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Abstract

The project aims to develop advanced model-checking algorithms and tools to automate the verification
of fault-tolerant distributed systems for avionics. We present a new method called Property-Directed K-
Induction (PD-KIND) for synthesizing K-inductive invariants of state-transition systems. PD-KIND builds
upon Satifiability Modulo Theories (SMT) to generalize Bradley’s IC3 method and its variants. This method
is implemented in a new tool called SALLY. Case studies show that PD-KIND can automatically verify fault-
tolerant algorithms under a variety of fault models and that SALLY is competitive with other SMT-based
model checkers.
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1 Goals

The project aims to advance the state of the art in verification of fault-tolerant distributed systems.
With the advent of powerful decision procedures and automated provers known as Satisfiability Modulo

Theory (SMT) solvers, it is now possible to verify complex, fault-tolerant systems relevant to avionics in
a semi-automated manner. One commonly starts with a state-machine model of the system or algorithm
under investigation, and apply model checking tools to prove (or disprove) that the system satisfies critical
properties under suitable assumptions about faults. Current proof techniques typically rely on bounded
model checking [4] and induction. These techniques can be effective but they are usually not fully automatic,
as a human expert must provide auxiliary lemmas that may be intricate and difficult to discover.

Our goal is to make analysis of fault-tolerant, distributed systems more effective and practical. Our
focus is twofold: we want to automate verification as much as possible so that model-checking tools can be
used by non-experts, and we want to support analysis of general system instances that consist of an arbitrary
number of components.

2 Accomplishments

In this project, we have focused on IC3, a model-checking method invented by Aaron Bradley in 2011 [7].
IC3, also known as property-directed reachability [21] (PDR), has revolutionized model checking of finite-
state systems. IC3 and its variants combine forward and backward reachability techniques to automatically
verify invariants. These methods have been shown to be highly effective, and more scalable, than alterna-
tive approaches such as bounded model checking and verification techniques based on Craig interpolants
(e.g. [30]). The original IC3 focuses on finite systems encoded as Boolean circuits and relies on power-
ful Boolean SAT solvers as the underlying reasoning engine. Since models of fault-tolerant systems are
typically not finite, we have investigated extensions of IC3 to infinite models encoded in (fragments of)
first-order logic, and with SAT solvers replaced by SMT solvers. IC3-based methods have the potential to
significantly simplify the verification of infinite systems — they are fully automatic and do not require an
expert to provide auxiliary invariants. IC3 discovers the “right” state invariants on its own.

Starting from previous work [8, 9, 24], we have developed an original extension of IC3 to infinite-state
systems. We have implemented this algorithm in a new model-checking tool called SALLY. SALLY is more
than just a prototype implementation. It is intended to be a general framework for prototyping and develop-
ing model-checking algorithms that depend on SMT solvers. SALLY supports several backend SMT solvers
and implements verification algorithms others than IC3 (e.g., bounded model checking and k-induction).
We evaluated our original algorithm and implementation on a set of case studies derived from existing fault-
tolerant algorithms. These experiments showed that SALLY and our version of IC3 are more robust than other
SMT-based model-checking algorithms. SALLY also improves over our older model checker (SAL [17]) as
SALLY can automatically verify properties that are not k-inductive.

In the second year of the project, we have continued to develop SALLY and we have evaluated the algo-
rithms on an extended set of more demanding case studies. We have applied SALLY to fault-tolerant systems
and to examples coming from software verification. These case studies have identified scalability issues with
our original algorithm. For valid properties, the invariant-generation process required an excessive amount
of supporting facts, which resulted in high memory consumption and long runtimes. For invalid properties,
this large amount of auxiliary facts could also stifle the counter-example search when the property is in-
valid at deep frames (many steps). After trying several remedies, including heuristic management of learned
facts and optimistic trace extension, we attacked the problem in a more fundamental way. We replaced the
induction core of our algorithm with a more powerful k-induction core, resulting in a novel verification al-
gorithm that we call PD-KIND (Property-Directed k-Induction). PD-KIND combines the powers of both IC3
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and k-induction. It is more powerful and effective than each of them, both theoretically and in practice. The
additional reasoning power of k-induction allows the new algorithm to produce more concise invariants that
are, at the same time, easier to find — in some cases reducing verification time from minutes to seconds.

In the third year, we have focused on improving the usability of SALLY by developing native support for
(a subset of) the SAL language to MCMT, the specification language used by SALLY. This allows SALLY users
to write state-machine models in the expressive SAL language, and use the advanced algorithms provided
by SALLY for verification. We have also prototyped extensions of SALLY to handle fully parametric systems
and added new features to SALLY, including techniques based on abstract interpretation to infer system
invariants.

We have published results from the project in peer-reviewed international conferences, including the
16th Conference on Formal Methods in Computer-Aided Design (FMCAD’2016) and the 18th Conference
on Verification, Model Checking, and Abstract Interpretation (VMCAI’2017). Our FMCAD paper was
awarded an Honorable Mention in the Best Paper category. We presented a tutorial on SALLY at the Auto-
mated Formal Methods workshop (AFM), which was held in connection with the NASA Formal Methods
Conference in May 2017.

The software developed under this project is open source and distributed for free by SRI International.
The software, documentation, and examples are available at http://sri-csl.github.io/sally/.

3 SALLY: An Extensible SMT-Based Model Checker

Term Management

Parsing Infrastructure Model-Checking Engines

Transition Systems Reasoning Engines (SMT)

Yices2
MathSAT5

Y2M5

MCMT
SAL
BTOR

BMC
k-IND

PD-KIND

Z3
Y2Z3
SMT2

AIGER

Figure 1. SALLY’s architecture.

SALLY is the model checker we developed for this project. It relies on a modular and efficient soft-
ware infrastructure that supports prototyping and development SMT-based model-checking algorithms. The
architecture and the main modules of SALLY are sketched in Figure 1. Using this modular architecture, dif-
ferent backend SMT reasoning engines can be used, either individually or in combination. This allows com-
plementary solver features to be used when needed. Currently, SALLY supports SRI’s Yices 2 solver [19], the
MathSAT 5 [10] solver, Z3 solver [15], or any other SMT2 compliant solver. For good balance of efficiency
and support, SALLY is implemented in C++ (around 50000 LOC), and its main features include:

• An extensible, fast, and memory-efficient representation of terms and formulas. The term-management
core supports the rest of the systems and takes care of low-level details such as memory management
and garbage collection.

• A set of high-level classes that can model and operate on state transition systems. These classes
provide a clean API allowing for a natural description of all relevant model-checking algorithms.
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• A modular interface for importing SMT-based reasoning engines into the framework. The SMT-solver
API abstracts the internals of the particular solver and makes a range of solvers available to the rest
of the system. It also provides full access to the functionalities needed for model-checking purposes.

• An extensible parsing infrastructure that enables one to easily add new languages and extensions. Cur-
rently, SALLY can read state-transition systems specified in SALLY’s own input format called MCMT

(model checking modulo theories) or in the BTOR format (which is a standard input format for finite-
state systems). A parser for the more general and expressive SAL language is in development.

• Implementation of several model-checking algorithms such as the IC3, developed in the first year, the
PD-KIND procedure developed in the second year, and other algorithms such as SMT-based bounded
model checking and k-induction. Any of these algorithms can be selected trough command-line
options.

To illustrate the power and flexibility of the framework Figure 2 presents SALLY’s simple implementa-
tion of a bounded checking engine in under 50 lines of code. The simplicity that the framework allows in
describing model-checking algorithms is an enabling factor for SALLY to be an effective research platform
but, more importantly, it improves the assurance that the resulting model-checking algorithms are correct.

SALLY is open source (GPL) and available at http://sri-csl.github.io/sally/, where fur-
ther documentation and examples are available.

3.1 MCMT Language

The MCMT notation supported by SALLY is an extension of the SMT-LIB standard for SMT problems. SMT-
LIB is a Lisp-like language used in the SMT community to represent terms, formulas, and SMT-relevant
commands. MCMT builds on SMT-LIB as a term representation language, and extends it with syntax and
commands for specifying states, initial conditions, transition relations, and properties. A simple example is
shown in Figure 3. The language is designed to be easy for model checking tools to process, yet expressive
enough to model the instances of fault-tolerant systems targeted by this project. The language contains
several more advanced features beyond these basic commands, and will keep evolving as we target more
complex fault-tolerant system.

