metric (e.g., log-polar) or other metric (e.g., pyramid
or reciprocal-wedge), but the signal for the cameral to move
and how much to adjust the pitch and/or yaw is provided in
a Cartesian metric (linear). One role of the Where System
concerns translating between representations of a signal to
different coordinate bases.
For clarity, the coordinate systems is defined with a term

that refers to where the system is centered followed by a
term that defines the distance metric of the reference frame.
Reference frames can be centered at three possible locations:
1) sensor-centered, 2) ego-centered, and 3) image-centered.
Sensor-centered refers to a coordinate system where the (0,
0) location resides at the position of the current camera
center. Ego-centered refers to a coordinate system where (0,
0) corresponds to a neutral position of a sensor, with respect
which the camera center may be shifted or rotated. Image-
centered refers to a reference frame in which the (0, 0)
location is at the image center. Image-centered can also be
interpreted as global coordinates or scene-centered when the
scene is dynamically changing. Correspondingly there are
three set of dimensions used in OpenEye: Image Dimensions
[Wi HJ, Sensor Movement Range [We HJ, and Sensor
Dimensions [WS HJ that represent log-polar transform of
the Sensor Movement Range. This notation is used in
OpenEye description below.

There are two distance metrics in the coordinate frames:
1) log-polar, and 2) Cartesian. The log-polar distance metric
reflects how the eye naturally samples the image and image
representation in primary visual cortex, and is employed in
the described system by performing a space-variant (log-
polar in this case, but other methods could be used) trans-
formation to the ray input, while the Cartesian distance
metric is more pertinent when mapping representations onto
the real word or for invoking linear control of the eye/
camera. In the figures and text below, coordinate frame are
referred to as a combination of where it is centered and what
defines its distance.
FIGS. 2A-2C depicts aspects of the What and Where

systems shown in FIG. 1 for an OpenSense architecture that
processes visual data (aka an OpenEye system). FIG. 2A
shows the Environment Module (120) and the Where Sys-
tem (130), which collectively constitute the Where Pathway
(140). The environment module 120 includes an RGB image
sensor 100, which may acquire still and/or video images,
whose field of view can be shifted, narrowed, and/or
expanded with one or more actuators 110, including but not
limited to zoom lenses, tip/tilt stages, translation stages, etc.
The environment module 120 provides both image data from
the image sensor 100 and actuation data (sensor position
data) from the actuator(s) 110 to the Where system 130,
which in turn provides processed image data to the What
system 150. The environment module 120 also provides
actuation data (sensor position data) from the actuator(s)110
to the Teacher 160, which forms part of the What pathway
170 with the What system 150.

FIG. 2B shows the Where system 130 in greater detail. A
first log-polar transformation block 260 in the Where system
130 performs a log-polar transformation on the image data
from the image sensor 100 as described in greater detail
below. A feature extraction block 240 identifies features in
the transformed image data, which is segmented into
bounded regions by a segmentation block 180. A figure/
segregation block 210 segregates the bounded regions to
form a spatial shroud that fits the foveated region of the
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image. The figure/segregation block 210 provides a repre-
sentation of this spatial shroud to the What system 150.
FIG. 2B also shows that the actuator(s) 100 provide

sensor position data to a foveation memory 250 and an
inhibition of return block 220, which together prevent the
image sensor from foveating the same portions of the scene
(acquiring and/or processing imagery of the same portions
of the scene, e.g., at enhanced resolution) unnecessarily. A
second log-polar transformation block 230 performs a log-
polar transformation on the output of the inhibition of return
block and passes the transformed output to a hot spot
selection block 190, which determines the next portion of
the scene for foveation. A reverse log-polar transformation
block 270 transforms the output vector into the frame of
reference used by the actuator(s) 100 and provides the
transformed output vector to the actuator(s) 100 for actua-
tion of the sensor 100. A temporal object continuity block
200 processes another copy of the hot spot selection block
output to determine if the next foveation location falls off the
current object surface. If so, the temporal object continuity
block 200 transmits a "reset" signal to the What system 150.

FIG. 2C shows the What system 150 in greater detail. The
What system 150 uses data from the temporal object con-
tinuity block 200, the feature extraction block 240, and the
figure/ground segregation block 210 to identify and locate
objects in the scene imaged by the image sensor 100. A view
layer 280 uses features and shroud data from the Where
system 130 to cluster shroud-gated visual representations of
object views according to their feature similarity. A disam-
biguation map block 310 generates a disambiguation map of
the scene based on these representations from the view layer
280.
The object layer 290 uses the representations from the

view layer 280 to learn pose-invariant object representations
by associating different view prototypes from the view layer
280 according to their temporal continuity provided by the
reset signal from the Where system 130. This yields an
identity confidence measure, which can be fed into a name
layer 300 that groups different objects under the same user
label, which may be obtained from an optional teacher 160.
The optional teacher 160 shapes the association between
objects and their labels and feeds this information from the
Name layer 300 to the Object layer 290 and View layer 280
to the speed and accuracy of future object learning.

FIGS. 3A-3D provide an overview of how the OpenEye
determines temporal object continuity. In block 602, an
image sensor, which may or may not be mounted to the
robot, obtains imagery of the robot's environment. One or
more OpenEye processors translate one or more these
images from the camera frame of reference to an allocentric
frame of reference (e.g., a log-polar frame of reference) in
block 604. The OpenEye processor then segments the trans-
lated images in block 606. Next, the OpenEye processor
constructs a spatial shroud for a first image (block 608)
based on the current position and orientation of the input
sensor and uses the shroud to identify an object in the first
image (block 610). It then translates, rotates, skews, and/or
otherwise transforms the shroud to account for the sensor's
change in orientation and/or position between acquisition of
the first image and a second image (block 612).
The processor then determines if the transformed shroud

maps to an object in the second image (block 614). If so, the
processor determines that the object in the second image is
the same as the object that appears in the first image and
learns the object's location (e.g., stores a representation of
the object, its features, and/or its position in memory for
later retrieval). At this point, the processor may use an

14
actuator to orient and/or position the sensor in order to image
a different portion of the robot's environment. If the shroud
does not overlap with an object sufficiently in the second
image, the processor determines that the objects are different

5 and updates its memory accordingly. The processor may
then actuate the sensor to obtain additional images of the
object and the surrounding portion of the robot's environ-
ment.
FIGS. 313-31) illustrate the shroud construction and trans-

10 lation process. In FIG. 313, the sensor is centered on a face
702, where the center is marked by the dashed lines through
the field of view. The OpenEye processor shroud 704 is built
around this face 702, shown by the gray shading in the

15 diagram. After the sensor is reoriented and another image
acquired, the shroud 704 is translated and rotated to com-
pensate for the sensor motion. If the sensor is now centered
on a location marked by the shroud 704 in FIG. 3C, the
system identifies that this object is the same as the one

20 previously viewed. If the sensor is instead centered on a
location off of the shroud 704, as in FIG. 3D, the system
identifies and learns views of a new object.

Note that the What system (aka the classifier or semantics
module) can also contribute to controlling the Where system

25 (aka the spatial attention module). In particular, if the What
system has gathered enough evidence (namely, a certain
number of classifications where confidence is high) about
the foveated object, it may cause the Where system to stop
foveating that object, producing Inhibition Of Return (IOR)

30 for a few time steps in the future, so as to bias the visual
system to classify other objects in the scene.

Implementations of the What and Where Systems
The What system (spatial attention module) and the

Where system (semantics module) can be implemented in
35 hardware, firmware, software, or a suitable combination

thereof. For example, the What and Where systems may be
implemented as processor-implementable instructions that
are stored in non-transient form in one or more memories
located in or on a robot, such as a unmanned aerial, ground,

40 or submersible vehicle. Some or all of the processor-imple-
mentable instructions may also be stored on remote memory,
such memory in or accessible by a server that communicates
with the robot via a wireless communication link (e.g., a
radio-frequency or optical link).

45 The robot may include one or more processors that are
coupled to the memory and configured to execute the
instructions so as to implement the What and Where sys-
tems, including the individual modules shown in FIGS. 1
and 2A-2C. For example, the robot may execute the instruc-

50 tions with a central processing unit (CPU) and a graphics
processing unit (GPU), e.g., as disclosed in U.S. Pat. No.
8,648,867, which is incorporated herein by reference in its
entirety. The processor(s) can also be implemented as appli-
cation specific integrated circuits (ASICs), field-program-

55 mable gate arrays (FPGAs), and/or other device or compo-
nent as understood in the art.
In some embodiments, some or all of the processors may

be located remotely that is, not on or in the robot. For
example, the processors (include GPUs) may be located in

60 one or more smart phones, tablets, and/or single board
computers (SBCs). The processors may also form part or all
of a cluster computing environment, with each processor in
the cluster dedicated to particular task or group of tasks. In
these embodiments, the processors may communicate with

65 sensors, actuators, and other devices and components on or
in the robot via a suitable communications link, such as a
radio-frequency or optical communications link.
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FIG. 4 illustrates an OpenEye system 500 used to control
a wheeled robot 510. The OpenEye system 500 includes a
computing device 504, such as a tablet computer or other
electronic device with wireless capabilities, that is con-
trolled by a user 502. The computing device 504 commu-
nicates with the robot 510, which includes an image sensor
512 and an antenna 514, via a wireless link. The user 502
issues commands to the robot 510 via software running on
the computing device 504, a processor (not shown) on the
robot 510, and/or on other cloud-based processors (not
shown).

In operation, the image sensor 512 can be oriented and/or
positioned either by the user when manually operating the
robot or automatically by the software. For example, the
image sensor 512 may be mounted on a pan/tilt stage,
translation stage, or rotation stage that can be actuated to
change the image sensor's orientation and/or position. The
image sensor 512 may also have a (motorized) zoom lens
that can be used to zoom in or out on certain portions of the
environment. In addition, or instead, the image sensor 512
can be oriented or positioned as desired by moving the robot
510. In some cases, the image sensor 512 may static with
respect to the robot 510; this is roughly equivalent to
somebody without, say, neck and eye muscles. In order to
change the static image sensor's point of view, the body of
the robot rotates and/or moves, e.g., using wheels or legs for
ground robots, propellers for drones, thrusters for submers-
ible robots, etc.

Environment Module (120)
This Environment Module abstracts away the source of

visual imagery (cameras, real or virtual, or other sensors,
e.g. LIDAR) and applies sensor movement commands in the
manner consistent with the environment in which OpenEye
currently operates. OpenEye supports the following envi-
ronments:
Static Scenes—e.g., JPEG, PNG images, etc.;
Dynamic Scenes—e.g., movie files (.avi, .mp4, etc.);
Camera Real 3d visual world; and/or
Virtual Camera virtual environment, e.g., based on the
JMonkey game engine.
Concrete implementations of this module are specific to

the environment, but the input and the output should comply
with the specification below.
RGB Sensor (100)
RGB delivers the RGB image sampled from the environ-

ment as directed by the RGB Sensor Actuator. The later
simulates eye movement by moving the camera.

