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ABSTRACT
Machine learning techniques are applied to the NASA Langley Research Center’s expansive database of helicopter noise
measurements containing over 1500 steady flight conditions for ten different helicopters. These techniques are then
used to develop models capable of predicting the operating conditions under which significant Blade-Vortex Interaction
noise will be generated for any conventional helicopter. A measure for quantifying the overall ground noise exposure
of a particular helicopter operating condition is developed. This measure is then used to classify the measured flight
conditions as noisy or not-noisy. These data are then parameterized on a nondimensional basis that defines the main
rotor operating condition and are then scaled to remove bias. Several machine learning methods are then applied to
these data. The developed models show good accuracy in identifying the noisy operating region for helicopters not
included in the training data set. Noisy regions are accurately identified for a variety of different helicopters. One of
these models is applied to estimate changes in the noisy operating region as vehicle drag and ambient atmospheric
conditions are varied.

NOTATION

A Rotor disc area, ft2 (m2).
a0 Ambient speed of sound, ft/s (m/s).
b Support vector hyperplane intercept.
C Support vector “soft margin” penalty weight.
ci Class of the ith data member 2 {�1,1}.
CT Main rotor thrust coefficient. T/

�
r0AW

2R2�

CW Main rotor weight coefficient. W/
�
r0AW

2R2�

f Effective flat plate drag area, ft2 (m2).
IG Gini impurity index.
k(~x,~x0) Weighting function.
LA A-weighted Sound Pressure Level, dBA.
L̄A Average A-weighted Sound Pressure Level, dBA.
LAE A-weighted Sound Exposure Level, dBA.
LAG Ground Noise Exposure Level, dBA.
MH Main rotor hover tip Mach number. WR/a0
N Number of samples in the bin.
Nb Number of main rotor blades.
NFalse Number of samples that fail the criterion.
NTrue Number of samples that pass the criterion.
pi Probability of randomly selected data sample be-

ing a member of a class chosen randomly in accor-
dance to the probability distribution of samples
in the bin.

R Rotor radius, ft (m).
T Thrust, lbf (N).
T0 Reference integration time, s.
t Time of observation, s.
V Ground speed, knots (km/h).
V0 Reference ground speed, knots (km/h).
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VCAS Calibrated airspeed, knots (km/h). V
p

r0/rSL
W Weight, lbf (N).
~w Support vector hyperplane unit normal vector.
wi j Weight of the jth connection to the ith neuron.
~x Feature space.
xi Misclassification of the ith data member.
~xi Location the ith data member in the feature space.
a Main rotor tip-path-plane angle of attack, rad.

(deg.).
g Flight path angle, rad. (deg.).
li Induced inflow ratio.
µ Main rotor advance ratio.
~
n Augmented feature space.
r0 Ambient air density, slug/ft3 (kg/m3).
rSL Ambient air density at sea level, slug/ft3 (kg/m3).
s Radial basis function scale parameter.
f Nonlinear kernel function.
y Rectified linear unit activation function.
W Main rotor rotational speed, rad./s.

Helicopters serve to support a number of useful roles within the
community, such as electronic news gathering and aerial pho-
tography, inspection and maintenance of power lines, police
and emergency medical services, aerial cranes, cropdusting,
civil transport, and sightseeing. However, community accep-
tance of these operations is limited by the resulting noise. For
instance, voluntary restrictions on helicopter operations have
recently been adopted in the Los Angeles and New York City
areas to increase community acceptance (Refs. 1–3). The
acoustic impact of civil helicopter operations will need to be
reduced in order to allow for a greater variety and volume of
helicopter operations in the future. In the long term, design
changes such as reduced tip speeds or the widespread adop-
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tion of active and passive rotor noise reduction technologies
may result in significant reductions in the noise emitted by
future helicopters. However, because the noise radiated by
helicopters is extremely sensitive to the helicopter’s operating
state, immediate noise reductions can be achieved through the
development of low noise flight procedures applicable to the
existing civil fleet.
Since 1981, the Helicopter Association International (HAI)
has published “Fly Neighborly” (Ref. 4) guidance intended to
provide helicopter operators with effective methods to reduce
helicopter noise impacts on communities and increase pub-
lic acceptance of helicopter operations. The Fly Neighborly
guidance includes general techniques for reducing community
noise impacts, such as avoiding noise sensitive areas or flying at
a higher altitude, as well as advice on developing more specific
noise abatement procedures that avoid noisy flight conditions
unique to the type of helicopter flown. While community noise
levels during quiet (e.g., cruise) flight conditions may be domi-
nated by tail rotor noise sources, the primary cause of the most
objectionable—i.e., “noisy”—flight conditions is main rotor
Blade-Vortex Interaction (BVI).
The operational conditions determined to cause BVI noise are
often displayed in the Fly Neighborly guidance using a “fried
egg” plot. A fried egg plot, derived from noise measurements
of a typical light helicopter, is shown in Fig. 1. The high BVI
noise region is shaded on the plot and is defined in terms of
indicated airspeed and rate of climb. The operator can use this
information to develop noise abatement procedures that avoid
the BVI noise region, such as the proposed quiet approach
highlighted in red on the plot. This approach starts with a steep
descent at constant speed, followed by decreasing airspeed at
a high rate of sink to pass below the high BVI noise region,
resembling a Category A approach for FAA Part 29 (transport
category) rotorcraft.