3.2 Property-Directed k-Induction

The main new development in the second year of the project is a novel method for model checking of infinite
state systems that we call PD-KIND (for Property-Directed k-induction). For infinite-state systems, IC3 and
k-induction are the two commonly used methods, and in the first year we have implemented both (an original
version) of IC3 and k-induction in SALLY.

At its core, the IC3 algorithm is based on induction. To show that a property is invariant, IC3 tries
to incrementally produce an inductive strengthening of the property. Surprisingly, the relative power of
k-induction and induction-based methods has not been studied in detail.1 It is folklore knowledge that k-
induction can be stronger than induction, but, to the best of our knowledge, this has never been formally
accounted for. One of the goals of this project was to improve the automation of model-checking tools
and understanding the relationship between different methods is crucial. We have analyzed the relationship
between IC3 and k-induction and have shown that k-induction can be strictly more powerful than regular
induction. For some classes of systems, k-induction can produce much more succinct invariants than regular
induction. For other classes, there are properties that can be proved with k-induction but not with regular
induction [25].

1Some IC3-variants, such as PDR [24], are not guaranteed to terminate even if the property to prove is already inductive.
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1 result bmc_engine::query(const transition_system* ts, const state_formula* sf) {
2
3 // Scope for push/pop on the solver
4 solver_scope scope(d_solver);
5 scope.push();
6
7 // Initial states
8 term_ref init = ts->get_initial_states();
9 d_solver->add(d_trace->get_state_formula(init, 0), solver::CLASS_A);

10 // Transition formula
11 term_ref trans = ts->get_transition_relation();
12 // The property
13 term_ref p = sf->get_formula();
14 term_ref p_not = tm().mk_term(TERM_NOT, p);
15
16 // BMC loop
17 size_t bmc_min = ctx().get_options().get_unsigned("bmc-min");
18 size_t bmc_max = ctx().get_options().get_unsigned("bmc-max");
19 for (size_t k = 0; k <= bmc_max; ++ k) {
20 if (k >= bmc_min) {
21 // Check the current unrolling
22 scope.push();
23 d_solver->add(d_trace->get_state_formula(p_not, k), solver::CLASS_A);
24 solver::result r = d_solver->check();
25 // See what happened
26 switch (r) {
27 case solver::SAT:
28 return INVALID;
29 case solver::UNSAT:
30 break;
31 default:
32 return UNKNOWN;
33 }
34 // Pop the solver
35 scope.pop();
36 }
37 // Unroll once more
38 term_ref trans_k = d_trace->get_transition_formula(trans, k);
39 d_solver->add(trans_k, solver::CLASS_A);
40 }
41
42 return UNKNOWN;
43 }

Figure 2. Example BMC implementation.

These results argue for an IC3-style method that is based on (or integrated with) k-induction. The ad-
ditional reasoning power is particularly important when one works within an expressive logical theory such
as the theory of arrays [22, 27], which is useful for modeling parameterized systmes. Our new method PD-
KIND builds on the modular nature of IC3 we have developed in SALLY: satisfiability checking, reachability
checking, and generation of inductive invariants are independent layers as depicted in Figure 4. Isolating
these functionally independent modules allowed us to replace the inductive core with k-induction, producing
a method that is a natural combination of IC3 and k-induction. This method, in addition to being effective
in practice, can be shown to be at least as powerful than k-induction (provided the interpolation procedure
satisfies a natural property that we call finite-covering).

We have implemented the new procedure in the SALLY tool, and our experimental evaluation shows that
our prototype is at least as effective as the state-of-the-art infinite-state model checkers. An interesting aspect
of the PD-KIND method is that it is parametric in the maximal k-induction depth km that is to be consid-
ered. This k-induction “knob” gives rise to different variants IC3 = PD-KIND1, PD-KIND2, . . . , PD-KIND∞.
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1 ;; State variables bundled into state_type: one variable x of type Real
2 (define-state-type state_type ((x Real)))
3
4 ;; Initial states (a formula over state_type variables): x is zero
5 (define-states initial_states state_type
6 (= x 0)
7 )
8
9 ;; One transition: increase x by one

10 (define-transition transition state_type
11 ;; Implicit variables next, state of state_type
12 (= next.x (+ state.x 1))
13 )
14
15 ;; The system definition using above
16 (define-transition-system T
17 state_type
18 initial_states
19 transition
20 )
21
22 ;; Assume that x is always positive
23 (assume T (>= x 0))
24
25 ;; Query (any state formula over state_type)
26 (query T (not (= x (/ 1 2))))

Figure 3. Example MCMT Specification

These variants have different strengths and give the user the flexibility of tuning the performance of the
tool to the particular problem at hand. Since unrolling of the transition relation can negatively effect solver
performance, lower values of km tend to work better for problems that have a complex transition relation.
On the other hand, for complex problems that do not have simple inductive invariants, a larger km is better
since k-induction and can produce much simpler invariants.

The PD-KIND algorithm is presented in details in the appendix.

3.3 Support for the SAL Language and Parameterized Systems

Although the MCMT language is sufficient for modeling infinite state systems, it is designed for easy pro-
cessing by tools and can be too low-level for users. Parametric systems are more conveniently specified
using a richer language with more features than MCMT. Writing specifications in a low-level language such
as MCMT can be cumbersome, time-consuming, and error prone. In the first years of the project, we have
relied on SAL for modeling the case studies, and we have used SAL tools for translating models to MCMT.
This translation is not fully automated and requires manual editing. In order to streamline this process, and
to support reasoning about (non-instantiated) parametric systems, we have developed support for the SAL

language [18] directly in SALLY. Although not all of the many SAL features are finalized yet, SALLY now
supports the most important SAL features that are used in our case studies: arrays, records, tuples, enumer-
ated types, predicate subtypes, quantifiers, functions (including recursive functions), and parametric module
composition (both synchronous and asynchronous).

3.4 Counting Constraints and Parameterized Systems

The main goal of SALLY (and this project) is verification of fault-tolerant parameterized protocols. Most
automated methods, including PD-KIND, are applicable only to systems with a fixed number of components.
In order to support freely parametric systems, where the number of components is not fixed a priori, we have
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Satisfiability Modulo Theories

Finite Reachability

Induction

1
Invariant Discovery
Invariants are discovered from analysis of induction
failures. The novel inductive engine supports the more 
powerful k-induction principle, allowing for more concise
invariants to be discovered.

2
Reachability Checking
Potential counter-examples to the property, 
or induction, are checked for reachability. 
The checks are efficient single-step queries that
alleviate the need for unrolling of the system. 

Satisfiability Solving
State of the art automated reasoning 
using SMT technology, using Yices2 and
MathSAT5 solvers. Novel model-based 
generalization capabilities.

3

Figure 4. Main idea of PD-KIND.

developed decision procedures that can reason symbolically about constraints that can express “counting”.
The ability to reason about number of solutions is crucial in modeling of fault-tolerant protocols. A typical
example of counting constraints is an assumption of the form “less than one third of the processes are
faulty” appearing, e.g., in the Byzantine Generals’ Problem [28]. Although several methods and tools have
been proposed for analysis of parametric protocols, they are not well suited to fault-tolerant protocols.
For instance, the CUBICLE model checker [12] supports analysis of parameterized systems such as cache
coherence protocols, but it cannot express counting. Recent developments based on the MCMT framework
do support counting constraints [1], but the proposed decision procedures are mostly theoretical and cannot
be integrated well into an invariant-discovery algorithm such as IC3. As a step toward parametric-system
verification, we have developed a decision procedure that can decide counting constraints in arithmetic,
and extended it to counting constraints with arrays. The prototype implementation is available at https:
//github.com/xapantu/counting-smt/. This decision procedure can be used to check properties
of parametric fault-tolerant protocols. Both decision procedures are implemented as overlays to an existing
SMT solver making them readily applicable on top of existing technology.