Sensor Movement Actuator (110)
Sensor Movement Actuator implements sensor (e.g., cam-

era) movement commands if they are supported by the
environment, otherwise this module returns eye position in
ego-centric coordinates.
Where System (130)
FIGS. 2A and 2B illustrate functions of the Where Sys-

tem, including producing a foveated view of the object to be
interpreted by the What System, to select the next location
to foveate based on sensory and internal semantic informa-
tion, and to determine and track the position of objects in the
visual field and return their coordinates. The diagram of the
Where System is presented on FIG. 2B. All modules part of
the Where System are enclosed in the module described in
(130). The Where System receives the video image from the
environment module and produces camera movement com-
mands to be executed by the environment module (120). The
Where System supplies the What System with the view of
the object it currently looks at and the Reset signal, which
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marks the beginning of the object foveation sequence. The
detailed description of the Where System modules is pre-
sented below.
Log-Polar Transformations

5 Several modules (230, 260, 270) perform transformation
between log-polar and Cartesian encoding of the distance
metric. OpenEye adheres to a bio-inspired log-polar trans-
form of the input image, but the model can be used with
different transform. The log-polar transform is applied to the

io RGB sensor subtending 136 degrees of visual angle, close to
that reported in humans and other animals (Traver and
Bernardino, 2010). The log-polar metric in space encoding
is used across both OpenEye Where and What Systems and
transformed back to the Cartesian metric by (230) only to

15 reference the external world beyond the current view, which
is required by the Environment Module (120), the Foveation
Memory module (250), and the Inhibition of Return module
(220) in the Where Pathway. All Log-polar transformation
modules share the parameters that specify dimensions of

20 log-polar [ws hs] and Cartesian image [WS HS].
Log-Polar Transformation of Retinal RGB Image (260)
The image sampled at the foveated location undergoes

log-polar transformation that amounts to space-variant sam-
pling with higher resolution in the foveal area and much

25 coarser resolution that falls with eccentricity outside the
foveal region (Traver and Bernardino, 2010). This provides
some invariance to translation/rotation and to save compu-
tational bandwidth while at the same time to acquire details
at the location of the image that present the highest interest

3o and is the most effective for the image representation.
Log-Polar Transformation of Inhibition of Return (230)
Similarly to retinal image, inhibition of return undergoes

log-polar transformation in order to prevent the HotSpot
Selection Module (190) from repeated foveations.

35 Reverse Log-Polar Transformation of Inhibition of Return
(270)

The HotSpot selected in the Log-polar view in sensor-
centered coordinates (190) needs to be transformed back to
Cartesian metric by (230) before it can be converted into

40 sensor movement command by the Environment Sensor
Movement Actuator (110).

Feature Extraction (240)
Feature Extraction (240) includes, but is not limited to,

computation of luminance and color. Other features could
45 include motion, or SIFT features (Lowe, 2004). "Features"

can include, but are not limited to:
A property of an image that can be associated with each
image location;

A scalar (e.g., luminance, 0-dimensions) or vector (e.g.,
50 color, 1 dimension);

•numerical (integer, or real, e.g. luminance, color) or binary
(Boolean, e.g., is an edge associated with this particular
pixel) value. More abstract properties (e.g., "edgeness")
can also be represented by a numerical feature strength

55 of the edge.
The description below specifies the features currently

implemented in OpenEye, but the description below should
not be intended to limit OpenEye applicability to these
features alone.

60 Luminance, Color
Luminance and Color can be extracted from the Log-polar

RGB Image.
Segmentation (180)
This module builds preliminary segmentation producing

65 binary image that represent closed (bounded) regions (Su-
zuki & Abe, 1985). This is achieved by using OpenCV
function findContours, which operates on edges produced by
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the Canny edge detector (Canny, 1986). The result is the
image with pixels set to 1 at the locations that belong to the
bounded regions.

Figure/Ground Segregation (180)
This module builds a shroud around the object at the 5

center of the view. This is achieved via a seeded flood fill
algorithm, which uses the OpenCV floodFill function. This
algorithm fills a connected component starting from the
center of the log-polar image produced by the segmentation
module (180). Connectivity is determined by the brightness to
closeness of the neighbor pixels. As the result this step
produces a shroud (Fazl et al., 2009), roughly fitting the
form of the closed region that includes the foveated location
(the center of the image).

The Figure/ground segregation module (180) can also be 15
extended to accept input from the What System, for instance
in the form of semantic information pertaining the identity
of pixels which can be obtained via a fast processing of the
visual information that bypasses the Where System. For
instance, a separate What System can be trained to recog- 20
nize, on a pixel-by-pixel basis, areas in the image. E.g., the
separate What System can initially classify areas of the
image as "sky", "grass", "road", and this information can be
used as input to the Figure/ground segregation module (180)
as additional input to drive figure/ground segregation. 25
Hot Spot Selection (190)
This module produces a vector that determines the next

foveation location. The module determines the most salient
locations on the image by using the OpenCV function
goodFeaturesToTrack, which finds the most prominent cor- 30
ners in the image as described in (Shi and Tomasi, 1994).
The image passed to the corner finding algorithm is the
luminance feature produced by the feature extraction mod-
ule (240). The Inhibition of Return signal produced by the
log-polar transformation module (23 0) disables the non-zero 35
locations on the image to be selected as the next foveation
position.

Temporal Object Continuity (200)
In order to build view invariant object identity, OpenEye

may maintain temporal continuity between subsequent 40
object foveations. OpenEye determines if the next foveation
location falls off the current object surface in order to signal
the object recognition system that building of the new object
identity begins or continues. This is achieved via producing
the RESET signal, which is set to 1 in the next cycle when 45
the selected new foveation location falls off the shroud
(output of module 210) built from seeded activity in the
center point of the view.

In OpenEye, temporal continuity is based on the ability to
learn the location of the object selected during the foveation 50
(camera movement) cycle. The location is learned by trans-
lating pixel position corresponding to the object in the
camera-centered coordinates into object location in allocen-
tric coordinates.
To ensure awareness of previously learned objects, their 55

locations are translated from allocentric coordinates stored
in object memory into camera-centered representation at
each foveation cycle.

Similarly to objects, hot spot pixel position is translated to
allocentric coordinates. In the next foveation cycle, the 60
position of hotspot is recomputed forming the shroud around
the foveated object by seeded filling-in starting from the
hotspot selected at the previous foveation cycle.

Foveation Memory (250)
The term "foveation" adopted below is borrowed from the 65

neuroscience literature, where foveation represents the loca-
tion of eye fixation. Foveation memory in OpenEye repre-

18
sents past foveation activity over the visual image. When
OpenEye operates on static images, foveation means sam-

pling of the image, at a particular (foveated) location.

Usually size of the sampled image is much smaller than the
entire image(scene) size. When OpenEye operates in real 3D

or virtual environment, foveation is sampling of that envi-

ronment as the result of real or virtual camera movement.
The visual memory is maintained over the spatial area that

depends on the environment. It could amount to the entire

image as in the case of static scene environment, or over the
region of space that is currently in the view as in the case of

movies or virtual environment. Foveation memory inhibits

foveations at the locations that have been foveated in the
past. After making a camera movement, OpenEye sets

foveation activity at the maximum value (255), this activity

decays with each foveation and eventually, when it decays
to 0, the location is enabled for new foveations. The Fove-

ation Memory is maintained in the image-centered coordi-

nate frame. However, the input (Sensor Position, 150) is
provided in ego-centered coordinates.

The history gets updated with each new foveation cycles.

The decay is implemented as a decrement by one with each
foveation step. Initial value immediately after foveation is

set to FMAX. This means that the same location cannot be
foveated at least the next FMAX cycles.

Inhibition of Return (220)

The purpose of the Inhibition of Return module (220) is
to prevent repeated foveations at the same spatial location.

To achieve that this module extracts the section of the

foveation history around the next foveation location that
falls in the view of the next saccade.

Input:

Data Element

Data Dimen- Element Dimen-

Name Type sions Type sions Metric Base

Sensor Vector 0 Unsigned, 2 Cartesian Ego-

Position Byte centered

I, _ [X, Y]
Foveation Scalar [WIHI] Unsigned 0 Cartesian Image-

Memory Field Byte centered

if

Output:

Data Element

Data Dimen- Element Dimen-

Name Type sions Type sions Metric Base

Inhibition Scalar [W, HJ Unsigned 0 Cartesian Sensor-

of return Field Byte centered

0

Processing

~
if(X,Y) 0 < X < WI; 0 < Y < H,

0 X > 0 1 X > W, I Y < 0 1 Y > H,

where

Y=Y+i— io; X=X+j— lo;

(H,-1) (W —1)
io = 2 ; Jo = 2
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What System (150)
As shown in FIGS. 2-4, the What System (150) learns the

identities of objects and visual scenes. The What System
may, for example, group object views and learn them as a
unified entity; maintain a lifelong memory while preventing
memory degradation and saturation; make inferences about
views acquired from the Where System, which objects they
belong to, and the names associated with those objects; bias
camera movements in the Where System in order to intel-
ligently guide image sampling; and provide an interface by
which an external user can communicate with and leverage
the system's knowledge.
The What System is implemented as a series of hierar-

chically organized classifiers that perform unsupervised
view clustering, classification of view categories into object
categories based on the reset signal from the Where System,
and supervised or unsupervised categorization of objects
into name categories. After learning occurs, the activation of
a name category primes the What system by inhibiting those
objects and views that are not associated with that name
category, further tuning the system by discouraging views
from being shared between multiple objects and names. The
activation of a name category can come from a bottom-up
activation of a newly viewed object, persistent activation
caused by a previously viewed object, or through external
activation by another system or user. This external activation
is provided by a Teacher (160) that represents the correct
name of the foveated object to aid learning. OpenEye does
not function in different modes to facilitate training or
testing mechanisms, and it does not require a reset of the
system upon transition to a new scene. FIG. 2C highlights
the high level system diagram of the What Pathway (170),
which includes the What System (150) and the Teacher
(160).

The inspiration for hierarchical clustering of views into
objects and names is detailed in the ARTScan model of
visual learning (Fazl, Grossberg, and Mingolla, 2009). The
Adaptive Resonance Theory (ART) learning scheme has
been altered from this work by replacing the learning system
of the view layer with a variant of Fuzzy Simplified ART
(f-BART; Baraldi and Alpaydin, 1998); differences between
the OpenEye view layer and f-BART are detailed in Section
4.1. Additionally, the specific mechanisms and learning rules
implemented in the object and name layers have been altered
in order to enhance learning quality and to allow the system
to operate with or without an external teacher; these differ-
ences are described in their respective sections.
The following sections describe the function of the What

Pathway, shown in FIG. 2C, in detail. The View layer (280),
described herein, clusters shroud-gated visual representa-
tions of object views according to their feature similarity.
The Object layer (290), described herein, learns pose-invari-
ant object representations by associating different view
prototypes according to their temporal continuity provided
by the reset signal from the Where system. The Name layer
(300), described herein, further groups different objects
under the same user label if given from an optionally present
Teacher (160), described herein. As an external teacher
shapes the association between objects and their labels, this
information is fed back from the Name layer to the Object
and View layers to improve the speed and accuracy of future
object learning.