Fig. 1: A representative fried egg plot with a proposed noise
abatement approach trajectory shown in red. (Adapted from
Ref. 4.)

The data normally used to generate the fried egg plot are in-
tended to be collected by the helicopter’s manufacturer and the
resulting noise abatement guidance provided to operators in an

optional supplement to the aircraft’s flight manual. However,
due to the difficulty of collecting these data, detailed noise
abatement guidance is not routinely provided for new heli-
copters. When such guidance is still provided, it is often based
on measurements or subjective identification of noisy condi-
tions from inside the vehicle. However, it is now known that
due to the directional nature of BVI noise, noise levels heard
inside the cabin are not representative of noise radiated toward
the ground (Ref. 5). Even when comprehensive ground noise
measurements are conducted, they are usually limited to steady
flight conditions at a particular test location and vehicle con-
figuration, which may not be representative of the actual BVI
noise radiation characteristics of the helicopter when flown
under a different set of ambient conditions, gross weight, or
fuselage drag (Refs. 6, 7).

The NASA Langley Research Center—often in collaboration
with other US Government agencies, industry, and academia—
has collected ground noise data for a wide variety of helicopter
types, from light commercial helicopters to heavy military util-
ity helicopters. Many of these data have been collected and
processed to generate helicopter source noise descriptions in
the form of Rotorcraft Noise Model (RNM) (Refs. 8, 9) hemi-
spheres describing the frequency, magnitude, and direction of
helicopter noise as a function of the vehicle’s flight condition.
While this database is expansive, it covers only a fraction of
helicopter types in current commercial and military service and
was measured under a limited set of ambient conditions and ve-
hicle configurations. The objective of this paper is to combine
this helicopter noise database with the principle of nondimen-
sionalization and modern machine learning techniques in order
to develop models capable of estimating the noisy operating
states of any conventional helicopter. These models should
be capable of providing noise abatement information specific
to the ambient atmospheric atmospheric conditions in which
the vehicle operates and variations in the vehicle’s drag or
gross weight, e.g., that caused by the installation or removal of
mission equipment.

APPROACH

The approach used in this paper to build the helicopter noise
abatement information models consists of several steps:

1. Convert noise data for each vehicle into a form describing
the ground noise levels of the vehicle as a function of
flight condition.

2. Classify the flight conditions of each vehicle into noisy
and not-noisy conditions.

3. Nondimensionalize the main rotor operating conditions
for all measured vehicles and combine them into a single
general database.

4. Use machine learning techniques to train a model on a
subset of the database in order to identify noisy condi-
tions.
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5. Apply the classifier to estimate the probability of a noisy
condition over the range of nondimensional parameters
defining the rotor operating condition.

6. Use the probabilistic model output to identify regions
of dimensionally-defined flight conditions that are likely
to be noisy for a specific helicopter operating under a
specific set of ambient conditions.

7. Validate the model against measured noise data excluded
from the initial training set.

The data used to build the model in this paper include mea-
surements of the MD Helicopters MD-902 and Mil Mi-17
collected during Acoustics Week III at Eglin Air Force Base
(AFB) in 2007 (Ref. 10), the Bell 430 helicopter collected dur-
ing the NASA/Bell/Army Maneuver Acoustics Flight Test at
Eglin AFB in 2011 (Ref. 11), the Airbus AS350BA collected
at Salton Sea, Amedee Army Airfield (AAF), and Sweetwa-
ter USMC Auxiliary Airfield during the NASA/Army Alti-
tude Variation Test from 2014-2015 (Ref. 12), the Robin-
son R-44 and R-66 helicopters collected in Phase I of the
NASA/FAA/Army joint test conducted in September 2017 at
Eglin AFB, and the Airbus AS350B3, Airbus EC130B4, Bell
206L3, and Bell 407 helicopter collected in Phase II of the
NASA/FAA/Army joint test conducted in October 2018 at
Amedee AAF. These data have been processed to generate a
database of source noise hemispheres including 1560 differ-
ent flight conditions. The helicopters included in the noise
database, their maximum takeoff gross weights, main rotor
blade numbers, and the test sites where data were collected,
are tabulated in Table 1. The helicopter types included in the
database range from light to medium weights with a variety
of rotor systems, including two-bladed teetering rotors, multi-
bladed articulated rotors, and multibladed hingeless rotors.

