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A two-fluid numerical model of plasma flows was developed to investigate the plume of
an ion-ion propulsion system. The densities of positive and negative ions, and the associated
values of net charge, electric field, and electric potential were calculated as a function of time
throughout the domain. The computational domain was chosen to be large enough (25 thruster
diameters downstream of the exit plane) to allow for examining the neutralization of the plume.
The resulting plasma electric potential and charge neutrality at the downstream end of the
domain are shown and they indicate that it is possible to alternatively accelerate oppositely
charged ions without the need for an electron-emitting neutralizer and without facing any
electric potential hills that could cause stagnation. However, compared to existing literature
on ion-ion plasma thrusters, the results from this simulation predict a longer length-scale for
voltage decay.

Nomenclature

(. . .)p,n = positive and negative ions
D = mass diffusivity (m2/s)
e = elementary charge (C)
E = thermal energy + kinetic energy, per unit volume (J/m3)
fext = external force, per unit volume (N/m3)
¯̄I = identity matrix
mp,n = mass of a particle (kg)
np,n = number density of particles (#/m3)
pp,n = thermodynamic pressure (Pa)
Ûq = power transfer, per unit volume (J/s/m3)
u = velocity (m/s)
V = electric potential (V)
ε◦ = electrical permittivity (C2/N m2)
γ = ratio of specific heats (#)
νcoll = collision frequency (#/s)

I. Introduction

Electric propulsion systems that electrostatically accelerate the propellant, such as conventional ion thrusters, expel
a beam of positive ions and thus require neutralization of the exhaust. This is typically accomplished by the

emission of electrons from a cathode that is placed slightly downstream of the accelerating grids. An electrostatic
acceleration mechanism that does not require a neutralizer would be beneficial in reducing the complexity of the
thruster system and eliminating a potential point of failure. To that end, a thruster in which packets of positive and
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negative ions are successively expelled by varying the electric potential of the accelerating grid was proposed by
Aanesland, et al.[1]. Further refinements to this accelerator concept have led to the development of devices such as
the "Plasma propulsion with electronegative gases" (PEGASES)[2] that have been theoretically and experimentally
investigated[3]. The possibility of neutralizing the plasma plume[4] without the need for an external neutralizer leads
us to investigate the efficacy of the neutralization process. Oudini, et al.[5] investigated this mechanism using a
two-dimensional particle-in-cell (2D-PIC) simulation and showed that there is a well-defined range of bias frequencies to
ensure downstream acceleration of the plasma, and also that effective neutralization of the plume occurs approximately
10 cm downstream of a 2 cm × 2 cm square acceleration grid. In this paper, we seek to revisit the results of Oudini, et
al.[5] using a two-fluid simulation to clarify three questions:

1) How does the electrical potential decay downstream of the thruster?
2) How do the results changewhen themodel is changed from 2D-PIC (withweighted particles) to a 2D-axisymmetric

two-fluid simulation?
3) What are the effects of classical transport on the behavior of the plume?
In this paper we describe our efforts to examine these three questions and presents the results of our investigations

to date. Section II describes the characteristics of the specific thruster that was simulated. Section III describes the
mathematical and numerical model of the plasma flow in the plume. Section IV presents the results of our two-fluid
simulations.

II. Thruster Characteristics
To allow for a valid comparison with the results of Ref. [5], the same thruster specifications were chosen in this

work. A notable difference between this work and that of Ref. [5] is that, since a cylindrical cross-section is more
common than a square cross-section in propulsive applications, we chose to model a thruster with a cylindrical geometry
and an exit radius of rthruster = 1 cm (instead of a 2 cm × 2 cm square exit). Furthermore, to reduce the sharp gradients
in voltage (and, thus, strong electric fields near the thruster exit), our model included an insulated ring of rinsul = 2 cm
around the thruster exit.

As in Ref. [5], the propellant in this simulation was iodine, with alternating fluxes of I+ and I− ions injected into the
domain. The bias voltage of the grid was set to Vaccel = ±500 V. Though Oudini, et al.[5] considered a range of bias
frequencies from 0.5-2.0 MHz, we only simulated the grid bias frequency of fbias = 1.25 MHz (Tbias = 0.8 µs) in this
work.