View Layer (280)
The first task of the What pathway is to cluster the

shroud-determined input surface properties generated from
the Where System into consistent view categories, which is
performed by the View layer (280). This layer learns a

20
library of typical views of a set of objects in different poses
and spatial configurations; a set of views connected to the
same object category node, described herein, should corre-
spond to a set of 2D feature views of an object that together

5 represent the view of this object from varying 3D angles,
distances, lighting conditions, and other variations in view-
ing experienced by the OpenEye system. While the log-polar
representation provides some form of invariance to scale and
translation, this learning mechanism is at the core of how

to OpenEye learns invariant object and scene representations.
The features received by the view layer comprise a set of m
different analog values associated with each of a set of
pixels. The value of the shroud at that pixel determines

15 whether those m features will be part of the comparison that
determines which object view most closely matches the
currently viewed object. These features can include lumi-
nance or color information, the presence and orientation of
local contours, local motion information denoted by optic

20 flow, stereo disparity, binary feature descriptors such ORB
representations (Rublee, Rabaud, Konolige, & Bradski,
2011), or any combination thereof that can be produced by
the Where system.
The unsupervised learning network that does this cluster-

25 ing is a simplified fuzzy Adaptive Resonance Theory
(f-BART) network (Baraldi & Parmiggian, 1997; Baraldi &
Alpaydin, 1998; Baraldi & Alpaydin, 2002). A thorough
description of adaptive resonance theory is presented else-
where (Carpenter & Grossberg, 1987; Carpenter & Gross-

3o berg, & Rosen, 1991; Carpenter & Grossberg, 1995). ART
clarifies how matching between bottom-up input and top-
down representations enables fast and stable learning of
arbitrary input patterns. Most recently, ART has been shown
to be biologically plausible at the level of laminar multi-

35 compartment spiking neurons, and consistent with experi-
mental data (synchronous matching ART; Grossberg &
Versace, 2008)—a task that competing models such as
hierarchical temporal memories have not yet achieved
(George & Hawkins, 2009).

40 Simplified fuzzy ART, or f-BART, departs from the classic
fuzzy ART formulation in three ways:
1) The category activation function and presentation-to-

category matching function are both bidirectional and
symmetric. This symmetry simplifies the process of find-

45 ing a resonant neuron to direct calculation rather than an
iterative ART search cycle.

2) Fuzzy BART imposes soft-competitive learning rules
whereby a view can activate a resonant domain instead of
a single resonant view neuron, allowing non-winning

50 weights to be updated as well as the winning category
weights. The soft-competitive learning rules of f-BART
share properties of Kohonen's self-organizing maps,
which have the added advantage of autonomously deter-
mining sparsity at the view category layer.

55 3) Fuzzy ART is not a consistent statistical learning system
in that its learned category clusters depend on the order of
sample presentation. Fuzzy BART partially overcomes
this limitation by training in repeated batches and remov-
ing redundant or infrequently used categories between

60 training batches.
OpenEye leverages improvements (1) and (2) for fast

category matching and the creation of robust distributed
object representations. Because OpenEye learns online and
without forced repetition, however, and the dataset size is

65 unknown beforehand and depends on the pattern of Where
system foveations, OpenEye can leverage a novel category
consolidation technique described herein.
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Unlike many unsupervised learning systems, f-BART only View Output and the Resonant Domain
takes two user defined parameters, vigilance (a parameter To determine which view category neuron best matches

that determines how close of a match is close enough for the given view input, we calculate the vector degree match

resonance and learning to occur) and T (a parameter that between the input and each view category neuron (Equation

mediates how many activations of the same category node 5 280.1). This match is determined as a Gaussian function of

are required for it to become a stable representation for the Euclidean distance between input and weights in feature

category). This mitigates the problem of parameter tuning space; the width of this Gaussian is automatically adjusted

and offloads as much of the work as possible to autonomous by the size of the shroud in order to retain sensitivity to

mechanisms that self-tune sparsity of the view category different inputs regardless of the feature vector's dimension-

code. These properties balance biological plausibility, sim-
io ality. The view category neuron with the highest vector

plicity, and accuracy in a way that make f-BART a practical
degree match to the input is considered to be the winning

OpenEye view clustering system. category node. W — represents the weight vector connecting

The View layer (280) functionality can be broken down the input feature scalar field, z, to the jth view category
into three sub-processes described below: 15 output node. The input feature field is comprised of the
1) determining the winning view category neuron and its luminance values of the 2D shroud-modified contour

resonant domain; reshaped into one long vector, while W — can be thought of
2) updating the state of the view category nodes in the as the jth data element of the Wes' vector field. The vector

resonant domain; and
degree match Mj of the input x to a particular view

3) producing a disambiguation map that can prime the 20 prototype j is given by
Where System for new foveation positions that can effi-

ciently determine the currently viewed object's identity.

A summary of the input-output relationships of the View T 
—( 

W "
WiA®(z— ))  ))

(280.1) 
layer is given in the following table.

J
n~;(x, n, wx°) = exp

Input: 25
T

A A

I max(mi — p°, 0) nv > 0.2 and j = h e ]l, 2, ... , 91 (280.2)
Bj - 1

Data Element l 0 otherwise

Data Dimen- Element Dimen- Vari- Equa-

Name Type sions Type sions able tion
30

where a cell's resonant domain value Bj is above zero if
Features Scalar [w=, unsigned, m 240 (oT)

the match exceeds the user-set vigilance parameter p", the
Field 

(log-ppoo 

lar, Byte

sensor- view is associated with the currently active top-down prim-
centered) ing signal from the name layer nj", and the cell wins a lateral

Shroud Scalar [w=, h=] Binary, 1 a 210 (0) competition implemented as a ranking denoted by the index
Field (log-polar, Byte 35

h. More specifically, top-down priming from the name to
sensor-

centered) view layers is defined as

Object Scalar [j] Floating 1 0" 280.7a

category Field Point

activity

Name Scalar [j] Floating 1 g" 280.2a 40 — f (W°°W°"n) RV T (280.2a)

n" 
category Field point

,
1 otherwise

activity

Output: where W" are the weights from view to object cells, W­

45 are the weights from object to name layers, n is the output
of the name layer described herein, RV T is true either when

Data Element there is temporal continuity defined as a lack of reset signal
Data Dimen- Element Dimen- Vari- Equa- from the Where Pathway (R) or when a teaching signal is

Name Type sions Type sions able tion
present (T), and f—(-)  is a normalization function given by

View category Scalar [j] Floating 1 V 280.3 50

activity Field point

Disambiguation Scalar [w,, h,] Floating 1 280.7
y (280.2a1)

map Field (log-polar, point
f 
~)sensor-

~ 
Tly,r

centered)

55

Persistent State:

Data Element

Data Dimen- Element Dimen- Vari- Equa-

Name Type sions Type sions able tion

View templates Vector [j] Floating [w, x Wx" 280.6

Field point h, x m]

View template Scalar [j] Floating 1 Y 280.4

ages Field point

60

Note that, since all simulated classifier neuron activities
are nonnegative, some of these normalization equations can
be programmed in a simplified form, such as

ft(Y) =y I  yi y' and f (Y) = /naaxy;.

65 Cells are also ranked by their match, shown as the index h
and described by the ordering

M,zM,,. - (280.2b)
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The view layer successfully matches the input if the
winning node passes vigilance and is associated with the
teacher's activated name, given by the condition B,>0. If
this condition is false, then the view layer attempts to create
a new node with a weight vector identical to the currently
viewed feature vector. If there are no new nodes available,
however, the view layer does not learn, and its output is a
vector of all zeros except for that of the winning node, whose
activity is set to its vector degree match regardless of
whether it passes vigilance.
The output of the view layer is a vector of zeros except for

those neurons in the resonant domain, whose activities are
proportional to their level of match to the input. Except for
when match fails and the view layer is out of neurons, the
activities are normalized according to

v f O (2803)

so that the maximal value is always 1.
View Category Representation Update
Once the winning category node and its resonant domain

are established, the learning rates of these active view
category neurons are calculated. The learning rate is a
function of neuron membership and neuron match rank, both
of which become lower with the neuron age that increases
when it is in the resonant domain. The membership function
of a neuron is affected both by its match score and by its
match rank; the winning node has the highest membership,
while the ninth best matching node has a low membership
even if its vector degree match score is high.
The age of a neuron increases with each time it is selected

as a winning or resonant neuron that passes resonance,
where the winning node ages more quickly than a lower
ranked node in the resonant domain. For a given value of the
membership function, the learning rate starts high and
slowly decreases with neuron age; qualitatively, this sym-
bolizes a stiffening of learning the more times a neuron is
activated by a view. The parameter T controls how fast the
learning rate changes as neurons age. Alternatively, one can
think of T as mediating how many activations of the same
category node are required for the node to become a stable
representation for the category. Since a weaker agreement
between input and category layer leads to a more distributed
code in the category layer, T is one of the dominant factors
that mediate how quickly a distributed code becomes sparse.
T is one of two user-specified parameters that do not change
throughout the simulation.

Neuron age. The age of a neuron th in the resonant domain
is updated after it learns so that it becomes a stable category
representation over time. The neuron ages more slowly if it
has a lower rank in the resonant domain; this rate is
controlled by the equation

thnth+[nj">0.2] -max (10-h,0), (280.4)

where [•] denotes an Iverson bracket (I if the interior
condition is true, 0 otherwise) that stops neuron aging if it
does not learn from a top-down name mismatch, and the
other term controls neuron aging according to its resonant
domain rank h.

Weight update. The input view prototypes are updated
according to a node-depending learning rate that depends on
a number of factors. The total learning rate aL." for a
particular view node is a product of the match (qj) and
rank (sj) learning rates

24
The match learning rate is dependent both on the level of

feature match to the input and neuron age t.. This rate is
given by the equation

CJ(£1CJ)}J/T Cj > g
qJ -

s(Cj1-)`J1T otherwise

(280.5a)

10 where s=0.01 is small and C7 is a normalized match score:

io Ji(,q)- (280.5a1)

The rank learning rate is dependent both the cell's reso-

15 nant domain rank and on its age; when the neuron is young,
it is more likely to learn even if its rank in the resonant
domain is low. This rate is

20 
(1 - h) (280.5b)

sj = 
exp( 

),

where the age-based neighborhood spread constant is

25 aY 5(0.01/5)ti" (280.5b1)

and r is a user-defined time constant that specifies how
quickly the network stabilizes. Finally the view layer
weights Wes' for each view node j are updated according to

30 
the rule

(280.6)

where the weight is mixed with the input x in proportion
to the match-, rank-, and age-based learning rate aL." and is

35 gated by the shroud A through element-wise multiplication
denoted by the ® symbol.