3.5 Learning Invariants Using Abstract Interpretation

Abstract interpretation [13] (AI) is a theory of sound approximation of the semantics of transition systems.
It has been successfully used to produce inductive invariants in software. The use of AI techniques in this
project is appealing for its scalability and as a complement to the invariant-generation techniques used in
PD-KIND. PD-KIND relies on interpolation to find an inductive strengthening of the property and, although
interpolants have been relatively effective they also have significant limitations: (a) different proofs can gen-
erate different interpolants making the invariant generation unpredictable, and (b) interpolants are syntactic
in nature since they are extracted from proofs generated by SMT solvers. Instead, AI is semantic in nature,
much more predictable, and can discover invariants that are out of reach of interpolation.

The MCMT specification in Figure 5 exemplifies the benefits of combining AI and PD-KIND. The goal is
to prove that the simple linear system satisfies the property (x < 1). But PD-KIND cannot find an inductive
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1 (define-state-type state_type ((x Real) (y Real)))
2 (define-states initial_states state_type
3 (and (= x 0) (= y (/ 1 2)))
4 )
5 (define-transition transition state_type
6 (and (= next.x (+ state.x state.y))
7 (= next.y (/ state.y 2)))
8 )
9 (define-transition-system T

10 state_type initial_states transition
11 )
12 (query T (< x 1))

Figure 5. Example where PD-KIND benefits from a semantic invariant inference method such as AI.

strengthening for this property. Instead, it learns a series of inequalities of the form

2kx+ (2k+1 − 1)y ≤ (2k+1 − 1)/2

for increasing values of k. These inequalities hold up to a certain number of states, but they do not make
an inductive invariant. Due to its reliance on interpolant-based (syntactic) invariant inference, the PD-KIND

method can not infer an appropriate strengthening, and it generates an ever-increasing set of auxiliary lem-
mas that fails to converge in a finite number of steps.

On the other hand, AI with the Polyhedra domain [14] infers two inductive invariants for this system:
(x + 2y = 1) and (0 ≤ x ≤ 1). While these two invariants do not directly imply (x < 1), they are helpful
in completing the proof. The learned invariant (x + 2y = 1) is enough to strengthen the property and both
PD-KIND and k-induction can immediately prove that (x < 1) is invariant.

In the third year of this project, we have prototyped a method that combines AI techniques with PD-
KIND. For doing this, we extended SALLY with the capability to perform abstract interpretation of MCMT

specifications. Conceptually, this could be seen as a new engine in Figure 1. However, building abstract
interpreters from scratch is a difficult and very time-consuming engineering task. Instead, we took a more
pragmatic approach and integrated an existing abstract interpreter (one provided by the SeaHorn [23] ver-
ification framework) into SALLY. The SeaHorn abstract interpreter provides efficient fixpoint iterators and
numerical abstract domains with different level of precision/efficiency trade-offs. However, SeaHorn fo-
cuses on verification of LLVM programs and therefore it takes as input a control-flow graph (CFG)-based
language. To circumvent this, we implemented a translation from MCMT specifications to the CFG-based
language understood by the abstract interpreter.

4 Case Studies

We have evaluated our algorithms on a range of existing fault-tolerant systems and on additional problems
from software verification. We have modeled all the fault tolerant systems in the SAL language. Using the
existing SAL tools, we have translated the models to a so-called flat module representation. Since the SAL

notion of a flat module is very close to MCMT, this representation can then be translated to SALLY’s MCMT

with minimal manual edits. All SAL and MCMT models are available as examples in SALLY’s repository.

4.1 Fault-Tolerant Systems

Oral Message Protocol (OM1). OM1 is the simplest version of Oral Message protocol for Byzantine
Agreement due to Lamport, Shostak, and Pease [28]. The protocol has N participants. One of them, the
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source, attempts to reliably distribute a message m to the others. The protocol has two goals: all non-
faulty participants receive the same message (agreement), and, if the source is non-faulty then message m
is received (validity).

These two properties are achieved if at most one of these participants is Byzantine-faulty, provided N is
at least 4. We have modeled a variant of this protocol that consists of four main processors and four relays
in SAL and converted the model to MCMT.

Clock Synchronization in Timed-Triggered Ethernet. Our second case study is based on a earlier study
of Timed-Triggered Ethernet (TTE) that was part of a previous NASA-funded project [20]. In this previ-
ous project, we used SAL to build a model of the TTE fault-tolerant clock-synchronization algorithm and
computed bounds on the synchronization guarantees. At the time, we performed the analysis using SAL’s
SMT-based bounded model checker. The proofs were not automatic, as the properties of interest are not
k-inductive, and we had to provide several auxiliary invariants.

We used the same SAL model to investigate whether PD-KIND in SALLY and other solvers could prove
the same properties in a fully automated manner (that is, without the auxiliary invariants).

Simple Approximate Agreement. We have modeled and verified a variant of the approximate agreement
protocol described in Chapter 7.2 of Nancy Lynch’s book on distributed algorithms [29]. The modeling
approach and verification procedure is the same as described previously. The main difference is that we use
the median instead of the fault-tolerant midpoint as voting function. We verified the protocol under two fault
models: we first looked at the case of a single Byzantine fault then we used a hybrid fault model withN = 6
processes, one of which is symmetric faulty and another suffers a benign fault.

Unified Approximate Agreement. We examined an approximate-agreement algorithm based on the uni-
fied protocol of Miner et al. [32]. Our goal was to check the applicability of our new model-checking
techniques to proving properties under different fault scenarios, including hybrid fault models. As before,
we built a model in SAL then converted it to MCMT for analysis.

The protocol consists of N processes that each own a value v[i]. In each round of the protocol, each
process broadcasts its value to the others then update v[i] by computing the mid-value of all the values it
receives. The protocol satisfies the following agreement property:

∀i, j : |v[i]− v[j]| < ε ,

where i and j are two arbitrary non-faulty processes. We checked whether this property is satisfied in
our state-transition model for different fault assumptions. As in the previous example, this property is not
inductive and cannot be proved with SAL unless the user provides auxiliary invariants, but it can be proved
automatically with SALLY.

Azadmanesh & Kieckhafer We examined the approximate agreement protocol of Azadmanesh & Kieck-
hafer [2] in synchronous systems under a hybrid fault model. We considered a system of N processes with
b benign faults, ws symmetric ommissive faults, wa asymmetric omissive faults, s symmetric transmissive
faults, and a asymmetric transmissive faults. Assuming that

N ≥ 3a+ 2s+ wa + ws + b+ 1 .

the convergence property is an invariant of the system. The convergence property states that |vi − vj | ≤
∆oC

k where

• vi and vj are the values of two processes i and j
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• ∆0 is a bound on the initial difference between values of all processes

• C is the convergence rate (0 ≤ C < 1)

• k is the number of rounds.

The voting was modeled using the fault-tolerant midpoint by sorting n received values in increasing
order: x1, . . . , xn, then removing τ largest and τ smallest values (in our case τ = 1), and finally computing
the midpoint as xτ+1+xn−τ

2 .
Using SALLY we have automatically proved convergence for C = 1/2 and 5 processes, and showed that

the convergence rate C = 1/2 is optimal for our voting function.

4.2 Evaluation

In addition to the case studies described above, we have also evaluated the new procedure on additional
problems from other sources. We have used publicly-available benchmarks from software model checking
(cav12 [8], ctigar [5]). The lustre benchmarks are from the benchmark suite of the KIND model-checker,
and cons are simple concurrent programs.

To put the evaluation of the new method in context, we first compare PD-KIND5 with other state-of-the-
art, infinite-state model checkers, namely, Z3 [24], NUXMV [9], and SPACER [26]. The results are presented
in Table 1. Each solver is executed with a timeout of 20 minutes. Each column of the table corresponds
to a different model-checking engine, and each row corresponds to the different problem sets. For each
problem set and tool combination we show the number of problems that the tool has solved and the total
time (in seconds) that the tool took to solve those problems. In each problen, the goal is to prove or disprove
that a postulated invariant property P holds. The column valid/invalid reports the number of instances for
which the property is invariant (i.e., P is valid) and the number of instances for which the tool found a
counterexample (i.e., P is invalid).