Ground Noise Metric Development

To convert this collection of source noise hemispheres into
fried egg plots for each vehicle, a representative ground noise
level must be generated for each flight condition in the acous-
tic database. A stereographic projection of the A-weighted
noise levels over one source noise hemisphere is shown in
Figure 2a for the MD-902 helicopter in a 950 fpm (-9� flight
path angle) descent at 60 knots. High levels of BVI noise
are radiated ahead of and slightly toward the retreating side
of the helicopter for this operating state. The out-of-plane
noise levels, defined in this paper as the noise radiated 30� or
more below the plane of the horizon, are then propagated to a
ground plane 1500 ft below the helicopter using straight ray
propagation, including attenuation due to spherical spreading
and atmospheric absorption. The ground noise levels, LA, for
the MD-902 are plotted in Figure 2b for the same hemisphere
shown in Figure 2a. Although noise levels generally attenuate
toward the edges of the ground noise footprint, the occurrence
of BVI causes noise levels to peak in a localized region ahead
of the helicopter.

Table 1: Table of helicopters included in database.

Type Max Takeoff Gross
Weight (lbf)

Nb Test Site

Airbus
AS350BA

4630 3 Various

Airbus
AS350B3

4960 3 Amedee
AAF

Airbus
EC130B4

5351 3 Amedee
AAF

Bell 206L3 4150 2 Amedee
AAF

Bell 407 5400 4 Amedee
AAF

Bell 430 9300 4 Eglin
AFB

Mil Mi-17 28660 5 Eglin
AFB

MD Helicopters
MD-902

6500 5 Eglin
AFB

Robinson R-44 2500 2 Eglin
AFB

Robinson R-66 2700 2 Eglin
AFB

One measure of the resulting “noisiness” of the flight condition
is the mean A-weighted sound pressure level propagated to
the ground plane. The flight condition can then be classified
as noisy if the mean A-weighted ground noise level is in the
upper 35% of the range of mean ground noise levels calculated
for that vehicle. Figure 3a shows the resulting fried egg plot
for the MD-902. Each measured flight condition is represented
with a filled circle marker: the red markers represent those
classified as noisy and the black those that are not. The noise
level contours are interpolated from the mean ground noise
levels associated with each condition, showing that for this he-
licopter in the tested configuration, the noisy flight conditions
occur at steep descent rates and moderate airspeeds. However,
this measure of noisiness does not account for the increased
annoyance due to the increased duration of sound exposure
during lower speed flight. The Sound Exposure Level (SEL),
LAE , integrates the total acoustic energy of a flyover, and is
expressed by the following:

LAE = 10log10
1
T0

Z t1

t0
10LA(t)/10dt (1)

where T0 is a reference time interval, typically defined as one
second, and the interval [t0, t1] defined as the times where noise
levels are within 10 dBA of the peak level recorded during the
flyover.
Calculating the SEL requires a time history of LA. While the
time history could be simulated using the noise hemispheres for
each flight condition, this reduces the generality of the measure
as it requires a specific flight trajectory to be associated with
that flight condition. However, a generic duration correction
can be developed to account for variations in speed propor-
tional to the change LAE with speed for any flight trajectory by
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(a) Stereographic (top-down) projection of noise source
hemisphere. Nose at 180� azimuth.

(b) Out-of-plane (30� and below) noise levels propa-
gated to ground plane for 1500 ft altitude above ground
level.

Fig. 2: Source noise hemisphere (a) and propagated ground noise levels (b) for MD-902 helicopter in a 60 knot, 950 fpm descent.

recognizing that:

LAE ⇡ 10log10 Â

i
10LAi +10log10

T
T0

(2)

for a constant time interval, T .

Therefore, a representative Ground Noise Exposure Level, LAG,
can be defined for a constant speed, V , as:

LAG ⌘ L̄A +10log10
V0

V
µ L̄AE (3)

given a reference speed, V0. The value of V0 is arbitrary, defin-
ing only the airspeed at which no correction is applied, and
will be set to 60 knots in this paper. The resulting fried egg plot
for the MD-902 generated using this metric is shown in Figure
3b. Accordingly, the noisy region shifts toward lower speeds,
where the duration effect increases the noise levels. This new
metric causes four conditions at high speed to be reclassified
as not-noisy and two conditions at low speed to be reclassified
as noisy compared to the metric without a duration correction
shown previously in Figure 3a.