The plasma upstream of the grid was taken to be accelerated electrostatically (by Vaccel = 500 V) and then injected
into the computational domain. The plasma characteristics immediately downstream of the grid (upstream boundary of
the simulation) were also chosen to match the values used in Ref. [5]. The temperature of both the positive and negative
ions at the inlet were set to Tp,n = 0.1 eV. The inlet velocity was purely axial at up,n =

√
2eVaccel/mp,n ẑ. Using the

values given in Ref. [5] for density and ion thermal velocity upstream of the grid, and the inlet propellant velocity,
the density at the inlet was calculated using mass conservation to be np,n = 1015m−3. The simulation parameters are
summarized in Table 1.

Table 1 Simulation Parameters

Ion-ion density (inlet) 1015/m3

Ion temperature (inlet) 0.1 eV
Ion mass 126.9 amu
Acceleration voltage (upstream) 500 V
Ion axial speed (inlet) 27474 m/s
Thruster inlet radius 1 cm
Insulator ring outer radius 2 cm
Acceleration grid bias frequency 1.25 MHz
(Square wave)
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III. Computational Model
The ion-ion propulsion system described in Aanesland, et al. [1] uses magnetic filtering to ensure that the free

electron density is negligible in the exhaust. Consequently, we follow the approach of Oudini, et al.[5] and treat the
plasma as being comprised only of positive and negative iodine ions. Under these assumptions, the governing equations
for conservation of mass, momentum, and energy in an infinitesimal volume are,

∂

∂t


n

nu
E
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Here, the external force per unit volume due to electric fields and collisions is fext = ±np,n

(
eE − mp,nνcollu

)
. Oudini, et

al.[5] assumed that collisions were negligible. If so, the external force per unit volume reduces to fext ' ±np,neE. For
each species, the energy (thermal + kinetic) per unit volume is,

E = Etherm + Ekin =
p

γ − 1
+

1
2

nmu2. (2)

The power transfer per unit volume, Ûq, due to thermal conduction, collisional energy exchange, and Ohmic heating, is,

Ûqp,n =
(
∇ ·

(
ktherm∇Tp,n

) )
±

(
Rcoll,p,n · up,n

)
±

(
enp,nup,n · E

)
, (3)

where the collisional term for each species is,

Rcoll = −nm (uself − uother) νcoll. (4)

Because of the assumption that collisions are negligible, we set ktherm ' 0 and Rcoll ' 0 to be consistent. Unlike classical
ion thrusters and most other plasma thrusters, ion-ion propulsion systems have strong spatial gradients in the density of
a given species. Therefore, it may be important to consider the effects of classical gradient-driven mass diffusion (i.e.,
Fick’s law). Therefore, a uniform value of mass diffusivity (D) is included as a parameter to be varied in this simulation.

Because the time-scale of the change of electrodynamic fields (at the speed of light) is much faster than the time-scale
of particle motion, we assume the electric field and electric potential are static within each time step. Thus, within
a convection-scale time step, the electric potential in the domain is calculated from the values of np and nn at the
beginning of that time step inside each cell using the Poisson equation,

∇2V = − e
ε◦

(
np − nn

)
, (5)

and the field is calculated using the electrostatic definition of E = −∇V .
This model assumes cylindrical symmetry and, hence, all azimuthal (θ̂) components and all azimuthal derivatives

(∂/∂θ) are set to zero.