Table 1. Experimental evaluation

Z3 SPACER NUXMV PD-KIND5

problem set solved valid/invalid time (s) solved valid/invalid time (s) solved valid/invalid time (s) solved valid/invalid time (s)

approx-agree (9) 9 8/1 213 7 6/1 1150 9 8/1 2174 9 8/1 335
azadmanesh (20) 20 17/3 3404 20 17/3 4678 20 17/3 294 16 13/3 1694
oral-messages (9) 9 7/2 16 9 7/2 44 9 7/2 161 9 7/2 3
tta (3) 1 1/0 9 1 1/0 8 1 1/0 17 1 1/0 3
tte (6) 6 3/3 969 6 3/3 445 5 2/3 405 6 3/3 13
unified-approx (11) 8 5/3 2928 11 8/3 589 11 8/3 139 11 8/3 141

cav12 (99) 69 48/21 2102 71 49/22 3529 72 50/22 7443 72 51/21 6053
conc (6) 4 4/0 128 4 4/0 655 6 6/0 421 3 3/0 8
ctigar (110) 64 44/20 1683 72 52/20 4249 76 56/20 1342 75 55/20 2460
hacms (5) 1 1/0 11 1 1/0 4 4 3/1 388 1 1/0 18
lustre (790) 757 421/336 1888 763 427/336 2263 760 424/336 7660 763 430/333 8641

A detailed inspection of the results reveals the expected deductive strengths of the PD-KIND method. The
most prominent example is the cm-clock-distance problem. It is a valid problem of the tte set. On
this problem, SALLY with PD-KIND1 (the inductive version) produces an inductive invariant containing 3692
facts. Other tools also struggle on this problem, either timing out or taking more than 250s. On the other
hand, PD-KIND5 produces a 4-inductive invariant of only 25 facts in seconds. This shows the advantage of
the new method in terms of conciseness.
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We have also run SALLY’s k-induction checker on the examples. By itself, k-induction can solve 287
properties (i.e., the properties are k-inductive for some k and can be proved without searching for an induc-
tive strengthening). With the new PD-KIND engine, SALLY is the only model checker that can also prove all
these k-inductive properties.

On the other hand, regular induction is often enough for practical purposes. For example, PD-KIND1

fares well on the cav12 benchmarks. It solves 74 problems, and as the induction depth increases the results
degrade. A comparison of different PD-KIND variants is presented in Table 2. As shown in Table 1, PD-
KIND struggles on problems in the azadmanesh class. On these problems, the procedure struggles for two
reason. First, the transition relation has a complex control-flow that makes the k-inductive queries difficult to
solve. Second, because the interpolation procedure provided in MathSAT is not finite covering the invariant
generation diverges into an endless sequence of trivial invariants.2

Table 2. Comparison of different variants

PD-KIND1 PD-KIND3 PD-KIND5 PD-KIND∞

problem set solved valid/invalid time (s) solved valid/invalid time (s) solved valid/invalid time (s) solved valid/invalid time (s)

approx-agree (9) 9 8/1 348 9 8/1 341 9 8/1 335 9 8/1 342
azadmanesh (20) 19 16/3 3193 16 13/3 1651 16 13/3 1694 16 13/3 1671
oral-messages (9) 9 7/2 10 9 7/2 3 9 7/2 3 9 7/2 3
tta (3) 1 1/0 71 1 1/0 3 1 1/0 3 1 1/0 6
tte (6) 6 3/3 1018 6 3/3 17 6 3/3 13 6 3/3 14
unified-approx (11) 11 8/3 88 11 8/3 139 11 8/3 141 11 8/3 140

cav12 (99) 74 51/23 4983 73 51/22 5196 72 51/21 6053 65 47/18 1052
conc (6) 4 4/0 58 3 3/0 11 3 3/0 8 3 3/0 10
ctigar (110) 74 54/20 3358 74 54/20 2012 75 55/20 2460 74 54/20 2532
hacms (5) 1 1/0 11 1 1/0 14 1 1/0 18 1 1/0 27
lustre (790) 746 413/333 9998 759 430/329 4390 763 430/333 8641 760 431/329 9666

5 Publications

We have published several papers describing the project results. The following papers acknowledge the
support of NASA cooperative agreement NNX14AI05A:

1. Dejan Jovanović. Solving nonlinear integer arithmetic with MCSAT. In Ahmed Bouajjani and David
Monniaux, editors, Verification, Model Checking and Abstract Interpretation (VMCAI 2017), pages 330–
346. Springer, 2017.

2. Dejan Jovanović and Bruno Dutertre. Property directed k-induction. In Ruzica Piskac and Muralidhar
Talupur, editors, Formal Methods in Computer-Aided Design (FMCAD 2016), pages 85–92, 2016.

3. Dejan Jovanović and Bruno Dutertre. LibPoly: A library for reasoning about polynomials. In SMT
Workshop. 2017.

4. Temesghen Kahsai, Jorge A Navas, Dejan Jovanović, and Martin Schäf. Finding inconsistencies in
programs with loops. In Logic for Programming, Artificial Intelligence, and Reasoning, pages 499–514.
Springer, 2015.

2We are planning to replace MathSAT with our own interpolation procedure based on MCSat [16].
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5. Daniel Schwartz-Narbonne, Martin Schäf, Dejan Jovanović, Philipp Rümmer, and Thomas Wies.
Conflict-directed graph coverage. In NASA Formal Methods, pages 327–342. Springer, 2015.

6 Conclusion

At the start of the project, our main goal was to develop algorithms and tools to facilitate verification of
fault-tolerant distributed systems. We have made signifcant progress toward this goal by developing a new
variant of IC3 that uses k-induction and implementing the algorithm in a new model checker called SALLY.
Experimental evaluation shows that SALLY is better than SAL, our previous generation of model checker.
Systems that could not be verified automatically with SAL3 can now be proved automatically with SALLY.
On these fault-tolerant examples and others, SALLY is also competitive and often better than alternative
SMT-based model checkers.

We did not fully achieve our other goal of supporting verification of truly parametric systems (i.e.,
without specifying in advance the number of components in the system). We have made progress in this
direction by researching decision procedures that can handle counting constraints and array-based models.
but these procedures remain to be developed and integrated into SALLY.

Another extension of this project might be generalization of SALLY and PD-KIND to richer logical the-
ories. Currently, SALLY relies on relatively simple theories (i.e., linear arithmetic) because these are the
theories supported by the backend SMT solvers. Extensions to nonlinear arithmetic would make SALLY

more generally applicable and useful. To work in this direction, we would need to extend Yices to provide
features such as model generalization and interpolants in nonlinear arithmetic.

3The SAL proofs require the user to find auxiliary lemmas by hand.
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6. Nikolaj Bjørner and Mikoláš Janota. Playing with quantified satisfaction. Logic for Programming,
Artificial Intelligence and Reasoning, 2015.

7. Aaron R Bradley. Sat-based model checking without unrolling. In Verification, Model Checking, and
Abstract Interpretation, pages 70–87. Springer, 2011.

8. Alessandro Cimatti and Alberto Griggio. Software model checking via ic3. In Computer Aided Verifi-
cation, pages 277–293. Springer, 2012.

9. Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. Ic3 modulo theories via
implicit predicate abstraction. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 46–61. Springer, 2014.

10. Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Sebastiani. The Math-
SAT5 SMT solver. In Tools and Algorithms for the Construction and Analysis of Systems, pages 93–107.
Springer, 2013.

11. Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Efficient generation of craig interpolants
in satisfiability modulo theories. ACM Transactions on Computational Logic (TOCL), 12(1):7, 2010.
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Appendix A

The PD-KIND Algorithm

We reason about transition systems in the satisfiability modulo theories (SMT) framework [3]. Specif-
ically, we assume that the transition system is described in a theory where quantifier-free satisfiability is
decidable.

A.1 Notations and Background

We assume a finite set of typed variables ~x called state variables. To each variable x ∈ ~x, we associate its
primed version x′ of the same type. We call any quantifier-free formula F (~x) over the state variables a state
formula, and any quantifier-free formula T (~x, ~x′) a state-transition formula. A state s is a type-consistent
interpretation of ~x that assigns to each variable x ∈ ~x a value s(x) over its domain. A state formula F (~x)
holds in a state s (written s � F ) if the formula evaluates to true under the state’s assignment.