Disambiguation Map (310)
A single input view passed to the What System can

activate multiple view, object, and name nodes. Although the
40 output of each of these layers is sparse, the system output

can occasionally be unsure about object identity in the
absence of an external teacher. This is called "object ambi-
guity", as a single view of an object can be associated with
many objects.

45 To facilitate object disambiguation, OpenEye uses a
novel, dynamically constructed, disambiguation map that
suggests potential saccade targets to the Where Pathway that
would maximally inform the What System as to which of the
potential object representations best matches the actual

50 viewed object. This map compares those views within the
resonant domain that are activating disparate object catego-
ries, and activates the disambiguation map in the areas
where input and view prototypes disagree.
The map is currently defined as the weighted average of

55 the feature differences between the input z and weight

templates Wj-, where each template is mixed only if a view
vj in the resonant domain is coactive with its associated
object category of oj". Specifically, the disambiguation map

60 y is defined as

Y 
J O,V J 

I Jv 
- 

xl 
(280.7)

=

LJ

65 EJ OJVJ

a-j"=gjsj. (280.5)
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where oj" is the feedback activity of the object category Persistent State:
layer to a particular view category j, whose activities are
given by

Data Element

o v 
U ~ 0

5 Data Dimen- Element Dimen- Vari- Equa-

Name Type sions Type sions able tion

Note that equation 280.7 could be modified to include Object Vector [k] Floating [j] W" 290.4
multiple features by including a sum over features in. categories Field point

Object Layer (290)
Object Scalar [k] Floating 1 u 290.1

Once the View layer (280) in the What System produces
category Field point

10 internal state

view categories that are excited by the shroud-modified
contour, the view category neurons are then grouped into Object Category Output
object categories the goal being to determine which views The object category layer's output is determined both by
should be bound to a consistent object representation. Intui- feedforward/feedback input and by its previous activation
tively, the Object layer (290, FIG. 2C) makes sure that views 15 saved in its internal state. This internal state is modeled by
of the same object, e.g., different poses of a cup, a car, or a a normalized additive neuron equation that approximates the
person, all map to the same object node that represents the action of an RCF; this layer takes as input: the active view
collective views defining that specific cup, car, or person. categories based on the current view; and direct feedback
The inputs to the object category layer include: the view-

20 
from the name layer that primes previously made associa-

category output from f-BART; the reset signal from the tions between a current label and a set of candidate object
Where System; and feedback input from the name category. categories.
The output of the object category layer are the sparse The object category winners are defined as those neurons

activities of object category neurons that are activated in whose view-to-object network weights are more similar to
response to bottom-up view input and top-down name input, 25 the active view category layer than a fixed Vigilance crite-
produced as a simplified model of a Recurrent Competitive rion, constrained by top-down feedback signaling whether
Field (RCF) neural network (Grossberg, 1973). Unlike pre- that view belongs to the current active name category as
vious models, the weights from view to object neurons are well. If none of the object category neurons meet this fixed
learned through a modified form of Oja's rule, an associative resonance criterion, a new neuron is created as a new object
learning rule that implements favorable input clustering 30 category to be associated with the current view.
properties such as weight normalization and a distribution of A dominant feature in OpenEye is that the Where System
weights that reflects the principle source of variation across should inform the What System when the foveated object
a dataset (Oja, 1982). has changed; until that time, the What System should keep

The object category functionality can be broken down grouping views into the same object category. Although the

into two sub-processes: 35 selection of the object category winners happens at each

1) determining the winning object category neurons; and view presentation, without the presence of a reset signal,
feedback from the name category layer will keep the object

2) updating the weights between the View category nodes
layer locked in its current activation state regardless of the

and the winning object category neurons.
view layer's activity. This allows the What System to

A summary of the input-output relationships of the Object 40 associate multiple, disparate views of the same surface/
layer is given in the following table. object. This persistent state is broken and reset when the

Input: Where Pathway notifies the object category layer that the
current view is of a different object in the scene. In the event
of a reset signal, the category layer's activity is set to zero,

Data Element
45 and top down priming is ignored unless the name layer isData Dimen- Element Dimen- Vari- Equa- strongly activated by an external teaching signal.

Name Type sions Type sions able tion

_The object category internal state vector a is determined
View Scalar [j] Floating I Vo 290.1a by the discrete update equation
category Field point

activity
u f (0.9u[R]+(1—a~)v~+a~n~[RVTJ), (290.1)Name Scalar [k] Floating 1 go 290.1b 50

category Field point where [R] is an Iverson bracket that is 1 in the absence of
activity

RESET Scalar 1 Binary 1 R 200 (0)
a reset signal and clears the layer's memory during a reset,

Byte [RV T] is an Iverson bracket that clears top-down priming
during a reset in the absence of a teacher T, a =0.6 is a

55 user-defined mixing fraction between feedforward and feed-
Output:

back input, v ' is the bottom-up input from the view layer
given by

Data Element

Data Dimen- Element Dimen- Vari- Equa- 60 v v f ((YV"o) V ), (290.1a)

Name Type sions Type sions able tion

and _n'  is the top-down feedback from the name layer
Object Scalar [k] Floating 1 0 290.2

given by
category Field point

activity

Identity Scalar 1 Byte, 1 c 290.3 no f (Von) (290.1b)

confidence unsigned 65

The output o of the object category layer are those cell
activities that exceed a user-defined activity threshold
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p'-0.55; these sparse activations are then normalized by the
equation

W f (max(u—p',0)) (290.2)

so that the winning object category activity is set to 1.
Once the What System has either successfully recognized

the currently viewed object as an instance a previously
learned category or learned a new object, the Where System
is informed of this recognition in order to mark the entire
object's extent as unnecessary for further viewing. This
recognition signal can be used as a feedback signal to
triggers the inhibition of return mechanism, which inhibits
the need to sample additional views of the recognized object.
The Identity confidence of the What system, c, is defined as

c=1/Ek0k, (290.3)

which is inversely proportional to the total object layer
activity. If only one object category node is active, then c=1,
signaling successful recognition so that the Where system
can add the entire object's spatial extent to the Inhibition of
return map (Box 220). If multiple objects are simultaneously
active, the identity confidence decreases, signaling the
Where system that the currently viewed object requires more
foveations to be unambiguously identified. In this case the
What system simultaneously provides a Disambiguation
map (Equation 280.7) that suggests foveation points that
may resolve the ambiguity and increase identity confidence.

Object Category Weight Update
Once the object category winners are selected, learning

can occur to associate the active view categories with the
selected object category. The object category's learning rule
is a modified form of Oja's rule (Oja, 1982) that is equiva-
lent to using Oja's rule to learn the mapping from object to
view category layers, which is a novel rule present only in
OpenEye. This reversal is useful because many views map
onto a single category, where most views are inactive at
once. Oja's rule is post-synaptically gated, so learning the
map from view to object categories would cause the decay
of most rarely active view associations with a more fre-
quently active object category. Learning the reverse map
with Oja's rule allows this same postsynaptic gating to
produce a sparse and consistent one-to-many mapping from
object categories to views. The learning rate of this weight
update, takes on a different value whether the teaching signal
at the name layer is present (supervised learning) or absent
(unsupervised).

The weights W'o between view and object categories are
described for each synapse associating view j with object k
by the equation

Wj,­ WjJ
o
+qvj(0k Nik wj), (290.4)

where rl is a teacher-dependent learning rate. When the
teacher is present, r1-0.5, and when the teacher is absent,
these associations are learned at the slower rate of r1-0.05.
Name Layer (300)
The last hierarchical stage of the What System is the name

category classifier. The name category network groups dif-
ferent object category neurons with name category neurons
using an externally provided teaching signal of the object
name that may be present, partially present, or entirely
absent.
The name category functionality can be broken down into

two sub-processes:
1) determining the winning name category neurons; and
2) updating the weights between the object category nodes

and the winning name category neurons.

28
A summary of the input-output relationship of the Name

layer is given in the following table.
Input:

Data Element
Data Dimen- Element Dimen- Vari- Equa-

Name Type sions Type sions able tion

Object Scalar [k] Floating 1 0" 300.1a

10 category Field point
activity
External String 1 N/A
Label

15 Output:

Data Element
Data Dimen- Element Dimen- Vari- Equa-

Name Type sions Type sions able tion
20

Name Scalar [I] Floating 1 g 300.2
category Field point
activity
Object label String 1 N/A

25
Persistent State:

Data Element
Data Dimen- Element Dimen- Vari- Equa-

30 Name Type sions Type sions able tion

Name Vector [I] Floating [k] Wes" 300.3
categories Field point
Name Scalar [I] Floating 1 p 300.1
category Field point

35 internal state
Label map String [I] Floating [I] N/A

Dictionary point

Name Category Output
40 The object category layer's internal state is modeled by a

normalized additive neuron equation that approximates the
action of an RCF; this network takes as input the object
category winners; and an optional, external teaching signal
with the object name.

45 Similarly to the object layer, the bottom-up name category
winners are defined as the neuron whose object-to-name
network weights are sufficiently similar to the active object
category layer to pass a fixed vigilance criterion. A teaching
signal unambiguously specifies the name layer (and often

50 object layer) activity values in order to consistently link
object category representations with string labels that can be
used by an end-user to recall or search for particular objects
and views.
The name category output is a function of its internal state

55 vector determined by the discrete update equation

p f (0.09p +(1—a") o "+a" sz ), (300.1)

where a"-0.6 is a user-defined mixing fraction between

60 feedforward and feedback input, Q is a binary vector from
an external teacher, set to all zeros except for the node
associated with a particular semantic label (or set to all zeros

in the absence of a teacher), and o" the bottom-up input
65 from the object layer given by

W, f ((YTS") o). (300.1a)
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The name layer can create a top-down priming vector in
response to an optional input from an external Teacher (160)
because it contains a dictionary that maps string labels to
name node indices. Upon receiving a label from the teacher,
the name layer checks whether the label already exists in the
dictionary; if so, it creates a vector that strongly activates
that name layer node. Feedback from the name layer to the
object and view layers ensures that learning is then restricted
to associating those views and objects that match the current
teacher label. If the label has never been seen before, the
name layer creates a node and associates the current view
and object with that name. After this learning, the name layer
can also recall a label by returning the string label associated
with the maximally active name category node.