A. Initial and Boundary Conditions
The initial values of densities in the background are set to np = nn = 5 × 1012 m−3, a value much smaller than the

density of the inlet plasma. The initial electric field is set to zero everywhere in the domain. To have a smooth transition
into the electrodynamics of the problem, a neutral monatomic iodine gas (I) of n = 1 × 1014 m−3 was injected into the
domain. The values after this neutral background has reached equilibrium are set as the initial conditions at t = 0 for
the simulation. After this, the electrically charged propellant is injected into the domain at np = nn = 1 × 1015 m−3

successively at fbias = 1.25 MHz.
As shown in Fig. 1, the simulation domain begins downstream of the thruster grids. The boundary conditions used

in this simulation are as follows:
• (r = 0, z). The radial velocities and the radial electric field are set to zero.
• (r = R, z). All radial gradients of the flowfield and the electric potential are set to zero.
• (r, z = 0). The boundary conditions are set in the following manner, based on the location in the 0 < r ≤ R range:

– For r ≤ rthrust: The density, velocity, and pressure are set to the thruster exhaust values; because the
downstream grid of the thruster is grounded, the electric potential is set to zero.

– For rthrust < r ≤ rinsul: The axial values of velocity and electric field are set to zero.
– For r > rinsul: The axial gradient of the flowfield and the electric potential are set to zero.

• (r, z = Z). The axial gradient of the flowfield and the electric potential are set to zero.
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Fig. 1 Schematic of the domain of computation (not to scale).

B. Numerical method
The time variation of Eq. (1) was numerically solved using an explicit time-marching scheme. Because of the

strong variations in time caused by alternating injection of positive and negative ions into the domain, it is important to
carefully monitor the time accuracy of the simulation. To that end, a 4-step Runge Kutta integration scheme, with a
Courant–Friedrichs–Lewy (CFL) value of 0.1 or lower was used in this simulation. The plasma flow was explicitly
calculated in time for approximately 100 cycles of the accelerating grid’s bias timescale (Tbias = 1/ fbias) or until a
measurable cyclic steady state was achieved.

The spatial derivatives for the hyperbolic convection problem were calculated using a standard forward difference
scheme with numerical dissipation, as described in Ref. [6].

The Poisson equation (Eq. (5)) was solved using a standard Red-Black Successive Over Relaxation (SOR) scheme[7]
with a relaxation parameter of ωopt ' 1.99 and a truncation error of ∆Vmax = 5 × 10−9 V. Because the smallest grid
dimension was ∆r = 5 × 10−4 m, this corresponds to a truncation error in the electric field of ∆Emax ' 10−5 V/m.

C. GPU Computation
To reduce computation time, GPU-accelerated computing was used in this work. A series of verifications were

conducted to validate the computational method used to solve the equations listed above. First, some fundamental
linear algebra operations were conducted and benchmarked for speed to verify the accuracy and the efficiency of
CPU-GPU communications. Then, the above-mentioned numerical solution techniques to solve elliptic, parabolic, and
hyperbolic partial differential equations were tested (in cylindrical coordinates) by solving the Laplace equation, the
diffusion equation, and the nonlinear advection equation, respectively. Based on the successes for these test cases, the
GPU-accelerated computing platform was utilized to examine the main questions of this research.

IV. Results and Analysis
Resulting contours of number density of ions, np,n(r, z), their velocity, up,n(r, z), their pressure, pp,n(r, z) (which

corresponds to the thermal energy, Etherm), and the electric potential, V(r, z)were calculated using the methods discussed
in §III.B. To capture the strong time gradients in the flowfield, a CFL value of 0.05 was used to obtain the results shown
here. The simulation was deemed to have achieved a cyclic steady state when the results were consistently repeatable for
at least 25 cycles (Tbias = 0.8 µs). To answer the main questions posed in §I, we simulated four sets of conditions that
are summarized in Table 2 and described in the following subsections.

A. Isothermal without mass diffusion
For the purposes of comparison, we first consider the results when the energy conservation equation (the last row in

Eq. (1)) is neglected and is replaced with an isothermal assumption that Tp = Tn = Tinlet = 0.1 eV (as stated in Table 1).
The thermodynamic pressure of the plasma was then calculated using the ideal gas equation. Because some of the
earliest publications that examined ion-ion propulsion also invoked an isothermal assumption [8], this functions as a
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Table 2 Simulated Cases

Case Isothermal Energy Conservation Mass Diffusion

A X

B X X

C X

D X X

baseline that can be useful for comparisons. For the purpose of understanding the effect of diffusion later in §IV.B, we
set D = 0 in this baseline case.