A state-transition system is a pair S = 〈I, T 〉, where I(~x) is a state formula describing the initial states
and T (~x, ~x′) is a state-transition formula describing the system’s evolution. A state s′ is a successor of a
state s in S if the formula T (~x, ~x′) evaluates to true when we interpret each x ∈ ~x as s(x) and each x′ ∈ ~x′
as s′(x). A state s is k-reachable if there exists a sequence of states σ = 〈s0, . . . sk〉 such that, s = sk, the
state s0 satisfies I , and each si+1 is a successor of si. We call σ a concrete trace of the system. We also say
that a state formula F is reachable in k steps if there is a k-reachable state s such that s � F .

Given a state formula P (the property), we want to determine whether all the reachable states of S
satisfy P . If this is the case, P is an invariant of S, which we denote by S � P . We also write S �ba P to
denote that P is true in all k-reachable states for a ≤ k ≤ b. If P is not invariant, there is a concrete trace,
called a counter-example, that reaches ¬P .

Definition A.1 (F-Induction). Given a set F of state formulas such that P ∈ F , P is F-inductiveA1 with
respect to S if

I(~x)⇒ F(~x) , (init)

F(~x) ∧ T (~x, ~x′)⇒ P (~x′) . (cons)

If F = {P}, we say that P is inductive.

If P is inductive then it is also invariant. Since invariants are in general not inductive, a common
approach to prove that P is invariant is to find a strengthening of P . Such a strengthening is a set of
formulas F such that P ∈ F and F is inductive. If such a strengthening exists, then P is invariant.

Definition A.2 (Fk-Induction). Given a set F of state formulas such that P ∈ F , P is Fk-inductive with
respect to S if

I( ~x0) ∧
l−1∧
i=0

T (~xi, ~xi+1)⇒ F(~xl) , for 0 ≤ l < k , (k-init)

k−1∧
i=0

(F(~xi) ∧ T (~xi, ~xi+1))⇒ P (~xk) . (k-cons)

When F = {P}, we say that P is k-inductive.
A1This is the same idea as induction relative to F used in [7].
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A property that is inductive is 1-inductive by definition. It is also k-inductive for any k. In the other
direction, if a property P is k-inductive and the logical theory underlying the system admits quantifier
elimination, then we can construct an inductive strengthening of P by eliminating quantifiers.A2 For such
theories, induction and k-induction have the same deductive power but k-induction may give more suc-
cinct strengthenings. If the base theory does not admit quantifier elimination then k-induction can be more
powerful than induction.

A.2 Satisfiability Checking

Given a state formula F , we denote with T [F ]k the unrolling of T to length k where F holds in the inter-
mediate states. For k > 1, T [F ]k(~x, ~x′) is then defined as

T (~x, ~w1) ∧
k−1∧
i=1

(F (~wi) ∧ T (~wi, ~wi+1)) ∧ T (~wk−1, ~x
′)

where ~w are the state variables in the intermediate states. For k = 0 and k = 1, we set T 0[F ](~x, ~x′) ≡ (~x =
~x′) and T 1[F ](~x, ~x′) ≡ T (~x, ~x′). When F ≡ true, we omit it and simply write T k.

A basic step in our algorithms is to check the satisfiability of formulas of the form

A(~x) ∧ T [B]k(~x, ~w, ~y) ∧ C(~y) , (A1)

where A, B, and C are state formulas. We denote by CHECK-SAT(A, T [B]k, C) an (SMT-based) procedure
that checks satisfiability of formula (A1), and returns a model if the formula is satisfiable. In addition, we
require two artifacts from the SMT solver: interpolants and generalizations.

Definition A.3 (Interpolant). If the formula (A1) is unsatisfiable, a formula J(~y) is a state interpolant if

1. A(~x) ∧ T [B]k(~x, ~w, ~y)⇒ J(~y), and

2. J(~y) and C(~y) are inconsistent.

Definition A.4 (Generalization). If the formula (A1) is satisfiable, we call a formula G(~x) a state general-
ization if

1. A(~x) and G(~x) are consistent, and

2. G(~x)⇒ ∃~w, ~y . T [B]k(~x, ~w, ~y) ∧ C(~y).

Interpolation provides forward learning. An interpolant over-approximates the set of states reachable
from A via T [B]k and is enough to refute C. Generalization is the dual and provides backward learning. A
generalization G is consistent with A and under-approximates the set of states that can reach C via T [B]k.

Our notion of a state interpolant is more specific than the one usually considered in general interpolation,
and our definition can be easily satisfied: formula ¬C is always an interpolant (so interpolants exists in our
case even if the underlying theory does not support general interpolation). Similarly, one can construct a gen-
eralizationG from a model v of formula (A1) by substitution (i.e., the formula (A∧T [B]k)[~w/v(~w), ~y/v(~y)]
is a trivial generalization). Although correct, trivial interpolants and generalizations are not ideal for practi-
cal applications. In particular, they do not satisfy the following property.

A2If P is k-inductive then P ∧ ◦P ∧ ◦ ◦ P ∧ . . . ∧
k−1︷ ︸︸ ︷
◦ ◦ · · · ◦P is inductive, where ◦ stands for “next state”.
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Definition A.5 (Finite Cover Property). An interpolation (resp. generalization) procedure has the finite
cover property (is finite-covering) when, for a fixed T [B]k and A (resp C), it can only produce a finite
number of distinct interpolants (resp. generalizations).

Interpolation is a well-studied topic [11,31] and it is available in several SMT solvers. Effective general-
ization in SMT was introduced in [26] (as model-based projection) for specific use in a PDR engine. There
are known generalization methods for the theories of linear arithmetic [26], arrays [27], and algebraic data-
types [6]. These methods have the finite cover property. On the other hand, most interpolation procedures
are proof-based and do not ensure finite covering.

Both interpolation and generalization approximate quantifier elimination. For theories that admit quan-
tifier elimination, one can construct precise interpolants by eliminating ~x and ~w from A∧T [B]k and precise
generalizations by eliminating ~w and ~y from T [B]k ∧ B. Such precise procedures have the finite cover
property, and it is not unreasonable to expect the same from interpolation and generalization. This is the
case for pure SAT problems. In SAT, interpolants can always be expressed as clauses, while generalizations
can be expressed as prime implicants, both of which guarantee the finite cover property.A3 The finite-cover
property for interpolants is an incremental form of the related notion of uniform interpolation [33]: uniform
interpolation requires a single interpolant instead of a finite set.

Example A.1. Consider the system S = 〈I, T 〉 defined as I ≡ (x = 0), T ≡ (x′ = x + 1) where x is a
real-valued variable. Let P be the formula 0 ≤ x ∨ x ≥ 1. To check whether P is inductive, we can ask the
following satisfiability query to the SMT solver

A1︷ ︸︸ ︷
(0 ≤ x ∨ x ≥ 1)∧

T 1︷ ︸︸ ︷
(x′ = x+ 1)∧

B1≡¬A1︷ ︸︸ ︷
¬(0 ≤ x′ ∨ x′ ≥ 1) .

This formula is satisfiable in a model x 7→ −0.5, x′ 7→ 0.5. We can generalize this model to G ≡ (−1 <
x < 0); any state that satisfies G is a counterexample to induction of P . We can then check whether G
intersects with the initial states and whether G is reachable in one step, by making two separate queries

A2︷ ︸︸ ︷
(x = 0)∧

T 0︷ ︸︸ ︷
(x′ = x)∧

B2︷ ︸︸ ︷
(−1 < x′ < 0) ,

(x = 0)︸ ︷︷ ︸
A3

∧ (x′ = x+ 1)︸ ︷︷ ︸
T 1

∧ (−1 < x′ < 0)︸ ︷︷ ︸
B3

.

Both queries are unsatisfiable. From the first query, we can get an interpolant J0(x′) ≡ (x′ ≥ 0) that refutes
G in the initial states. From the second query, we can get an interpolant J1(x′) ≡ (x′ ≥ 1) that refutes
G after one transition. Although P itself is not inductive, the two interpolants give us a strengthening: the
formula P ′ ≡ P ∧ (J0(x) ∨ J1(x)) is inductive.

A.3 Reachability

Problem A.1 (k-reachability). Given a state formula F that is not reachable in fewer than k steps, check
whether F is reachable in k steps.