The output o of the name category layer are those cell
activities that exceed a user-defined activity threshold
p'-0.35; these sparse activations are then normalized by the
equation

30
label, the teacher should have separate access to the envi-
ronment as well as knowledge of where the model is
looking; the camera/sensor position is given by the Camera
movement actuator (120). The following table summarizes

5 the input/output relationship of the Teacher.
Input:

Data Element

10 Data Dimen- Element Dimen- Vari- Equa-
Name Type sions Type sions able tion

Sensor Vector 1 Unsigned, 2 110 (0)
(Eye) (Cartesian, Byte
Position Ego-

15
centered)

Output:

n f (max(; -p"0)) (300.2) 
20 Data Element

so that the maximal name category layer output value is
always 1.
Name Category Representation Update
Once a name category winner is selected, learning can

occur to associate the active object category with the
selected name category. Similarly to the object category
layer, the name category learning rule is a modified form of
Oja's rule that is equivalent to using Oja's rule to learn the
mapping from name to object categories (Equation 36) for
the same reasons discussed in Section 3.2.2. Similarly to
object category learning, the learning rate, takes on a dif-
ferent value whether the teaching signal at the name layer is
present (supervised learning) versus absent (unsupervised).
The weights Wes" between object and name categories are

given by a learning rule that is equivalent to Oja's rule when
learning the association from name categories to object
categories, described for each synapse associating object k
with name 1 by the equation

W,, —W,, 
n
+go,(nr-W,, "ox) (300.3)

where rl is a learning rate whose dependence on the
existence of an external teacher is described after Equation
290.3.

Teacher (160)
The teaching signal, supplied by the Teacher (160), is an

optional string label that informs the What System about the
currently-viewed object's name. The teacher supplies a
string label to OpenEye, which automatically assigns that
string to a name layer category node. The teaching signal is
then transformed by the Name layer (290, FIG. 2C) into a
vector whose value is 0 in all locations with the exception of
the one corresponding to the object name (whose value is 1).
When the teaching signal is present, the top-level classifier
of the What System (the object-to-name layer) is said to be
working in a supervised mode. However, it is important to
note that even in supervised mode, the input-to-view and
view-to-object layers continue to learn in a largely unsuper-
vised fashion.
The Teacher is separately implemented for a variety of

applications, so no explicit equations are listed for its
function. Depending on the application, a teacher can either
take the form of categorized class outputs in a standard
machine learning database, a string label provided by an
external resource such as an Internet image search, or a label
provided by a human user, enabling interactive correction or
querying of the What system. In order to produce a string

—a amen- ement amen- ari- qua-
Name Type sions Type sions able tion

External Label String 1 N/A

25 
Alternative OpenEye What System: Spatio-Temporal

Classification
An alternative classifier architecture for (280) and (290) is

presented here which includes classifying information at

30 different spatial and temporal scales. Low-level changes in
input (e.g., image) features are often associated with a stable
higher-order category. For instance, in vision, object rotation
around its axis, or scale distortion by a moving observer,
causes changes in low-level features while a top-level cat-

35 egory (e.g., the representation of the object identity) remains
stable. Hierarchical models have the advantage of capturing
these relationships and autonomously building categorical/
causal relationships among low and high-level features. The
size of the hierarchy scales in response to the changing

40 complexity of the underlying sense data.
OpenEye classifiers in the What System can be expanded

to include temporal relationships between sensory or higher-
order patterns. The proposed method provides a hierarchical
biologically-inspired classification and prediction algorithm

45 system for spatio-temporal classification that further extends
the Adaptive Resonance Theory to enable categorization and
prediction of temporal sequences in real time through the
following innovations:
A predictive subsystem, activated upon recognition of a

50 currently presented category, which learns to signal and
prime for the most common input that appears next in a
sequence. This predictive subsystem robustly learns short
sequences by operating on categories of events rather than
individual input patterns, and the learned knowledge is

55 easily extracted as a transition probability matrix among
learned clusters of sensor states.
A new learning rule for the predictive subsystem that

allows for temporally delayed learning. This learning rule
will couple the temporal delay of predictive layer learning to

6o an ART parameter, vigilance, which controls the granularity
of learned categories. This same component will also control
the rate of learning relative to the input data stream, pro-
viding a way of adaptively partitioning a temporally con-
tinuous input into discrete sequences of events. The com-

65 bination of a new predictive subsystem and a new learning
rule will lead to a novel ART implementation, named
temporal ART, or tART.



US 10,083,523 B2
31

tART modules can be stacked into a hierarchy able to
simultaneously learn at multiple scales of complexity in time
and space.
FIGS. 5A and 5B illustrate an implementation of the tART

model. FIG. 5A shows that the tART model expands on ART
systems by adding a layer of nodes (F3) paired by direct
input with category nodes in layer F2. Connectors with
arrowheads are direct excitatory connections; connectors
with triangles are adaptive weights that store learned pat-
terns. (i) Upon presentation of an input pattern that activates
Fl nodes to various degrees (fill color of circles in Fl
rectangular box, darker is more active), category nodes in F2
compete in the ART search cycle to find the best match. (ii)
Once a single category node is active after F2 competition,
its corresponding sequence learning node in F3 is activated.
(iii) Upon presentation of the next pattern, the feedback
connection weights from layer F3 to F2 can prime F2 during
the ART search cycle to suggest a preferred category in
ambiguous cases. (iv) When the second input pattern is
categorized, a connection between the previously active F3
node and the currently active F2 node is strengthened to
learn a temporal sequence of categories.

FIG. 5B shows a hierarchy of tART modules that can
learn increasingly complex patterns and increasingly long
category sequences. The categories at higher levels learn a
compressed sequence structure that is abstracted from the
low-level patterns. The bold arrows show how a clear
sequence presented at module 1 can activate the sense
making module 2 at the top of the hierarchy, which can then
prime an ambiguous pattern presented at module 3. For
example, if module 1 is presented clear video images of a
ball moving through the viewing field, then it may activate
a context in module 2 (e.g. a particular sport being played)
that helps understand ambiguous video images such an ball
moving behind an occluding object.

Translating ART into a modular algorithm that learns both
to cluster inputs and to predict upcoming category repre-
sentations requires several improvements over current
implementations. ART models include input fields (the Fl
layer), where input features are represented, and a coding
field (layer F2), where neurons compete that are responsible
for learning compressed categories of features. A vigilance
subsystem is responsible for regulating the granularity of
learning, where learning of bottom-up and top-down (feed-
back) representations occurs only when the match between
input and expectations satisfies the vigilance parameter. The
match of an input to an existing category or the creation of
a new category is regulated by the ART search cycle, where
an insufficient match between Fl input and F2 category
representation triggers a reset that silences the mismatched
category and restarts the competition among F2 category
nodes. This innovation extends the ART framework in the
following ways:

Creation of a temporal prediction layer. Current ART
implementations only learn temporal sequences if the sensor
input field Fl is preprocessed to contain temporal informa-
tion. A layer of model cells can be added, F3, where each cell
is paired with and activated by a single F2 category node at
the end of an ART category search cycle (FIG. 5A). Each F3
node has adaptive feedback connections back to all F2 nodes
that learns to predict the winning category of the next
presented input. These same F3—F2 connections represent
learned sequencing knowledge that can be read by an end
user as expected future sensor inputs. A learning rule gates
learning by the finished categorization of two input patterns
presented at different times.

32
Control effect of temporal prediction on categorization.

Once a pair of input categories is stored as a sequence in the
F3—F2 connection weights, the expectation created by the
presence of the first input can be used to resolve, or

5 disambiguate, the categorization of a noisily presented sec-
ond input. This specific effect is designed for the F3 layer to
prime an expected F2 category in a way that allows the
expected category to be chosen in ambiguous cases. The
priming effect scales with the vigilance parameter, which

io controls the strictness of the category matching criterion
across inputs. A high vigilance value requires the input to
match a category only if the inputs are similar to the
category representation (stored in the F2—F1 connectivity)
and if the category is expected by the predictive layer (stored

15 in the F3—F2 connectivity). This allows category size and
specificity to adaptively vary both across features in the
input sensor and across time.

Category outputs from low-level ART units can easily be
used as the input to high-level units, but there is no current

20 way for a high-level category to prime low-level ART
implementations via feedback connections. The priming
from high-level units to low-level ones establishes a slow
context which can help categorize a noisy signal presented
on a fast timescale. This same priming can also transfer

25 category information from an unambiguous low-level pat-
tern through the high-level unit back to a different low-level
unit presented with an ambiguous pattern (FIG. 513).
The addition of the F3 layer in the tART model allows

high-level ART units in a hierarchy to cluster low-level
30 category sequences, rather than simply clustering category

patterns across low-level units. Where a low-level F3 layer
can only learn pairs of categories, a high-level F3 unit can
learn a longer sequence. A sequence can be translated into
spatial pattern through a temporal decay that produces a

35 gradient where the most recent item is most active and
earlier items are increasingly less active. The rate of gradient
decay can be regulated to maximize high-level learning rates
while minimizing predictive priming interference at low
levels.

40 The knowledge extracted from tART can provide infor-
mation about the future trajectory/state of sensory stimuli.
For example, the F2—F1 weight matrix of module 1 in FIG.
5B can be displayed as a set of learned input category
clusters, e.g. a set of ball trajectories on a playing field. The

45 F3—F2 weight matrix of module 1 can be displayed as a set
of predictions: if the ball begins a trajectory, it can be
expected to be followed by certain other paths. The F2—F1
weight matrix in module 2 of FIG. 5b codes for sets of
trajectory sequences that create a context, such as a particu-

50 lar team playing an aggressive or defensive strategy. The
adaptive F2—F2 feedback matrix from module 2 to module
1 can be read as how context changes the set of expected ball
trajectories. The comparison, for example, of the F2—F1
matrix of module 1 and the multiplicatively combined

55 (F2—F2)x(F2—F1) matrix shows how different contexts
(e.g. playing strategies) produce fine-tuned corrections to the
model's expected input patterns (ball trajectories).

Multimodal Processing in OpenSense: Focus ofAttention,
Amplification of Pertinent Features, Fusion

60 FIG. 6 exemplifies multimodal processing in a practical
3-sensor case. FIG. 6A shows that Stage 3 of OpenSense
includes a high-level Where pathway which combines infor-
mation from the Where pathways from OpenEye, OpenEar,
and OpenRadio. Sensory-specific Where systems bid for

65 attentional focus. In this example, Where modules have
multiple targets, each to be visited sequentially. The high-
level Where system determines which target should be
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visited first via a competition/choice mechanism, and addi-
tionally biases the focus of attention of OpenSense to
facilitate binding of coherent physical signals, as shown in
FIG. 6B. Feedback from the high-level Where system
enhances physical signals from coherent objects, and sup-
presses the ones from incoherent ones. This in turn allows
the What system to learn sensory signals belonging to the
same physical object.
The example in FIGS. 6A and 6B shows how the high-

level Where system in OpenSense determines which target
should be visited first via a competition/choice mechanism,
and how it additionally biases the focus of attention of
OpenSense to facilitate binding of coherent physical signals.
Feedback from the high-level Where system (700) enhances
physical signals from coherent objects, and suppresses the
ones from incoherent ones. This in turn allows the What
system (800) to learn sensory signals belonging to the same
physical object.