Data Conditioning

Next, the data generated for all of the helicopters must be rep-
resented on a common basis suitable for interpretation by the
machine learning algorithms. It has been shown in previous
research that the main rotor BVI noise of helicopters is gov-
erned by a set of four nondimensional parameters (Ref. 13). By
expressing the main rotor operating condition in a nondimen-
sional form, the experimental noise data may be generalized
across a wide range of dimensionally-defined operating states,
at least for the same rotor geometry. In this paper, the main
rotor operating state is defined by the tip-path-plane angle of
attack (a), advance ratio (µ), weight coefficient (CW ), and
hover tip Mach number (MH), with the aim of collapsing the

data across dissimilar rotor systems. In additional to these
parameters, the number of rotor blades (Nb) influences the spe-
cific operating conditions at which intense BVI noise occurs.
These five parameters (a , µ , CW , MH , Nb) are used as the
“features” that the machine learning algorithms use to identify
noisy operating conditions.

It is well established that for a certain set of parameters, µ ,
CW , MH , and Nb, the BVI noise will reach a peak value at a
certain main rotor tip path plane angle of attack, a , where
the miss-distance between the vortices and the blades is small,
and will diminish for angles of attack greater or less than that
value (Ref. 5). For the heavier helicopters in the database, it is
often impossible to safely achieve rates of sink high enough
to reach angles of attack, a , greater than the peak value for
BVI noise. In order to realistically enclose the noisy region for
these heavier helicopters, synthetic not-noisy points are added
to the acoustic database at angles of attack 6� greater than the
maximum included in the measured data across the range of
advance ratios, µ , and at the average values of MH and CW
measured for that particular helicopter.

Of the 1560 steady operating conditions included in the
database, 213 were identified as noisy. Consequently, the
majority (not-noisy) class is represented by approximately 7:1
over the minority (noisy) class in the data. Most machine learn-
ing methods will be biased toward the majority class when
the data are imbalanced in this way. Several methods exist to
compensate for this imbalance. One method that was found to
successfully correct the bias in this data set is called the Syn-
thetic Minority Over-sampling TechniquE (SMOTE) (Ref. 14).
SMOTE generates additional synthetic members of the minor-
ity class that are quasirandomly inserted nearby other existing
members of the minority class. Figure 4 plots the measured
data points for the MD-902 along the angle of attack (a) and
advance ratio (µ) feature dimensions. Once again, red markers
represent data that are classified as noisy and black those that
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(a) Mean ground noise level contours without duration
correction.

(b) Ground noise exposure level contours accounting
for sound exposure due to duration effect.

Fig. 3: Ground noise level plots for the MD-902 generated
using measured data from Acoustics Week III at Eglin. Mea-
sured flight conditions for each metric are marked with circles:
black circles were identified as quiet and red circles as noisy.

are not. The blue markers are synthetic noisy samples that
have been generated by the SMOTE technique, filling in the
noisy region that is sparsely sampled in the measured data, and
equalizing the number of data points in each class. Finally,
scale bias is removed from the data before applying machine
learning methods by scaling the feature values across the entire
data set across a range of negative two to two, so that the mean
value and range of each of the features is equal. For clarity, this
scaling is not applied when plotting the data in the following
figures.

Machine Learning Technique Evaluation

Several machine learning methods were evaluated and are
listed in Table 2. Each of these classifiers is available in the
open source Python package scikit-learn (Ref. 15), which pro-
vides a uniform interface to a large number of machine learning
methods. This modularity allows a number of methods to be

Fig. 4: Balancing the minority (noisy) class using the Synthetic
Minority Oversampling TechniquE (SMOTE).

evaluated as a part of the same process. Each of the methods
was applied to the database, with the MD-902 data withheld
for later validation that the model has capability to predict the
noisy region of the operating envelope for a helicopter not in-
cluded in the training data set. The accuracy of the model was
assessed on the remaining data using a 5-fold cross validation
method. The data were randomly divided into five equally
sized partitions. Each model was fit to data from four of the
five partitions, and the accuracy of the classification model
validated against predictions for the excluded partition. This
process was repeated for all five possible excluded partitions,
and accuracy scores averaged to produce a single 5-fold cross
validation accuracy score. The wall clock time required to
fit and validate the model in this manner on a twelve core
workstation (2.5 GHz per core) is also tabulated.

Table 2: Table of machine learning methods evaluated, with
cross-validation accuracy and fitting time assessed on dataset
with MD-902 data withheld.

Machine
Learning
Method

5-fold Cross
Validation
Accuracy (%)

Wall Clock
Model Fitting
Time (s)

Support
Vector
Machine

82.2 16.0

Random
Forest

80.9 0.625

Multilayer
Perceptron

82.9 9.6

Gaussian
Process

83.1 51500

Naı̈ve Bayes 73.5 0.01

The five methods all achieve fairly good accuracy on the condi-
tioned data, although the Naı̈ve Bayes approach, which builds
a probabilistic model under the assumption that the features are
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independent, is notably less accurate than the other four meth-
ods. The Gaussian Process approach also builds a probabilistic
model, but the dependence between features is accounted for
during the model fitting. This is done by fitting the model to the
posterior probability distribution of the data. While the method
is accurate, the model fitting time is extensive in comparison
to the other methods. For these reasons, the Naı̈ve Bayes and
Gaussian Process models are not assessed further in this paper
in favor of the Support Vector Machine, Random Forest, and
Multilayer Perceptron classifiers.