The reachability problem can be solved by bounded model checking [4], but we discuss an alternative
method that does not require unrolling the transition relation. We introduce the concept of k-interpolation
as a way to learn from failures of k-reachability.

A3For arithmetic theories, finite-covering interpolants can be generated using model-based procedures such as MCSat [16].
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Definition A.6 (k-interpolant). Given a system S and state formula F that is unreachable in ≤ k steps
(system is k-inconsistent with F ), a state formula J is a state k-interpolant for F if

S �k0 J , J and F are inconsistent .

As with regular interpolation, the formula ¬F itself is a trivial k-interpolant. We can also construct
a k-interpolant by calling a standard interpolation procedure k + 1 times: If S and F are k-inconsistent,
then I(~x) ∧ T i(~x, ~w, ~x′) ∧ F (~x′) is unsatisfiable for 0 ≤ i ≤ k. From these inconsistencies we can obtain
interpolants J0,. . . , Jk, and the formula J ≡ (J0 ∨ . . . ∨ Jk) is a k-interpolant for F . Moreover, if the
interpolation procedure has the finite-cover property then so does the k-interpolation procedure.

To check k-reachability, we adopt the incremental depth-first reachability method of IC3, which relies
on local reasoning. The procedure maintains a sequence R0, R1, . . . of reachability frames. Frame Ri is a
set of state formulas that over-approximates the set of states reachable in i steps or less. This implies that
S �i0 Ri. Unlike IC3/PDR, we do not require the frames to be monotonic; we may haveRi+1 6⊆ Ri.A4

This setup allows us to build k-interpolants efficiently provided an extra local condition holds. If k = 0,
we just take the interpolant of I∧T 0∧F . If k > 0 and the formula F is not reachable in up to k steps, and if,
in addition, F is not reachable in one step fromRk−1, then both I∧T 0∧F andRk−1∧T∧F are inconsistent.
We can then obtain interpolants J1 and J2 for these two formulas and (J1∨J2) is a k-interpolant for F . This
k-interpolant, which we denote by EXPLAIN(S, k, F ), is potentially more concise than the one described
before and it is obtained by local reasoning only. Although EXPLAIN has an additional precondition, our
algorithm ensures that this holds whenever EXPLAIN is called.

Lemma A.1. Starting from a fixed finite frame sequence R0,R1, . . ., if the only formulas we add to the
frames are obtained through the EXPLAIN procedure, and the interpolation procedure is finite-covering,
then the EXPLAIN procedure is also finite-covering.

Algorithm 1 Check k-reachability of F .
Require: S �i0 Ri for 0 ≤ i ≤ k, S �k−1

0 ¬F .
Ensure: S �i0 Ri for 0 ≤ i ≤ k. If not reachable,Rk−1 ∧ T ∧ F is unsatisfiable.

1: function REACHABLE(S, k, F )
2: if k = 0 then return CHECK-SAT(I, T 0, F )

3: loop
4: if CHECK-SAT(Rk−1, T, F ) then
5: G← GENERALIZE(Rk−1, T, F )
6: if REACHABLE(S, k − 1, G) then
7: return true
8: else
9: E ← EXPLAIN(S, k − 1, G)

10: Rk−1 ← Rk−1 ∪ {E}
11: else return false

Finally, our reachability routine REACHABLE(S, k, F ) performs a step-wise search for a concrete trace
by using a depth-first search strategy. It tries to reach the initial states backwards. To reach F at frame k, we
check first whether F can be reached in one transition from the previous frame Rk−1. If no such transition
is possible, then F is not reachable. Otherwise, we get a state s that satisfies Rk−1 and from which F is
reachable in one step. The generalization procedure gives us a formula G that generalizes s: every state that
satisfiesG has a successor that satisfies F . We then recursively check whetherG is reachable. The recursive

A4From an implementation perspective, this gives flexibility in garbage collection. We can remove any subset of formulas from
any frameRi without compromising correctness.
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call will either find a path from the initial states to G, in which case F is reachable, or determine that G
is not reachable, in which case we can learn an explanation E of the reachability failure and eliminate G.
Learning E eliminates G as a potential step backward, and we continue.

Lemma A.2. Algorithm 1 solves the k-reachability problem. If F is not reachable then, upon completion,
either k = 0 and F is inconsistent with I , or k > 0 and F is not reachable in one step from Rk−1. In
addition, if the interpolation or the generalization procedure is finite-covering, then the procedure always
terminates.

We use a variant of the REACHABLE procedure to check whether F is reachable in steps k1 to k2.
We denote this by (r, l) = REACHABLE(S, k1, k2, F ). This extension of the REACHABLE procedure is a
straightforward loop from k1 to k2, and has the same precondition as the single check version (on k1). In
the return value, r denotes the reachability result (true/false), and, if r is true, l is the length of the shortest
trace that can reach F . The postcondition (and hence Lemma A.2) of the iterative extension is also the same
(on k2).

A.4 Property-Directed k-Induction

We now present the main procedure of PD-KIND. This procedure checks whether a property P is invariant
for a system S = 〈I, T 〉. It does so by iteratively trying to construct a k-inductive strengthening of P for
some k > 0. The overall idea behind the procedure is simple. Assume a set of formulas FABS that is a
strengthening of P and is valid in S for up to n steps. In other words, FABS is an over-approximation of
states reachable in n steps or less. Then, the set FABS satisfies (k-init) for all 1 ≤ k ≤ n + 1. We can pick
any such k and try to show that FABS is k-inductive by checking whether it also satisfies (k-cons). Each
iteration of the procedure PD-KIND does this check. The core of our algorithm is procedure PUSH that either
finds a counter-example to P or produces a new strengthening GABS ⊆ FABS. This new set GABS satisfies
(k-cons) with respect to FABS. The set GABS is then Fk

ABS-inductive. If GABS = FABS, we can conclude that
P is invariant. Otherwise, we know that GABS is valid (at least) up to index n+ 1. Procedure PUSH actually
returns an integer np such that GABS is valid up to np. This index np is the length of the shortest trace of S
that reaches ¬FABS; it is guaranteed to be at least n + 1 but it may be larger. At this point, we repeat the
loop with GABS as our current strengthening and np as our new index.

Algorithm 2 Main PD-KIND procedure.
Require: S = 〈I, T 〉 and I ⇒ P

1: function PD-KIND(S, P )
2: n← 0
3: F ← {(P,¬P )}
4: loop
5: pick k-induction depth 1 ≤ k ≤ n+ 1
6: 〈F ,G, np〉 ← PUSH(S,F , P, n, k)
7: if P marked invalid then return invalid
8: if F = G then return valid
9: n← np

10: F ← G

In addition to the set of formulas FABS, procedure PD-KIND associates with each each FABS ∈ FABS

information about a potential counter-example to P that the formula FABS eliminates. The set FABS and this
additional information is represented in the form of an induction frame. Let F denote the set of all state
formulas in our theory.
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Figure A1. Illustration of the formulas and frame indices over which PUSH operates.

Definition A.7 (Induction Frame). A set of tuplesF ⊂ F×F is an induction frame at index n if (P,¬P ) ∈ F
and the following holds for all (FABS, FCEX) ∈ F:

1. FABS is valid up to n steps and refutes FCEX, and

2. FCEX-states can be extended to a counter-example to P .

If I ⇒ P , then the set F = {(P,¬P )} is an induction frame at index 0. Given an induction frame F ,
we denote by FABS the strengthening represented by F , i.e., FABS = {FABS | (FABS, FCEX) ∈ F}. With this
in mind, the procedure PD-KIND is presented in Algorithm 2.

A.5 The PUSH Procedure

The core of the PD-KIND algorithm is the PUSH procedure (Algorithm 3). This procedure takes as input an
induction frameF at index n, and tries to push formulas of the frame using k-induction where 1 ≤ k ≤ n+1.
Figure A1 illustrates the formulas and frame indices over which PUSH operates.

Since F is an induction frame at n, we know that FABS is valid up to index n. In each iteration, the
procedure picks one yet unprocessed (FABS, FCEX) from F . Both FABS and ¬FCEX hold up to index n in S.