This stage allows a high-level What system to fuse
coherent multi-sensory information, namely sensor signal
pertaining to the same physical object. This process allows
creating unique objects categories that map spatially-defined
visual, auditory, and radio signals to a unique object repre-
sentation.
FIG. 7 shows anomaly detection based on raw data

match/mismatch. The matching process originates when the
multimodal node corresponding to the current focus of
attention (e.g., "Jeff') activates, via feedback, raw sensory
expected representation in OpenEye, OpenEar, and Open-
Radio to match actual raw data. The feedback hemicycle
allows identification of anomalies in the associative cat-
egory. In the example, Jeff's video and audio signatures are
within tolerance of the prototype, but his radio signal is
significantly different from what expected. The mismatch
can be picked up to generate anomaly alerts. Anomaly alerts
can be used by analysts to focus attention on changes in the
scene or objects in the scene. The benefit of these alerts can
be to reduce the amount of data an analyst needs to look at
to find out what has changed in the environment.
The high-level What system also projects back via feed-

back connections each sensor input stage to match object
expectation with low-level, raw sensor data and generate
anomaly alerts (FIG. 7).

FIG. 8 shows example of biased data collection. The
auditory identification of Jeff biases the visual system to
collect more information about Jeff with other modalities.
The localization of Jeff by the auditory system can provide
spatial cues on where to orient other sensors in space.

OpenSense, and its visual instantiation OpenEye, capture
all these fractures in a single framework.
FIG. 9 shows how the What system takes advantage of the

Where system processing to fuse (only) pertinent (namely,
coherent, or coming from the same physical object) infor-
mation into a single semantically-labeled category. More
specifically, FIG. 9 shows a search driven by the presence of
a search target in this, case, looking for a specific person
in a scene (e.g. Nancy). The low-level features linked with
a specific learned object in each modality (vision and
audition are shown here, but the same reasoning applies to
other modalities) are amplified in the input stream. This
facilitates search of the specific object of interest, as the
saliency of the object focus of attention can be amplified
thanks to the up-regulation (boosting) of the input. A mecha-
nism to enable this boosting can comprise an additive
combination between input stream and features learned by
the What and Where system.

34
OpenSense can be also expanded to include disambigu-

ation between sensory scenes, as an extension of disambigu-
ation between competing object identity (Sherbakov et al.,
2013a, b). OpenEye next saccade location is driven, among

5 other factors (e.g., explicit search target, or bottom-up
saliency) by the What system in order to disambiguate
uncertainly between sensory input and internal expectation
of an object. Similarly to the within-object disambiguation
strategies described in Sherbakov et al. (2013a, b), a given

to object view can be linked to scene maps, where OpenEye or
OpenSense build image-centric or world-centric (allocen-
tric) maps of the visual environment by placing object in an
map and associating that map with a specific name (e.g.,

15 garage, or bathroom). At each camera movement, As per the
within-object disambiguation strategies described in Sherba-
kov et al. (2013a,b), each camera movement in OpenEye
simultaneously activates the memory of learned scenes in
which the object has been known to exist. E.g., the view of

20 a cup simultaneously activates scene identities "office",
"living room", and "kitchen". Each scene is characterized by
a scene map where OpenEye has formed size invariant maps
of the objects which have been seen in each scene. These
objects are compared in the spatial neighborhood of the

25 current object in the center of the camera field, and the object
or objects that differ the most among the different maps of
each activated scene at that location are selected as the target
for a search to disambiguate the scene. This engages the
explicit object search described in FIG. 9. This will in turn

3o help to disambiguate the scene further, until the different
exceeds a threshold, which can be set by a neural field (e.g.,
recurrent competitive field).

Integration with Virtual Environment and Robotic Plat-
forms

35 OpenEye has been reduced to practice by integration with
a Virtual Environment (VE) and a robotic platform. The VE
that provides sensory input to the What and Where systems
and allows to execution of motor commands (pan/tilt simu-
lated camera).

40 Implementation in a Virtual Environment Virt-U
OpenEye can interface with the Virtual Environment

framework Virt-U (FIG. 12). Virt-U (1150) creates a frame-
work that connects Neural Modeling Environment (1100)
and virtual character acting in a 3-D virtual environment

45 controlled by a physical game engine (1200). This connec-
tion enables running complex neural modeling simulations
which involve multiple sensory modalities and diverse
motor control. The latter, in turn, enables to simulate behav-
ior that lead to acquisition of sensory data, which are not

5o determined but, in fact are the result of interaction between
the brain and the environment where brain leaves.

Virt-U Architectural Principles
Virt-U architectural principles abstract the interface that

connects a virtual world with its neural modeling environ-
55 ment. In order to segregate dependencies of the neural

modeling environment from those of the virtual environment
engine, the Virt-U architecture was designed to include two
major layers: the virtual environment layer (1170) and the
proxy layer (1170). The virtual environment (VE) layer

6o abstracts the virtual environment engine, while the proxy
layer delivers sensory information to the brain and extracts
neural information from the brain in order to perform the
behavior. An important benefit of this approach is that it
supports functioning of Virt-U in two distinct modes:

65 Simulation when the behavior of the animat is con-
trolled by the brain model (FIG. 11), and

No-brainer no brain is attached (FIG. 12).
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Virt-U considers the physical world to be populated by
virtual objects. These virtual objects can be animated
(brained) and non-animated (brainless). Brained objects,
called animats, can be controlled by a neural model formu-
lated using a native neural modeling language, and then 5

executed by a neural modeling engine. An animat's brains
receives sensory (e.g., visual) and proprioceptive signals and
can then exhibit a behavior that follows the laws of physics
to a predefined level. Animats can be either virtual animals
(e.g., a rat) or vehicles (e.g., a rover), depending on how io
their motor functions are controlled, but a brain in both cases
controls navigation. Brainless objects, called items, are
entirely controlled by the virtual environment and obey its
physics. Items include rocks, buildings, trees, etc. and can be
considered a source for all kinds of sensory. 15

Virt-U considers an animat to be a collection of sensory
organs and animat controls. Sensory organs may in turn
include sub-sensory organs, which ultimately can be con-
nected with virtual sensors dedicated to collecting sensory
information. For example, an animat may have a sensory 20
organ called "eyes" that includes individual eyes, where
each eye contains facets connected with virtual cameras. All
sensory organs are responsible for maintaining and updating
sensory information for the sub-organs they contain thus
allowing for recursive sensory data update to be performed 25
on an animat. Animat controls constitute outgoing interfaces
that are accessed by a brain to perform the required behavior.
Sensory organs and animat controls expose specific incom-
ing and outgoing interfaces to be accessed from the Virt-U
proxy layer in order to supply and deliver sensory and motor 30
control information.
On the neural modeling side, proxy organ controllers

perform access to the VE. These controllers retrieve and
supply neural data by accessing a specific organ controllers'
incoming and outgoing interfaces. Thus proxy controllers 35
abstract internal knowledge of sensory organs from the
neural model by acting as hardware drivers within the neural
modeling environment. In simulation mode, Virt-U creates
the virtual world based on an XML description. This
description is sufficient to define the world, the animats with 40
all their sensory organs and controls, and all virtual objects
with their associated rewards. This XML-based virtual
world description ensures Virt-U portability between various
neural modeling environments.

FIG. 12 shows Virt-U's how complex sensory data are 45
collected and updated. In particular, FIG. 12 pertains to
modifications to the Where system diagram of FIG. 2B in
order to exploit Virt-U. One modification includes a rapid
segregation of foreground and background based on texture
and other information. This modification can be imple- 50
mented as a rapid segregation module that receives an input
from the segmentation module 180 and provides an output
to the figure/ground segmentation module 210 shown in
FIG. 2B.

Implementation in a Robotic Platform 55

OpenEye has been tested in a physical robotic platform.
The equipment developed for this assessment includes an
external computer running OpenEye, a physical robot, and
its sensors and actuators.
The robotic platform includes 2 Lego Mindstorms NXTs 60

outfitted with 7 sensors and 4 motors. In this implementa-
tion, the NXTs communicate with a single-board computer
development platform (e.g., Pandaboard), which controls
communications with a OpenEye client machine. Other
robotic platforms include, but are not limited to, the follow- 65
ing robots: Romotive Romo, Parrot AR Drone, iRobot
Create, Vex. The Pandaboard runs an asynchronous server

k1,
that listens for commands from the OpenEye client while
reading data from the NXTs and camera. When data is
received from an NXT, it is repackaged and sent over UDP
to the OpenEye client. The Pandaboard utilizes OpenCV to
process image data from a USB camera and preprocesses/
broadcasts it to Cog over TCP through an onboard router
connected to the board through a Cat5e cable. The OpenEye
client is capable of sending movement commands and can
also schedule tasks on the NXTs. The client listens for data
from each of the NXTs. FIG. 13 shows a hardware diagram
and the protocols used to connect the devices, and FIG. 14
illustrates the main objects within the software of the system
and their respective communication streams.

Introduction of a Coarse Observer for OpenSense and
OpenEye

OpenSense, as well as individual sensory instantiation
OpenEye, implement a biologically-inspired approach for
sensory scene processing. These systems may implement
detailed object recognition, or aline observer system. The
additional methods described herein are to complement the
fine observer with a coarse observer that may quickly assess
the scene and direct the fine observer or image processing
system to the most salient or interesting regions or objects of
the scene. The implementation below is initially described in
the context of, but should not be limited to, visual processing
on an unmanned ground vehicle (UGV). With the addition
of the biologically-inspired coarse observer, at least the
following capabilities may be added (see FIG. 15):

Fast, parallel pre-attentive segmentation of the visual
scene into scene macro-areas (e.g. sky, grass, roads) to bias
the system's active focus of attention, described below, to
the most informative regions or objects in the UGV field of
view (e.g. people, vehicles). Scene macro-areas may be
learned and semantically labeled, allowing scalability of the
system to previously unseen environments. Scene macro-
areas may not be discarded but rather may have lower
priority for more in depth visual processing.

Active focus of attention through serial deployment of
limited computational resources in order to sample high-
priority areas and objects in a visual scene that are identified
by the coarse observer. This sampling results in rapid and
accurate labeling and identification of objects, events, and
situations that require fast adaptation of goals, priorities, and
plans. This labeling and identification is performed by a fine
observer, already under development.

Situational awareness for high-level reasoning in the form
of incremental indexing of the UGV sensory stream as the
vehicle transverse the environment. Each frame may be
associated with image metadata comprising identity of scene
macro-areas, object of interests, and their position. The
system may extract this knowledge for high-level UGV
reasoning.
FIG. 15 shows how a coarse observer initially segments

large scene areas (e.g., sky and ground macro-areas), and
bias a fine observer to first scan other areas not classified as
macro-areas, or unknown macro-areas, which can poten-
tially contain useful objects (e.g., a road sign, a person, or a
UAV).
FIG. 16 describes the coarse observer and its interactions

with the fine observer. The coarse observer learns to produce
a rough and fast semantic labeling of a viewed scene. The
system will rapidly segment large images into texture
regions by summarizing small image regions into a standard
descriptive format. These small regions will then be glued
into scene macro-areas that are given semantic labels such as
sky, ground, and horizon. These texture regions and their
labels will then be used to direct the limited processing



US 10,083,523 B2
37

power of the fine observer for extracting object identity, and
they will be summarized in scene metadata information.