Support Vector Machine

The Support Vector Machine (SVM) approach aims to identify
a hyperplane that divides points in the feature space belonging
to one class from another (Ref. 16). The hyperplane is chosen
to maximize the margin between the hyperplane and the closest
member of each class, i.e.,

min
~w,~b

||~w|| (4)

such that the hyperplane with unit normal, ~w, and intercept,
~b, divides the points ~xi in accordance with their class, ci 2
{�1,1}:

ci(~w ·~xi �~b)� 1 (5)

In practice, it is not often possible to define a hyperplane that
cleanly separates all members of one class from another. To
account for this, a “soft margin” condition is added, which al-
lows, but penalizes members of, one class being on the “wrong”
side of the hyperplane.

The Support Vector Machine fitting problem can then be ex-
pressed with the “soft margin” as:

min
~w,~b,x

1
2
||w||2 +C

Â

i
xi (6)

subject to:
ci(~w ·~xi �~b)� 1�xi (7)

where xi are measures of the degree to which points, ~xi, are
misclassified, and C is a tunable parameter that controls the
relative importance of maximizing the margin (small C) versus
minimizing misclassification (large C).

Very often, it is difficult to separate members of one class
from another with a linear function. For example, Figure 5
plots the line (i.e., a two-dimensional hyperplane) dividing data
classified from measurements of the Robinson R-66, where the
noisy region is surrounded by points that are not-noisy.

A common method of extending linear classification methods
to nonlinear problems is the “kernel trick” (Ref. 17), which
maps the feature space~x to a linear combination of nonlinear
kernels:

k(~x,~x0) = hf(~x),f(~x0)i~n (8)

where~n is the augmented feature space.

Fig. 5: Poor division (blue line) of classified conditions for
the Robinson R-66 helicopter using a linear Support Vector
Machine.

For example, by using an exponential radial basis function
kernel with a tunable parameter s of the form:

f = exp(�s ||~x�~x0||) (9)

the R-66 data points can be mapped to a new higher dimen-
sional feature space, ~n , as shown in Figure 6, that allows a
linear hyperplane, shown in blue, to more effectively divide
the noisy and not-noisy members from each other. The tunable
parameters, C and s , are set in the paper using a grid search
method to identify the parameter combination that achieves
the best 5-fold cross-validated accuracy.

Fig. 6: Improved division (blue plane) of classified conditions
for the Robinson R-66 helicopter using a Support Vector Ma-
chine with an exponential radial basis function kernel.

Although the SVM classifier is a nonprobabilistic classifier
method, the Platt scaling (Ref. 18) technique can be used to
transform the classifier output to estimate the probability of
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a noisy condition across the nondimensional feature space of
the model. Platt scaling works by fitting a logistic regression
model to the classifier accuracy scores as the model is trained.
Figure 7a shows the estimated probability of a noisy condition
as a function of rotor angle of attack and advance ratio, where
the other parameter values match those associated with the
MD-902 data set. Superimposed on the probability contours
are the measured data points, categorized in red for noisy and
black for not-noisy, as in Figure 3. The high probability of
noisy conditions region agrees well with those conditions from
the measured data that were identified as noisy. The noisy re-
gion includes all nine conditions identified from the measured
data as noisy, and four conditions identified as quiet. Those
conditions that are more likely to be noisy than not are then
identified as the noisy region, and transformed back into di-
mensional terms in order to generate the fried egg plot for the
helicopter. Figure 7b shows this plot for the MD-902 estimated
using data from all other helicopters in the database; the hashed
noisy region is superimposed over the Ground Noise Exposure
Levels contours from Figure 3b, and corresponds well to the
noisy region of the operating envelope. The identified noisy re-
gion extends past the range of measured data for the helicopter
in the low speed, high sink rate region of the envelope.

Random Forest

Another machine learning technique that was effectively ap-
plied to estimate the noisy region of a helicopter’s operating
envelope is the random forest classifier. The random forest
model is an ensemble method, which blends the output of a
number of decision tree classifiers that are each tuned to fit
to the measured data. Figure 8 diagrams the first three of ten
decision layers of one of the trees making up the random forest
model constructed from the noise data (once again, excluding
the MD 902). Each square block represents a “bin” of data,
which may then be partitioned along a feature value according
to the decision criterion shown in the diamond block below the
source data block. Values that meet the criterion are included
in the bin to the left of the decision criterion and those that are
not are included in the bin to the right.