Figs. 2, 3, and 4 show that, even under the isothermal assumption, the alternating packets of positive and negative
ions interact downstream of the injection. The very strong radial gradient in density outside the plume seen in Figs. 2 &
3 is an artifact of the isothermal assumption, as will be shown later in §IV.C with the inclusion of conservation of energy.

Fig. 2 Case A: Density of positive charges (#/m3), on a log10 scale, after half and full cycles.

Fig. 3 Case A: Density of negative charges (#/m3), on a log10 scale, after half and full cycles.

Fig. 4 shows the normalized net charge density ((np − nn)/ninlet) and it is evident that the net charge density
decreases quickly after a few packets.

The contour plots of electric potential in the domain after each half-cycle in Fig. 5 show a rapid radial decline in the
potential away from the thruster inlet and an oscillatory axial decline over the length of the domain. Furthermore, since
the voltage in the domain is always substantially less than the accelerating voltage of 500 V from the thruster grid, the
kinetic energy of the ions will be sufficient to pass through the domain by overcoming any electric potential barrier in
the domain.

Plots of voltage at the centerline in Fig. 6 show that there are no sharp declines towards z = 50 cm to meet the V = 0
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Fig. 4 Case A: Normalized net charge density after half and full cycles.

Fig. 5 Case A: Voltage (V) in the domain after half and full cycles.

boundary condition; therefore, the assumption that V ' 0 at an axial distance of 50× the thruster radius appears to be
reasonable. Furthermore, both parts of Fig. 6 (end of half cycle on the left and end of full cycle on the right) resemble a
damped wave with a peak value just beyond the inlet. The symmetric peaks measure about ± 250 V at the first packet
(at a distance of z ' 1 cm), ± 150 V at the second packet (at z ' 5 cm), and ± 120 V at the third packet (z ' 10 cm),
gradually decaying to 0 V over z = 10 to 50 cm. In comparison, Oudini, et al.[5] observed a ± 120 V peak at the first
packet and ± 60 V at the third packet.

Fig. 6 Case A: Voltage (V) at the centerline after half and full cycles.

Velocity streamlines in Fig. 7 show the trajectories of positive and negative ions in the domain and they clearly
indicate a well-defined plasma plume. Examination of the half-cycle (left) and the full-cycle (right) plots of Fig. 7 reveal
that the positive and negative ions appear to be on mirror-image trajectories in the region immediately downstream of
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the inlet. This behavior is consistent with the presence of strong electric fields in this region. It is also noteworthy that
this difference diminishes as the plasma propagates downstream in the domain and the positive and negative charges
move in the same direction.

Fig. 7 Case A: Velocity streamlines of positive (red) and negative (blue) charges after half and full cycles.

B. Isothermal with mass diffusion
Starting with the results of §IV.A, we proceed to examine the effects of diffusion. As noted by Oudini, et al.[5],

collision and transport properties have not been empirically documented well for a plasma comprised of I+ and I− ions.
To investigate this, we chose a reasonable value of mass diffusivity as a parameter and examined its effects on the results.
Here, we present the results when mass diffusivity was set to D = 2 × 10−3 m2/s. (For reference, the mass diffusivity
of most molecules in air under atmospheric conditions is O(10−5) m2/s.) We specifically examine the effect of mass
diffusion on V → 0 away from the inlet.

A comparison of voltages at the centerline in Fig. 8 shows that mass diffusivity has only a minimal influence on
voltage at large distances from the inlet (z ≥ 10 cm) in the isothermal case. A comparison of voltages at the z = 10
cm cross section in Fig. 9 shows that mass diffusion changes the electric potential by only ' ±5 − 10 V. Its effect is
unremarkable near the inlet (z < 10 cm).

Fig. 8 Case B: Voltage (V) at the centerline after half and full cycles, with and without mass diffusion.