FIG. 16 shows coarse and fine observer interactions.
Sensor data acquired from the UGV (1) is preprocessed (2).
The fast scene preprocessing in the coarse observer (black
rectangles modules in dashed area) quickly classifies scene
macro-areas (3) to focus attention (4) on the object recog-
nition system (5) in the fine observer (red rounded rectangles
modules in dotted area) and possibly gather more informa-
tion to classify objects of interest and to influence sensor
control (6). Recognized scene macro-areas and objects are
combined in each frame into scene metadata (7), which
forms the basis of knowledge for UGV higher-level reason-
ing. A teacher (8) provides labels to new scene macro-areas
and objects to scale the system to new environments. The
fine observer leverages OpenSense's vision models.

The technology described herein is a coarse observer that
can quickly analyze high-resolution image and video data in
order to produce meaningful segmentation that guides the
serial deployment of more powerful but limited image
analysis algorithms and the collection of scene metadata for
external use. This coarse observer offers significant compu-
tational advantages by processing only interesting or rel-
evant objects or regions.

FIG. 17 shows advantages of the coarse observer model
in scene understanding. In other words, FIG. 17 shows the
effect of using rapid segregation of foreground and back-
ground based on texture and other information, as shown in
FIG. 12, with the Where system shown in FIG. 2B. Left
column: without the coarse observer, conventional bottom-
up image statistics (e.g., edge information) would bias a fine
observer with limited computational resources to repeatedly
sample non-informative image segments (dots connected by
arrows), for instance repeatedly sampling the ground early
on. Center column: a coarse observer module performs a fast
analysis of image statistics, groups image segments into
known scene macro-areas (sky, ground), and biases the fine
observer to sample more informative image segments first,
for instance sampling initially the soldiers, and then the
ground. Right column: the coarse observer can be trained to
recognize several macro-areas, allowing scalability of the
system to different environments.

Texture Extraction for Scene Macro-Areas Module
Meaningful image segmentation based on learned labels

can help to intelligently optimize limited visual processing
power. OpenSense may facilitate fast image segmentation
into scene macro-areas that can be tuned by learned seman-
tic labels. This segmentation method may collect image
statistics over many small regions and group adjacent
regions with similar statistics into scene macro-areas. More
specifically, the segmentation involves:

Carving up the scene into a grid of equally spaced boxes
(FIG. 17, yellow boxes) and extracting a stereotyped feature
vector from each sub-area. Oriented FAST and Rotated Brief
descriptors (ORB; Rublee et al., 2011) are an example of a
binary feature descriptor of the region around an image point
that remains unchanged by changes in lighting, orientation,
and position, but the points are chosen only at the most
"point-like" pixels in the image. This descriptor will be
adapted to describe at least one point within each small
region in the image grid. The resulting feature vectors are
collected separately for each area.

Grouping together regions of similar statistics into scene
macro-areas. Perceptual filling-in (Pessoa et al., 1998), often
implemented by simulating the diffusion of a material with

38
speed proportional to region feature similarity, provides a
simple method for constructing regions with approximately
homogeneous features.

Assigning a single feature vector to each scene macro-
5 area, the average of feature vectors of its constituent image

regions, to be used to categorize and label the macro-area.
This macro-area feature vector can also be compared to each
subregion's feature vector in order to find image anomalies
(typicality measure).

10 Object and Situation-Based Control of Attention
An attentionally-guided interface between scene macro-

areas and the fine observer will allow for the simultaneous
fulfillment of multiple goals. For example, if the fine
observer requests more views of an ambiguous object, this

15 must be balanced against the need to focus on a particular
region as signaled by the scene macro-areas module. This
interface will be a focus of attention (FIG. 16, box 4) or field
over the image that signals viewing priority according to
scene macro-area. This map can then be combined with the

20 fine observer's internal measure of viewing priority in a way
that considers multiple viewing goals.
Knowledge Extraction Module
The user-readable result of this work will be a high-level

compressed representation of the scene as viewed by the
25 artificial visual system—extracted knowledge in the form of

scene metadata (FIG. 16, box 7). This will allow the system
to maintain situational awareness. The coarse observer will
efficiently direct the fine observer towards objects of inter-
est, whose identity and position will be recorded along with

30 the identity and extent of scene macro-areas. Created scene
metadata can then be used by an operator or high-level
context processor that directs situational awareness.
FIG. 18A illustrates an example of a typical run of the

UGV in a rural environment, and FIG. 18B shows examples
35 of scene metadata provided by the system on each frame. In

FIG. 18A, the UGV drives through a set path between start
and goal location in the presence of static/moving objects.
And FIG. 18B shows that at each frame, the system provides
scene metadata for both large areas and objects, along with

40 their location.
To fully comply with real-time vision in a mobile plat-

form, the UGV must be able to detect the temporal conti-
nuity of objects classified by the fine observer incorporating
robot or object motion. A non-limiting example of temporal

45 continuity is exemplified in FIG. 19. This implementation
for objects, combined with the temporal continuity of scene
macro-areas may prevent unnecessary duplication of object
records in scene metadata.

FIG. 19 illustrates temporal continuity in the fine
50 observer. Using temporal continuity in the Where system

can prevent the problem of having to reclassify the same
object multiple time as the robot moves around. The identity
of classified objects (e.g., rocks a, b classified in a simulated
planetary environment) and their position is predicted at

55 each of the 3 frames to anticipate where to look next and
build a coherent visual world as the robot moves in the
environment. The top-left inset shows the fine observer
model controlling the adjustment of the sample location at
each frame taking into account motion of the robot, its

60 sensor, and perceived objects. The bottom-right inset shows
the temporal continuity of the two space-variant log-polar
representation of one of the rocks (red outline) in two
successive frames where rock identity is consistently the
same across the two frames.

65 Integration with Fine Observer
The results from both the fine and coarse observers will

enhance the efficiency and performance of each other, which
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is optimized by close integration of these two systems. Once
a candidate set of sensors is chosen, the input from these
sensors will be formatted for efficient learning and recog-
nition by the fine observer. The method of directing the fine
observer's focus of attention will be enhanced by creating a
mixing rule between pre-existing bottom-up saliency for
object learning and the top-down saliency field from the
coarse observer.
The coarse observer should be able to learn from image

examples in order to build internal representations of objects
and image regions so that it can both efficiently process new
and complicated visual contexts and communicate with an
end user. The text describes how the coarse observer will be
trained to recognize canonical scene macro-areas as well as
give them human-readable and semantically relevant labels
and viewing priority weightings.

Adapt Object Clustering System to Image Macro-Areas
Unsupervised learning models will be applied to the

coarse observer in order to cluster and categorize observed
scene macro-area feature vectors. This clustering will allow
commonly viewed areas, such as sky and ground, to have a
persistent representation and systemic influence on the fine
observer across applications and missions. Changes in the
macro-area (e.g., an approaching helicopter) will not be
ignored, but instead will be incorporated into directing the
focus of attention. In the presence of an external teacher,
supervised learning will also be applied to macro-area
cluster centers in order to associate regions with user-
accessible semantic labels (e.g. sky, ground) and viewing
priority levels. This application will reuse a combined
unsupervised/supervised learning system, already developed
and used in OpenSense's fine observer, in order to cluster
and label scene macro-areas.

Train Integrated System on Standard Image Databases
After developing a clustering and labeling system for the

coarse observer, a foundation of scene macro-area clusters
will be created by training the coarse observer on standard
computer vision databases. This foundation will be built
with the LabelMe database (Russell et al., 2008). In order to
evaluate the recognition ability of the integrated system with
and without the coarse observer, the fine observer will also
be trained on databases of specific objects such as the KITTI
dataset (Geiger, et al., 2012).

Bias Attention Towards Macro-Areas that are Either New
or Interesting

During and after learning the identity of scene macro-
areas, the coarse observer will also learn to associate regions
such as sky and ground with measures of viewing priority
for the fine observer. This value-based association completes
the behavioral circuit allowing a fast, semantically-based
image segmentation to control viewing efficiency. These
associations include:
A measure of familiarity with macro-areas that inhibits

the fine observer more strongly as an area is viewed more
often and frequently;
A measure of typicality that activates the fine observer as

a small image region deviates more from its macro-area
average and from the appearance learned to be normal over
time;

Alearned or user-defined measure of task-based relevance
that modulates viewing priority based on a high-level situ-
ational context. For example, the presence of another vehicle
as identified by the fine observer can allow the coarse
observer to increase the viewing priority of macro-areas
labeled as ground and road rather than sky or building.

CONCLUSION

While various inventive embodiments have been
described and illustrated herein, those of ordinary skill in the

40
art will readily envision a variety of other means and/or
structures for performing the function and/or obtaining the
results and/or one or more of the advantages described
herein, and each of such variations and/or modifications is

s deemed to be within the scope of the inventive embodiments
described herein. More generally, those skilled in the art will
readily appreciate that all parameters, dimensions, materials,
and configurations described herein are meant to be exem-
plary and that the actual parameters, dimensions, materials,

io and/or configurations will depend upon the specific appli-
cation or applications for which the inventive teachings
is/are used. Those skilled in the art will recognize, or be able
to ascertain using no more than routine experimentation,
many equivalents to the specific inventive embodiments

15 described herein. It is, therefore, to be understood that the
foregoing embodiments are presented by way of example
only and that, within the scope of the appended claims and
equivalents thereto, inventive embodiments may be prac-
ticed otherwise than as specifically described and claimed.

20 Inventive embodiments of the present disclosure are directed
to each individual feature, system, article, material, kit,
and/or method described herein. In addition, any combina-
tion of two or more such features, systems, articles, mate-
rials, kits, and/or methods, if such features, systems, articles,

25 materials, kits, and/or methods are not mutually inconsis-
tent, is included within the inventive scope of the present
disclosure.
The above-described embodiments can be implemented

in any of numerous ways. For example, embodiments of
so designing and making the technology disclosed herein may

be implemented using hardware, software or a combination
thereof. When implemented in software, the software code
can be executed on any suitable processor or collection of
processors, whether provided in a single computer or dis-

35 tributed among multiple computers.
Further, it should be appreciated that a computer may be

embodied in any of a number of forms, such as a rack-
mounted computer, a desktop computer, a laptop computer,
or a tablet computer. Additionally, a computer may be

40 embedded in a device not generally regarded as a computer
but with suitable processing capabilities, including a Per-
sonal Digital Assistant (PDA), a smart phone or any other
suitable portable or fixed electronic device.

Also, a computer may have one or more input and output
45 devices. These devices can be used, among other things, to

present a user interface. Examples of output devices that can
be used to provide a user interface include printers or display
screens for visual presentation of output and speakers or
other sound generating devices for audible presentation of

50 output. Examples of input devices that can be used for a user
interface include keyboards, and pointing devices, such as
mice, touch pads, and digitizing tablets. As another example,
a computer may receive input information through speech
recognition or in other audible format.