First, the procedure checks whether FABS is Fk
ABS-inductive (lines 9-12). If so, then we know that FABS

is valid at least up to position n + 1. We call this a successful push and we add (FABS, FCEX) to the set of
pushed obligations G, and continue with the next obligation. If the k-induction check fails, then we have a
model (counterexample to induction) mCTI. This is a trace of length k + 1 in which FABS holds for the first
k states but FABS is false in the last state.

The procedure does not use mCTI yet. Instead, it checks whether the counterexample formula FCEX is
reachable from FABS (lines 15-24). If the query at line 15 is satisfiable, it has a model mCEX. Like mCTI,
this model is a trace of length k + 1; it starts with k states that satisfy FABS and ends with a state that
satisfies FCEX (thus, from the first state of mCEX we can reach ¬P ). At this point, we generalize mCEX to
a formula GCEX. From any state that satisfies GCEX, one can reach ¬P . Formula GCEX is then a potential
counterexample for P . We check whether GCEX is reachable from the initial states of S. Because we know
that FCEX is not n-reachable, GCEX can’t be reached in less than n−k+ 1 steps. So we check reachability of
GCEX at positions n− k+ 1 . . .n. If GCEX is reachable, then so is ¬P and we mark P as invalid. Otherwise,
we call the EXPLAIN procedure, which returns a new fact GABS that eliminates GCEX. The new fact GABS

is true up to position n, and refutes GCEX, so we can add the new induction obligation (GABS, GCEX) to F ,
strengthening F , and try again with a potential counter-example eliminated.

In the remaining case, we have a counterexample mCTI to the k-inductiveness of FABS. Since the query
at line 15 is not satisfiable and FABS ⇒ ¬FCEX, we know that ¬FCEX is Fk

ABS inductive. We first apply
generalization tomCTI to construct a formulaGCTI. From any state that satisfiesGCTI, we can reach ¬FABS in
k steps. IfGCTI is reachable in S then ¬FABS is also reachable, so FABS can’t be part of a valid strengthening
of P . This check is performed at line 28; as previously, it is enough to check reachability ofGCTI at positions
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n−k+1, . . . , n. IfGCTI is reachable, we can’t push FABS. Instead, we replace the triple (FABS, FCEX) by the
weaker obligation (¬FCEX, FCEX). This new obligation can be immediately pushed to G. On the other hand,
if GCTI is not reachable then we strengthen FABS with a new fact GABS learned from procedure EXPLAIN.
This eliminates the counterexample to k-induction and the procedure continues.

At lines 30-31 of the procedure, we know that ¬FABS is reachable in S and that this requires at least
n + 1 transitions. It is useful to make this more precise by computing the actual length of the shortest path
to ¬FABS (line 30). This length is stored in variable np (if it’s smaller than np’s current value).

After the loop terminates, PUSH returns the set of successfully pushed induction obligations G, the
modified set F of k-induction assumptions for G, and the shortest refutation length np for any FABS ∈ FABS

that was not successfully pushed. The procedure does not only add to the original set F , it also actively
modifies it (line 37). Unlike existing IC3-based procedures where frames are explored in succession, keeping
track of np allows us to perform “jumps” that move to deeper frames faster. This is because FABS is valid
up to position np − 1 ≥ n, and the facts in GABS are valid up to position np ≥ n+ 1.A5

Assuming that PD-KIND terminates, it is not hard to show that it returns the correct result. If PD-KIND

terminates with P marked invalid, then we have found a counter-example to the property. On the other
hand, if PD-KIND terminates when the inductive frames become equal, i.e. F = G, then FABS is a k-
inductive strengthening of P and P is therefore valid. In general, for infinite domains, even termination of
the PUSH procedure is not guaranteed. But, a finite-covering interpolation procedure ensures termination:
the number of new facts that PUSH can learn is finite, and this bounds both the number of possible refinement
steps, and the number of new counter-examples that can be found in line 15.

The PD-KIND procedure, as presented, has the freedom to choose the induction depth k in each iteration
(line 5). We call a strategy for picking the depth increasing if it guarantees that, for every k, PD-KIND

eventually picks induction depths k′ larger than k.

Lemma A.3. If the interpolation procedure is finite-covering, then the PUSH procedure terminates. If the
property P is k-inductive for some k > 0, and PD-KIND uses an increasing strategy for k, then the PD-KIND

procedure terminates.

Proof. (Sketch) If the property P is k inductive, then PD-KIND will eventually pick only depths k′ ≥ k.
For any such k′ no counterexamples can be found at line 15, because any mCEX could be extended to a
counter-example of P , violating the assumption that P is k-inductive. If no new counter-examples can be
found then, as PD-KIND goes from frame to frame, the only new facts that can be added to the frame are
either obtained from refinement on line 35, where existing facts are replaced with stronger facts, or line 36,
where facts are weakened to a counter-example refutation. Since we know that no new counter-examples
can be found, the latter can only happen a finite number of times. Therefore, the size of the frame can not
increase indefinitely, and will eventually converge to a state where F = G.

A5We have observed significant frame jumps in practice although this is problem-specific.
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Algorithm 3 Push F with k-induction.
Require: F is a valid frame for P at position n, 1 ≤ k ≤ n+ 1, (P,¬P ) ∈ F .
Ensure: F is a valid frame for P at position np − 1 ≥ n, G ⊆ F is Fk-inductive, and P marked invalid or

(P,¬P, 0) ∈ Fp.
1: function PUSH(S, F , P , n, k)
2: push elements of F to Q . Q is a priority queue.
3: G ← {} . Pushed facts, i.e. GABS is Fk

ABS-inductive.
4: np ← n+ k . Keeps track of the shortest CTI position.
5: while P not marked invalid, Q not empty do
6: pop (FABS, FCEX) from Q
7:
8: . Is FABS Fk

ABS-inductive?
9: (satCTI,mCTI)← CHECK-SAT(FABS, T [FABS]

k,¬FABS)
10: if not satCTI then
11: G ← G ∪ {(FABS, FCEX)} . GABS is Fk

ABS-inductive.
12: continue
13:
14: . Is FCEX reachable?
15: (satCEX,mCEX)← CHECK-SAT(FABS, T [FABS]

k, FCEX)
16: if satCEX then
17: GCEX ← GENERALIZE(mCEX, T

k, FCEX)
18: if REACHABLE(S, n− k + 1, n,GCEX) then
19: mark P invalid . I  GCEX  k FCEX  ¬P .
20: else
21: GABS ← EXPLAIN(S, n,GCEX)
22: F ← F ∪ {(GABS, GCEX)} . Eliminate CEX.
23: push (GABS, GCEX), (FABS, FCEX) to Q
24: continue
25:
26: . Analyze the induction failure.
27: GCTI ← GENERALIZE(mCTI, T

k,¬FABS)
28: (rCTI, nCTI)← REACHABLE(S, n− k + 1, n,GCTI)
29: if rCTI then . I  nCTI

GCTI  k ¬FABS.
30: (rCTI, nCTI)← REACHABLE(S, n+ 1, nCTI + k,¬FABS)
31: np ← min(np, nCTI)
32: F ← F ∪ {(¬FCEX, FCEX)}
33: G ← G ∪ {(¬FCEX, FCEX)}
34: else . I 6 ≤n GCTI  k ¬FABS.
35: GABS ← EXPLAIN(S, n,GCTI) . GABS ⇒ ¬GCTI.
36: GABS ← FABS ∧GABS . GABS ⇒ ¬FCEX.
37: F ← F ∪ {(GABS, FCEX)} \ {(FABS, FCEX)}
38: push (GABS, FCEX) to Q.
39:
40: return 〈F ,G, np〉

25



Appendix B

Example Model

We present the SAL specification of an approximate agreement protocol due to Azadmanesh and Kieck-
haefer [2]. This example and some variations are included in the SALLY repository at http://sri-csl.
github.io/sally, which also gives translations of the protocol to the MCMT language. This model
illustrates the approach we have used in the project to model faults and fault-tolerant protocols.

In the protocol instance included here, the model includes five processes, two of which are faulty. This
scenario is described by predicate scenario2:

• Process 1 is asymmetric transmissive (i.e., it suffers a Byzantine fault). This means that it fails in an
arbitrary asymmetric fashion.