The minimal effect of diffusion on the distribution of ions, and therefore on the voltage, is to be expected. Physically,
mass diffusion occurs approximately at the thermal speed and convection occurs approximately at the flow speed. Here,
the thermal speed corresponds to a constant temperature of 0.1 eV and the flow speed is of the order of the injection
energy of 500 eV. Since the rate of mass diffusion is slower than that of convection by O(103), it has only a small effect
on the flowfield and the commensurate voltage.
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Fig. 9 Case B: Voltage (V) at z = 10 cm after half and full cycles, with and without mass diffusion.

C. With energy conservation but without mass diffusion
We will now abandon the isothermal assumption of §IV.A-B and proceed to examine how the flowfield changes

with the incorporation of conservation of energy (the last row in Eq. (1)). Under this formulation, the thermodynamic
pressure of the plasma is obtained from the energy per volume (Eq. (2)) to be,

p = (γ − 1) (E − Ekin) . (6)

A comparison of densities of positive charges (Figs. 2 and 10) and negative charges (Figs. 3 and 11) reveal notable
qualitative and quantitative differences between the isothermal and non-isothermal cases. Specifically, abandoning the
contrived assumption of a constant temperature and allowing the expanding plume to cool affects the behavior of the
flow significantly. While there still exists a clearly defined plume, the sharp radial gradient outside the plume that was
seen in Figs. 2 and 3 is muted in Figs. 10 and 11. In other words, the plume divergence has increased in this case.
Consequently, due to mass conservation, the axial gradient in density is greater in this case than in the isothermal case.

Fig. 10 Case C: Density of positive charges (#/m3), on a log10 scale, after half and full cycles.

Pressure (Figs. 13 and 14) drops much faster than density (Figs. 10 and 11) in the axial and radial directions,
implying an expected decrease in temperature as the plume expands.

A comparison of velocity streamlines in Fig. 15 with the streamlines in the isothermal case (Fig. 7) shows that the
cooling of the expanding plume changes the plume significantly. As noted in the discussion earlier on Figs. 10 and 11,
the plume divergence is greater here than in the isothermal case.

As noted earlier in the discussion on Figs. 10 and 11, the axial gradient in density is greater in this case than in the
isothermal case. Consequently, as a result of Gauss’s law and the Poisson equation (Eq. (5)), Figs. 16 and 17 show
that the electric potential drops off faster in the axial direction in this case than in the isothermal case (Figs. 5 and 6).
Conversely, the centerline values of the voltage at the centerline (Fig. 17) also show a faster decay compared to the
isothermal case (Fig. 6). As before, the centerline voltage resembles a damped wave with a peak of about ± 250 V at
the first packet, but this peak occurs at z ' 0.6 cm (compared to ' 1 cm in the earlier case). The second packet peaks at
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Fig. 11 Case C: Density of negative charges (#/m3), on a log10 scale, after half and full cycles.

Fig. 12 Case C: Normalized net charge density after half and full cycles.

Fig. 13 Case C: Pressure of positive charges (N/m2), on a log10 scale, after half and full cycles.

± 125 V (compared to ± 150 V for the isothermal case), and it occurs at z ' 4.5 cm (compared to slightly after z = 5
cm in the earlier case). The third packet peaks at ± 90-95 V (compared to ± 120 V for the isothermal case), and it
occurs at z ' 8.0 cm (compared to z ' 10 cm in the earlier case). Again, this can be attributed to the cooling of the
plasma in the revised model.

D. With energy conservation and mass diffusion
Under the isothermal assumptions discussed in §IV.A-B, there was a modest impact of mass diffusion at z ≥ 10 cm.

Figs. 18 and 19 show the effects of mass diffusion when the conservation of energy is included. Again, a uniform mass
diffusivity of D = 2 × 10−3 m2/s was used in the calculations and its effect is examined on the electric potential at the
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Fig. 14 Case C: Pressure of negative charges (N/m2), on a log10 scale, after half and full cycles.

Fig. 15 Case C: Velocity streamlines of positive (red) and negative (blue) charges after half and full cycles.