55 Such computers may be interconnected by one or more
networks in any suitable form, including a local area net-
work or a wide area network, such as an enterprise network,
and intelligent network (IN) or the Internet. Such networks
may be based on any suitable technology and may operate

6o according to any suitable protocol and may include wireless
networks, wired networks or fiber optic networks.
The various methods or processes (e.g., of designing and

making the coupling structures and diffractive optical ele-
ments disclosed above) outlined herein may be coded as

65 software that is executable on one or more processors that
employ any one of a variety of operating systems or plat-
forms. Additionally, such software may be written using any
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of a number of suitable programming languages and/or
programming or scripting tools, and also may be compiled
as executable machine language code or intermediate code
that is executed on a framework or virtual machine.

In this respect, various inventive concepts may be embod- 5
ied as a computer readable storage medium (or multiple
computer readable storage media) (e.g., a computer memory,
one or more floppy discs, compact discs, optical discs,
magnetic tapes, flash memories, circuit configurations in
Field Programmable Gate Arrays or other semiconductor 10

devices, or other non-transitory medium or tangible com-
puter storage medium) encoded with one or more programs
that, when executed on one or more computers or other
processors, perform methods that implement the various 15
embodiments of the invention discussed above. The com-
puter readable medium or media can be transportable, such
that the program or programs stored thereon can be loaded
onto one or more different computers or other processors to
implement various aspects of the present invention as dis- 20
cussed above.
The terms "program" or "software" are used herein in a

generic sense to refer to any type of computer code or set of
computer-executable instructions that can be employed to
program a computer or other processor to implement various 25
aspects of embodiments as discussed above. Additionally, it
should be appreciated that according to one aspect, one or
more computer programs that when executed perform meth-
ods of the present invention need not reside on a single
computer or processor, but may be distributed in a modular 30
fashion amongst a number of different computers or pro-
cessors to implement various aspects of the present inven-
tion.

Computer-executable instructions may be in many forms,
such as program modules, executed by one or more com- 35
puters or other devices. Generally, program modules include
routines, programs, objects, components, data structures,
etc. that perform particular tasks or implement particular
abstract data types. Typically the functionality of the pro-
gram modules may be combined or distributed as desired in 40
various embodiments.

Also, data structures may be stored in computer-readable
media in any suitable form. For simplicity of illustration,
data structures may be shown to have fields that are related
through location in the data structure. Such relationships 45
may likewise be achieved by assigning storage for the fields
with locations in a computer-readable medium that convey
relationship between the fields. However, any suitable
mechanism may be used to establish a relationship between
information in fields of a data structure, including through 50
the use of pointers, tags or other mechanisms that establish
relationship between data elements.

Also, various inventive concepts may be embodied as one
or more methods, of which an example has been provided.
The acts performed as part of the method may be ordered in 55
any suitable way. Accordingly, embodiments may be con-
structed in which acts are performed in an order different
than illustrated, which may include performing some acts
simultaneously, even though shown as sequential acts in
illustrative embodiments. 60

All definitions, as defined and used herein, should be
understood to control over dictionary definitions, definitions
in documents incorporated by reference, and/or ordinary
meanings of the defined terms.
The indefinite articles "a" and "an," as used herein in the 65

specification and in the claims, unless clearly indicated to
the contrary, should be understood to mean "at least one."

42
The phrase "and/or," as used herein in the specification

and in the claims, should be understood to mean "either or
both" of the elements so conjoined, i.e., elements that are
conjunctively present in some cases and disjunctively pres-
ent in other cases. Multiple elements listed with "and/or"
should be construed in the same fashion, i.e., "one or more"
of the elements so conjoined. Other elements may optionally
be present other than the elements specifically identified by
the "and/or" clause, whether related or unrelated to those
elements specifically identified. Thus, as a non-limiting
example, a reference to "A and/or B", when used in con-
junction with open-ended language such as "comprising"
can refer, in one embodiment, to A only (optionally includ-
ing elements other than B); in another embodiment, to B
only (optionally including elements other than A); in yet
another embodiment, to both A and B (optionally including
other elements); etc.
As used herein in the specification and in the claims, "or"

should be understood to have the same meaning as "and/or"
as defined above. For example, when separating items in a
list, "or" or "and/or" shall be interpreted as being inclusive,
i.e., the inclusion of at least one, but also including more
than one, of a number or list of elements, and, optionally,
additional unlisted items. Only terms clearly indicated to the
contrary, such as "only one of or "exactly one of or, when
used in the claims, "consisting of will refer to the inclusion
of exactly one element of a number or list of elements. In
general, the term "or" as used herein shall only be inter-
preted as indicating exclusive alternatives (i.e. "one or the
other but not both") when preceded by terms of exclusivity,
such as "either," "one of," "only one of or "exactly one of
"Consisting essentially of," when used in the claims, shall
have its ordinary meaning as used in the field of patent law.
As used herein in the specification and in the claims, the

phrase "at least one," in reference to a list of one or more
elements, should be understood to mean at least one element
selected from any one or more of the elements in the list of
elements, but not necessarily including at least one of each
and every element specifically listed within the list of
elements and not excluding any combinations of elements in
the list of elements. This definition also allows that elements
may optionally be present other than the elements specifi-
cally identified within the list of elements to which the
phrase "at least one" refers, whether related or unrelated to
those elements specifically identified. Thus, as a non-limit-
ing example, "at least one of A and B" (or, equivalently, "at
least one of A or B," or, equivalently "at least one of A and/or
B") can refer, in one embodiment, to at least one, optionally
including more than one, A, with no B present (and option-
ally including elements other than B); in another embodi-
ment, to at least one, optionally including more than one, B,
with no A present (and optionally including elements other
than A); in yet another embodiment, to at least one, option-
ally including more than one, A, and at least one, optionally
including more than one, B (and optionally including other
elements); etc.
In the claims, as well as in the specification above, all

transitional phrases such as "comprising," "including," "car-
rying," "having," "containing," "involving," "holding,"
"composed of," and the like are to be understood to be
open-ended, i.e., to mean including but not limited to. Only
the transitional phrases "consisting of and "consisting
essentially of shall be closed or semi-closed transitional
phrases, respectively, as set forth in the United States Patent
Oflice Manual of Patent Examining Procedures, Section
2111.03.
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The invention claimed is:

5 1. A system for automatically locating and identifying an
object in an environment, the system comprising:

at least one sensor to acquire sensor data representing at
least a portion of the environment;

at least one processor operably coupled to the at least one
10 sensor; and

at least one memory operably coupled to the at least one
processor, the at least one memory storing instructions
that, when executed by the at least one processor, cause
the at least one processor to implement:

15 a spatial attention module to produce a foveated repre-
sentation of the object based at least in part on the
sensor data, to track a position of the object within the
environment based at least in part on the foveated
representation, and to select another portion of the

20 environment to be sensed by the at least one sensor
based at least in part on the foveated representation of
the object; and

a semantics module to determine an identity of the object
based at least in part on the foveated representation of

25 the object,
wherein the spatial attention module comprises a segmen-

tation module to generate at least one contour repre-
sentation of the object based at least in part on the
sensor data,

30 wherein the spatial attention module further comprises a
figure/ground segregation module to determine at least
one spatial shroud fitting a form of the object based at
least in part on the at least one contour representation
of the object, and

35 wherein the sensor data comprises a plurality of images
and the semantics module comprises:
a view layer to group views of the object in the plurality
of images based at least in part on the at least one
spatial shroud;

40 an object layer to map the views of the object to an
object node associated with the object; and

a name layer to classify the object based at least in part
on the object node.

2. The system of claim 1, wherein the at least one sensor
45 comprises an image sensor to acquire at least one image of

the at least a portion of the environment.
3. The system of claim 2, further comprising:
at least one actuator, operably coupled to the image

sensor, to provide sensor position data representative of
50 an orientation and/or a position of the image sensor, and

wherein the spatial attention module is configured to
select the other portion of the environment based at
least in part on the orientation and/or a position of the
image sensor.

55 4. The system of claim 3, wherein the
at least one memory is configured to store the sensor

position data representing an orientation and/or a posi-
tion of the image sensor and to store instructions that,
when executed by the at least one processor, cause the

60 processor to implement:
an inhibition of return module to inhibit repeated selec-

tions of the object based at least in part on the sensor
position data stored in the memory.

5. The system of claim 1, wherein the spatial attention
65 module configured to select the other portion of the envi-

ronment such that the object appears at or near a center of
the other portion of the environment.
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6. The system of claim 1, wherein the spatial attention
module comprises:

at least one log-polar transformation module to transform
the sensor data into a log-polar representation of the
environment so as to provide invariance to translation
and/or rotation of the at least one sensor with respect to
the object and/or so as to reduce processing time.

7. The system of claim 1, wherein the view layer is
configured to group the views of the object based at least in
part on classification of the object by the name layer.

8. The system of claim 1, wherein the semantics module
is configured to learn the identity of the object based at least
in part on the location of the object.

9. The system of claim 1, wherein the instructions, when
executed by the at least one processor, further cause the at
least one processor to implement:

a teaching module to provide a label for the object, and
wherein the semantics module is configured to assign the

label to the object.
10. A method of automatically locating and identifying an

object in an environment, the method comprising:
(A) estimating a position and/or an orientation of at least

one sensor with respect to the environment;
(B) acquiring, with the at least one sensor, sensor data

representing at least a portion of the environment;
(C) producing a foveated representation of the object

based at least in part on the sensor data acquired in (B);
(D) determining an identity of the object based at least in

part on the foveated representation of the object pro-
duced in (C); and

(E) selecting another portion of the environment to be
sensed by the at least one sensor based at least in part
on the foveated representation of the object produced in
(C) and the position and/or the orientation estimated in
(A);

48
(F) acquiring additional sensor data, with the at least one

sensor, in response to selection of the other portion of
the environment in (D), wherein:

(A) comprises acquiring a plurality of images,
5 (D) comprises generating at least one contour represen-

tation of the object based at least in part on at least one
image and determining at least one spatial shroud
fitting a form of the object based at least in part on the

to 
at least one contour representation of the object, and

(E) comprises:
(El) grouping views of the object in the plurality of

images based at least in part on the at least one
spatial shroud;

15 (E2) mapping the views of the object to an object node
associated with the object; and

(E3) classifying the object based at least in part on the
object node.

11. The method of claim 10, wherein (D) comprises
20 selecting the other portion of the environment such that the

object appears at or near a center of the other portion of the
environment.

12. The method of claim 10, wherein (D) comprises
inhibiting repeated selections of a given portion of the

25 environment based at least in part on the position estimated
in (A).

13. The method of claim 10, wherein (D) comprises
transforming the sensor data into a log-polar representation
of the environment so as to provide invariance to translation

30 and/or rotation and/or so as to reduce processing time.
14. The method of claim 10, wherein (El) comprises

grouping the views of the object based at least in part on
classification of the object in (E3).
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