• Process 2 is asymmetric omissive: it may fail to send anything to some other processes and send
correct data to others. It does not send arbitrary incorrect data.

The fault-tolerant averaging function is the midpoint of the values received. This averaging is defined
by two functions in SAL:

• Function sort and filter specifies sorting of an array v of N = 5 values. It excludes the special
value missing from the sorting.

• Function vote picks the mid-value of a sorted array of n ≤ N values.

The protocol itself is modeled as a single flat SAL module. The key state variables include an array c
that models the communication channels. The value c[i][j] is the value transmitted by process j to i.
This value is updated at each round of execution depending on the status of process j. For example, if j is
symmetric transmissive, we require that it sends the same value to all processes, that is, for every process i
and k, we must have c[k][j] = c[i][j].

The main property of this protocol is convergence:

convergence: LEMMA
approx |- G(FORALL (i, j: PID): v[i] - v[j] <= delta);

This states that the values of two processes i and j differ by no more than the value delta, where delta
decreases geometrically with each round of the algorithm.

Verification of this protocol is automatic with SALLY. This requires first translating the SAL model into
MCMT, then invoking SALLY with the following command:

sally --engine pdkind --solver y2m5 --lsal-extensions \
scenario2_revised_convergence.mcmt

The full SAL specification is given below.

%
% Reference:
% M.H. Azadmanesh and R.M. Kieckhafer
% Exploiting Omissive Faults in Synchronous
% Approximate Agreement
% IEEE Transactions on Computers, Vol 48, No 10,
% October 2000.
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%
% This differs from approx.sal in ../approximate_agreement
% by using a different fault-tolerant averaging function
% and fault model.
%

approx_scenario2: CONTEXT =

BEGIN

%
% Fault mode: status of process i
% - good: not faulty
% - benign: faulty and known to be
% by all good processes (we ignore them for now)
% - symmetric ommissive: sends nothing
% - asymmetric ommissive: sends a correct value
% to some, nothing to others
% - symmetric transmissive: sends the same value
% to all (possibly incorrect)
% - asymmetric transmissive: can do anything
%
STATUS: TYPE = { Good,

SymmetricOmissive,
AsymmetricOmissive,
SymmetricTransmissive,
AsymmetricTransmissive };

%
% The protocol requires
% N >= 3a + 2s + wa + ws + b + 1
% and tau = a + s
% where
% a = number of asymmetric transmissive faults
% s = number of symmetric transmissive faults
% wa = number of asymmetric omissive faults
% ws = number of summetric omissive faults
% b = number of benign faults.
%

N: NATURAL = 5; %% number of processes

TAU: NATURAL = 1; %% Maximal number of faults (non-benign)

PID: TYPE = [1 .. N];

%
% Data = real values
%
DATA: TYPE = REAL;

%
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% Special value: 0 is interpreted
% as nothing sent
%
missing: DATA = 0;

%
% Sort and filter function
% - input: array v of N values
% - output:
% n = number of values in v that are different from missing
% p = a permutation p of the N indices such that
% p[1] ... p[n] enumerate the n non-missing values of v in
% increasing order
%
sort_and_filter(v: ARRAY PID OF DATA,

n: [0 .. N],
p: ARRAY PID OF PID): BOOLEAN =

(FORALL (i: PID): i>n <=> v[p[i]] = missing)
AND (FORALL (i: PID): i<n AND i<N => v[p[i]] <= v[p[i+1]])

%% We need i<N to convince SAL that this is type correct
AND (FORALL (i, j: PID): p[i] = p[j] => i = j);

%
% Voting: midvalue select
% - if we have n values, then we sort them in increasing
% order and return (x[tau+1] + x[n-tau])/2
%
% If n is smaller than tau, we return missing.
%
% - input:
% v = array of N values
% n = number of non-missing values
% p = permutation as defined above
%
midval(a: DATA, b: DATA): DATA = (a + b)/2;

vote(v: ARRAY PID OF DATA,
n: [0 .. N],
p: ARRAY PID OF PID): DATA =

IF n > TAU THEN midval(v[p[TAU+1]], v[p[n-TAU]])
ELSE missing ENDIF;

%
% Fault scenarios
% - all_good
% - scenario1: one symmetric transmissive
% + one asymmetric omissive fault
% - scenario2: one asymmetric transmissive
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% + one asymmetric omissive fault
%
all_good(s: ARRAY PID OF STATUS): BOOLEAN =

(FORALL (i: PID): s[i] = Good);

scenario1(s: ARRAY PID OF STATUS): BOOLEAN =
s[1] = SymmetricTransmissive AND
s[2] = AsymmetricOmissive AND
(FORALL (i: PID): i > 2 => s[i] = Good);

scenario2(s: ARRAY PID OF STATUS): BOOLEAN =
s[1] = AsymmetricTransmissive AND
s[2] = AsymmetricOmissive AND
(FORALL (i: PID): i > 2 => s[i] = Good);

%
% Initial precision:
% maximum difference between the values
%
initial_delta: { x: REAL| x > 0 };

%
% Approximate agreement: flat representation
% status[i] = status of process i
% v[i] = value of process i
% c[j][i] = channel from process i to process j
%
% So c[i][1], ..., c[i][N] = values received by process i
% n[i] = number of values in this list that
% are not missing
% p[i] = permutation used by process i
%
% To look at convergence properties, we add a
% variable delta such that all | v[i] - v[j] | <= delta
% for all good processes i and j.
%
% We want delta to decrease exponentially
% (with the number of rounds).
%
approx: MODULE =
BEGIN

OUTPUT
v: ARRAY PID OF DATA,
c: ARRAY PID OF ARRAY PID OF DATA,
p: ARRAY PID OF ARRAY PID OF PID,
n: ARRAY PID OF [0 .. N],
status: ARRAY PID OF STATUS,
round: INTEGER,
delta: REAL

INITIALIZATION
%%
%% Initial value: v[i] must not be missing
%%
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delta = initial_delta;

v IN { a: ARRAY PID OF DATA |
(FORALL (i: PID): a[i] > 0)

AND (FORALL (i, j: PID):
a[i] - a[j] <= initial_delta) };

p = [[i: PID] [[j: PID] j]];

round = 0;

status IN { s: ARRAY PID OF STATUS | scenario2(s) };

TRANSITION
round’ = round + 1;

status’ = status;

%%
%% communication and fault model
%%
c’ IN { x: ARRAY PID OF ARRAY PID OF DATA |

(FORALL (i: PID): status[i] = Good =>
(FORALL (j: PID): x[j][i] = v[i]))

AND (FORALL (i: PID): status[i] = SymmetricOmissive =>
(FORALL (j: PID): x[j][i] = missing)

OR (FORALL (j: PID): x[j][i] = v[i]))

AND (FORALL (i: PID): status[i] = AsymmetricOmissive =>
(FORALL (j: PID): x[j][i] = missing OR x[j][i] = v[i]))

AND (FORALL (i: PID): status[i] = SymmetricTransmissive =>
(FORALL (j, k: PID): x[j][i] = x[k][i]))

};

%%
%% update rule:
%% - process i receives c’[1][i] ... c’[N][i]
%% - it removes all the missing values
%% - it sorts the rest in increasing order
%% - then it picks the median as its new value
%%
n’ IN { x: ARRAY PID OF [0 .. N] | true };

p’ IN { x: ARRAY PID OF ARRAY PID OF PID |
FORALL (i: PID):
sort_and_filter(c’[i], n’[i], x[i]) };

%%
%% voting
%%
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v’ IN { x: ARRAY PID OF DATA |
FORALL (i: PID):
x[i] = vote(c’[i], n’[i], p’[i]) };

%%
%% convergence rate
%%
delta’ = delta/3;

END;

%%
%% Sanity check: v[i] is positive
%%
sanity: LEMMA

approx |- G(FORALL (i: PID): v[i] > 0 );

%%
%% Sanity check2: n[i] is at least 3
%% (except for round 0 since we don’t initialize n[i]).
%%
min_received: LEMMA

approx |- G(round = 0 OR (FORALL (i:PID): n[i] >= 3));

%%
%% Convergence property
%%
convergence: LEMMA

approx |- G(FORALL (i, j: PID): v[i] - v[j] <= delta);

END
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