Each criterion used to divide the data is selected in order to
reduce the overall Gini impurity index of the partitioned data
from the source data. The Gini impurity index is a measure of
the probability that a randomly selected member of the data
set will be misclassified if the entire data set is classified with
a probability distribution in proportion to the distribution of
data contained within it, i.e.,

IG = 1�
Â

i
p2

i (10)

for the binary classification problem posed in this paper, the
Gini index simplifies to IG = 2p1 p2.

If all of the data in a set are of the same class, the index reaches
a minimum IG = 0. Likewise, if half of the data belong to one
class and half to the other, the index reaches a maximum of

IG = 0.5. Each split is chosen (Ref. 19) such that there is a net
reduction of impurity:

IGTrue

NTrue

N
+ IGFalse

NFalse

N
< IG (11)

In Figure 8, each data bin lists the impurity, IG, of the data in
that bin, the percentage of the total number of samples in the
data set contained within that bin, and the percentages of data
in that bin classified as noisy or not-noisy. In many cases, after
several splits a pure (IG = 0) partition is obtained and no more
splits are required along that branch since all samples belong
to the same class. If the maximum depth of the tree is reached
(set to ten splits in this paper) before all bins are pure, the
remaining impure bins will be assigned a probabilistic value
according to the proportion of samples in each class in that
bin. These residual probabilities can then be used to predict
the probability of a noisy condition by following the criteria
for any set of feature values.

The random forest is composed by generating a number of
decision trees using a “bagging” technique, whereby each tree
in the forest is generated from a randomly selected and per-
muted subset of the data points containing about two thirds of
the total samples. The random forest classification probability
is then the average probability predicted by all trees in the
forest. The random forest model assessed in this paper is com-
posed of ten different trees. Figure 9a shows the probability
of a noisy condition for the MD-902, again compared against
the classified data excluded from the modeling process. The
high probability of noisy conditions region is accurately placed
about the noisy data points, but has “blocky” shape because the
decision criterion split along lines of constant feature value.

Figure 9b shows the corresponding estimate of the noisy re-
gion of the vehicle operating envelope again compared against
the Ground Noise Exposure Level contours calculated for the
vehicle. The model performs well in identifying the noisiest
portion of the operating envelope, although the region does
contain spurious details that do not correspond to the physical
mechanisms of BVI noise.

One advantage of the random forest technique is that the de-
tails of the decision trees are accessible, which can provide
some insight into how and why the model performs as it does.
For example, Figure 10 plots the Gini importance of all five
features derived from the decision trees. The Gini importance
describes the relative effectiveness of decision criteria acting
on the feature in reducing the Gini impurity over all of the
decision trees in the ensemble model. Intuitively, the main
rotor angle of attack, a , is by far the most important feature
in the model due to the strong influence angle of attack has
on BVI miss-distance and the resulting noise. The next most
important feature is the main rotor advance ratio, µ . The re-
maining three features are relatively less important, and the
specific rank order of these three parameters was observed to
vary depending on the randomization of the data during model
fitting.
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(a) Estimated probability of a noisy rotor operating con-
dition. Measured flight conditions are marked with
circles: black circles were identified as quiet and red
circles as noisy. CW = 0.006, MH = 0.61, Nb = 5.

(b) Predicted noisy region (hashed) plotted over ground
noise exposure level contours derived from measured
data.

Fig. 7: Output of the Support Vector Classifier (SVC) model compared to measured data for the MD-902 as tested at Eglin AFB.

Multilayer Perceptron

The last method evaluated is the MultiLayer Perceptron (MLP)
classifier, which is a class of feedforward artificial neural net-
work where the neurons are organized into layers. A dia-
gram of an MLP network is shown in Figure 11. The network
propagates information from the input layer of feature values,
through one or more “hidden layers,” and finally to the output
layer, which provides the classifier’s output. The input to each
neuron is a weighted sum of the outputs, y j, of the previous
layer:

xi =
Â

j
wi jy j (12)

For the input layer, the outputs, y j, are simply the scaled values
of the five features. The classifier used in this paper has a
single hidden layer of 100 neurons. The output of each neuron
in the hidden layer is described by the rectified linear unit
activation function, y(x), which approximates the derivative
of the logistic function.

yi = y(xi) = max(0,xi) (13)

Finally, the output layer consists of a single neuron that pro-
vides a single output from the entire network with the “soft-
max” activation function:

yi =
exp(xi)

Â

N
k exp(xk)

(14)

where there are N = 100 neurons in the preceding hidden layer.
The softmax activation function limits the range of output val-
ues between zero and one, and is equivalent to the categorical
probability distribution, i.e., the output of the network is the
probability that the input condition is considered noisy.
To train the model, the weights wi j are set for each layer to
minimize the log loss error between model output and the train-
ing data set. Due to the simplicity of the activation functions,

and the fact that activation in the hidden layer is sparse since
the rectified linear unit function is often zero valued, this MLP
classifier is relatively quick to train and evaluate.
Figure 12a plots the probability of noisiness for the MD-902
estimated by the MLP model trained to the database with the
MD-902 data excluded. The MLP classifier performs well in
identifying the region where noisy conditions exist; all nine
noisy conditions are correctly classified and only two condi-
tions are misclassified as noisy. Figure 12b plots the estimated
noisy region over the ground noise exposure level contours for
the MD-902. The output of the model is very similar to the
SVM classifier evaluated in Figure 7b.