Fig. 16 Case C: Voltage (V) in the domain after half and full cycles.

r = 0 and z = 10 cm cross sections.
It is clear from these simulations that the effect is only ± 1 V. This is noticeably less than the already small ±5 to 10

V effect of diffusivity in the isothermal case. As noted earlier, mass diffusion occurs approximately at the thermal speed
and convection occurs approximately at the flow speed. As the temperature is allowed to cool, the effect of diffusion is
further diminished to the point of being negligible.

V. Concluding Remarks
We developed a new two-fluid time-dependent plasma dynamics code using GPU-based computation, which can

be utilized to simulate various plasma applications. Using that tool, we simulated the near-field plume of an ion-ion
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Fig. 17 Case C: Voltage (V) at the centerline after half and full cycles.

Fig. 18 Case D: Voltage (V) at the centerline after half and full cycles.

Fig. 19 Case D: Voltage (V) at the centerline after half and full cycles.

propulsion system like that described in Ref. [5]. Our results agree with claim of Ref. [5] that the system achieves a
cyclic steady state. Though the time needed to achieve this state varied with the initial condition for the simulation, a
cyclic steady state was achieved within ≈ 10 cycles after the initial conditions are convected out of the domain.

We began this inquiry to answer three specific questions (stated at the end of §I), and our results provide some clarity
on each.

To answer the question of the electric potential decay downstream of the thruster, our results indicate that it is
reasonable to expect the voltage to decay to zero over 50 cm downstream. There are no sharp kinks to meet the V = 0
boundary condition. At the third peak (at z ' 8.0 cm), V ' ±90 V, and it gradually decays to 0 from that point onwards
as the distinct packets of positive and negative charges merge.

This leads to the second question of the difference between a 2D-PIC simulation and a two-fluid simulation. The
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results of our two-fluid simulation agree with several results of the 2D-PIC simulation of Ref. [5]; notably:
• It is possible to alternatively accelerate oppositely charged ions without the need for an electron-emitting neutralizer,
• A thruster grid bias frequency in the range prescribed by Ref. [5] accelerates a plasma into the domain. This
plasma does not face an electric potential hill that would cause stagnation, and

• Voltage decays downstream in an approximately damped-wave fashion with the first peak at z ' 0.6 cm downstream,
the second peak at z ' 4.5 cm, and the third peak at z ' 8.0 cm.

There is, however, a noticeable difference between the results of the two models in the voltage decay in the domain. The
peak voltages in our two-fluid model are larger than the values from the 2D-PIC models and, therefore, our two-fluid
model predicts a longer distance for the neutralization process (and, therefore, voltage decay) than the 2D-PIC model
used in Ref. [5]. While our two-fluid model predicts the voltage to be in the ± 90-95 V at the third peak, Ref. [5] finds
it to be about ±60 V. Furthermore, our simulations find the voltage at 10 cm downstream to be about ±85 − 90 V range,
while Ref. [5] finds it to be about ± 5-10 V.

That leads to the third question of examining the effect of classical transport mechanisms. Specifically, we examined
the effect of mass diffusion. Though the alternating injection of positives and negative ions creates strong spatial
gradients in the density of each species at the inlet, it was found that mass diffusion had a negligible effect on the overall
flowfield. Thus, classical transport cannot account for the discrepancy in the spatial scale of neutralization (and voltage
decay) between our two-fluid simulation and the 2D-PIC simulation of Ref. [5]. Oudini, et al.[5] attribute the rapid
damping observed in their simulations to Landau damping and its inverse mechanism. This is an explicitly kinetic effect
that is not captured in our fluid simulations.

To address the gap between the results of our two-fluid simulation and the 2D-PIC simulation of Ref. [5], we intend
to incorporate some kinetic effects into our transport coefficient models. Work by Hammett, et al.[9, 10] offer a potential
path in bridging the gap between a fluid model and a PIC model. It is worth examining if the effect of Landau damping
can be incorporated into a two-fluid model in the form of modified transport coefficients, which would obviate the need
to perform more computationally intensive PIC simulations on these types of accelerators.
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