RESULTS
The modeling process was repeated for eight additional heli-
copters, with the helicopter removed from the database and the
model retrained on the remaining data. Each model was then
applied to predict the noisy region of the operating envelope for
the helicopter excluded from the training dataset. The ground
noise exposure level contours and noisy region identified by
the MLP model for nine of the ten helicopters in the database
are plotted in Figure 13. The AS350BA is excluded because
only a limited number of conditions were tested, but across a
wide range of density altitudes and vehicle gross weights. Sim-
ilar results were achieved in all cases for the SVM classifier,
much like the MD-902 examples shown previously. For that
reason, these plots are not shown in this paper.
The model correctly identifies the noisy region of the operat-
ing envelope for each helicopter, despite the wide variation
in helicopter rotor systems and configurations that cause the
noisy region to vary between models. The helicopters with two
bladed rotors—Figs. 13c, 13h, and 13i—have noisy operating
regions that are largely confined to a certain range of speed and
sink rate, somewhat like the canonical fried egg plot shown
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Fig. 8: Graph of the first three decision layers of one tree in the Random Forest model.

in Figure 1. However, the other helicopters with multibladed
rotor systems exhibit high noise levels over a wide speed range,
with the noisy region more aptly described as a “strip of bacon”
than a “fried egg.” This is most likely because the number of
potential BVI events for a given advance ratio increases with
the square of the number of blades, N2

b , i.e., proportional to
the number of blade – vortex pairs. This implies that while a
two-bladed helicopter may be able to establish a speed corre-
sponding to a rotor advance ratio where no single strong BVI
is present at any rate of sink, rotor systems with many blades
will have at least one strong BVI at some sink rate for every
advance ratio. If those sink rates where BVI occur cannot be
avoided, then it is important to pass through these conditions
quickly, limiting the duration of BVI noise exposure.

The AS350B3 shown in Figure 13a was equipped for utility op-
erations at the time of testing, including an externally mounted
cargo basket. Using the drag estimation procedure described
in Reference 7, the effective flat plate drag area of the B3 with
the cargo basket was calculated to be 175% of that of the clean
AS350BA previously measured during the NASA/Army Alti-
tude Variation Tests described in 12. The effect of additional
drag on noise can be examined in isolation by varying the drag
of the helicopter in the noise abatement model and observing
the trends in the estimated noisy region. Figure 14a plots the
variation in the noisy region for the MD-902 MLP classifier
at three different levels of the effective flat plate drag area, f ,
normalized by rotor area, A. As drag is increased, the noisy
region is observed to shift to steeper descent rates. This shift is
greatest at higher speeds, where the effects of drag on the rotor

trim are greater.

This shift is explained because, to first order, the tip-path-plane
angle of attack in steady flight is directly proportional to the
change in the rotor drag to weight ratio:

a =� f
A

µ

2

2CW
� g (15)

Therefore, a higher drag helicopter will operate at a lower tip-
path-plane angle of attack for the same dimensionally defined
speed and rate of sink, changing the operating point of the he-
licopter on Figure 12a. The helicopter would need to descend
at a higher rate of sink, or more negative flight path angle, g ,
to reach the same noisy operating region.

In addition to changes to the vehicle configuration, the noise
radiation characteristics of the helicopter are influenced by
the ambient atmospheric conditions (Ref. 7). Having been
constructed on the basis of the nondimensional parameters
that govern rotor noise, the machine learning classifier can
account for changes in the noisy operating region caused by
changes in ambient conditions caused by day-to-day variations,
changes in geography and flight altitude. Figure 14b demon-
strates this for the MD-902 subjected to International Standard
Atmosphere (ISA) conditions at different altitudes above sea
level. As altitude increases, the low speed portion of the noisy
region drops to higher sink rates as reduced density causes the
weight coefficient, CW , to increase. This should be expected,
since an increase in CW will also increase the induced velocity
through the rotor, causing BVI noise to occur at higher sink

9



(a) Estimated probability of a noisy rotor operating con-
dition. Measured flight conditions are marked with
circles: black circles were identified as quiet and red
circles as noisy. CW = 0.006, MH = 0.61, Nb = 5.

(b) Predicted noisy region (hashed) plotted over ground
noise exposure level contours derived from measured
data.

Fig. 9: Output of the Random Forest (RF) model compared to measured data for the MD-902 as tested at Eglin AFB.

Fig. 10: Gini importance of features to “noisiness” classifica-
tion identified by the Random Forest model.

rates, especially at low airspeed. The region enlarges with
increasing altitude, due to the increase in hover tip Mach num-
ber, MH , with decreasing air temperature. Also, the region
extends to higher speeds with increasing altitude because of
the increase in advance ratio, µ , with decreasing density for
the same calibrated airspeed, further increasing the advancing
tip Mach number of the rotor.

LIMITATIONS OF EMPIRICAL MODELING
The models developed in this paper have been shown to have
the accuracy required for estimating useful noise abatement
information across a range of helicopters operating in different
configurations and ambient conditions. However, there are
several potential limitations to this modeling approach that
should be considered when applying it:

• Due to the empirical nature of machine learning, the re-
sulting models may produce inaccurate results when ex-
trapolated far outside the range of measured data, for
instance if applied to helicopters much heavier than the
light to medium helicopters represented in the present
database or in ambient conditions well outside the range
of measured values. This problem might be addressed
most effectively by incorporating data from wind tunnel
measurements where much wider variations in the rotor
operating condition can be measured. The dataset might
also be augmented with measured data for additional
helicopters or well-calibrated computational models of
helicopter BVI noise.

• The noise data used to train the models developed in this
paper only contain measurements of helicopters with con-
ventional rotor systems. Measurements of more exotic ro-
tor designs with extensive anhedral, sweep, or highly non-
linear twist distributions may not generalize as well across
rotor designs. However, the limited nearfield acoustic
data presented for the Blue Edge rotor (Ref. 20)—having
anhedral tips and a highly swept planform designed to
reduce BVI—indicate that although noise levels at any
particular operating condition may vary with such rotor
design changes, the regions of the operating envelope
where BVI occurs does not change significantly.

• The definition of a noisy operating condition used in the
paper is a simple heuristic that does not map directly to
the physical mechanisms of BVI noise, and therefore, is
prone to contamination by other noise sources, such as
High Speed Impulsive (HSI) or tail rotor noise sources.
These sources may not vary with the selected features in
the same way. The robustness and accuracy of the model
might be further improved by developing a noise metric
based on a technique that isolates the contributions of
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Fig. 11: Diagram of the multilayer perceptron network used in
this paper.

BVI and other noise sources, such as the BVI extraction
proposed by Stephenson in Ref. 21.

CONCLUSIONS

A method of generating empirical models capable of identify-
ing the noisy operating conditions of helicopters for which no
measured data are available was developed and demonstrated
in this paper. The method combines machine learning tech-
niques with the principle of nondimensionalization to allow the
measured data to be generalized between different helicopters.
Several different machine learning techniques were assessed;
both Support Vector Machine (SVM) and MultiLayer Percep-
tron (MLP) classifiers were found to achieve good performance
in identifying the noisy region of a helicopter’s operating enve-
lope, while the Random Forest technique additionally provides
some insight to the relative importance of different attributes
to the occurrence of BVI. The models were applied to predict
the noisy operating region for ten different helicopters that
had been experimentally measured. Noise abatement plots
identifying the noisy region were estimated with good accu-
racy shown in all cases. The ability of the model to provide
noise abatement information specific to the configuration of
an individual vehicle and the ambient conditions in which it
operates was also demonstrated. The modeling method devel-
oped in this paper shows promise as a “universal” method of
generating useful noise abatement information for all types of
conventional helicopters in service.
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(a) Airbus AS350B3 (with basket) at Amedee AAF. (b) Airbus EC130B4 at Amedee AAF.

(c) Bell 206L3 at Amedee AAF. (d) Bell 407 at Amedee AAF.

(e) Bell 430 at Eglin AFB. (f) Mil Mi-17 at Eglin AFB.

Fig. 13: Ground noise exposure level contours as a function of flight condition. Scale varies between aircraft. noisy conditions
identified by MLP classifier overlayed in hashed region. Continues on next page.
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(g) MD Helicopters MD902 at Eglin AFB.

(h) Robinson R-44 at Eglin AFB.

(i) Robinson R-66 at Eglin AFB.

Fig. 13: Ground noise exposure level contours as a function of
flight condition. Scale varies between aircraft. noisy conditions
identified by MLP classifier overlayed in hashed region.

(a) Various effective flat plate drag areas.

(b) Various altitudes above Mean Sea Level (MSL) un-
der International Standard Atmosphere ambient atmo-
spheric conditions.

Fig. 14: Estimation varitions in the noisy region using the MLP
model for the MD-902 under different operating conditions.
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