

Overview of RS-25 Adaptation Hot-Fire Test Series for SLS, Status and Lessons Learned

Naveen Vetcha ERC Inc./Jacobs Space Exploration Group NASA Marshall Space Flight Center 7/9/2018

Contributions from:

Matt Strickland, Jacobs Space Exploration Group Ken Philippart, BRC/Jacobs Space Exploration Group Tom Giel, ERC Inc./Jacobs Space Exploration Group

Outline

3. Controller Development

4. System DDT&E

6. Conclusion

Introduction

NASA authorization act - 2010

42 USC 18322. SEC. 302. SPACE LAUNCH SYSTEM AS FOLLOW-ON LAUNCH VEHICLE TO THE SPACE SHUTTLE. (a) UNITED STATES POLICY.—It is the policy of the United States that NASA develop a Space Launch System as a followon to the Space Shuttle that can access cis-lunar space and the regions of space beyond low-Earth orbit in order to enable the United States to participate in global efforts to access and develop this increasingly strategic region.

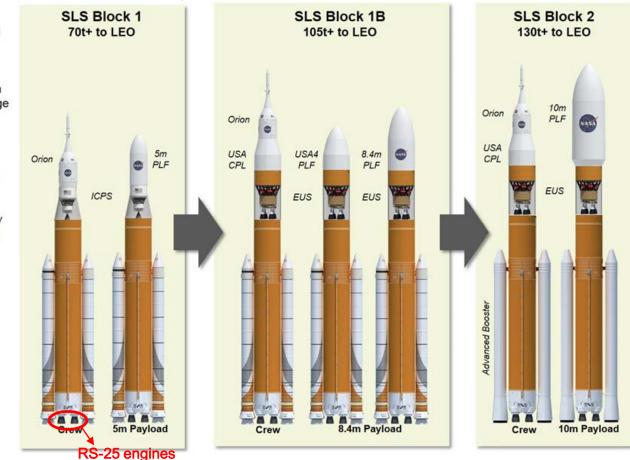
Minimum Capability requirements for the launch vehicle are:

- Capability to lift payloads weighing between 70 to 100 metric tons into low-Earth orbit (LEO) in preparation for transit for missions beyond LEO,
- Capability to carry an integrated upper Earth departure stage bringing the total lift capability to 130 metric tons or more,
- · Capability to lift the Orion Multi-Purpose Crew Vehicle (MPCV), and
- Capability to serve as a backup system for supplying and supporting International Space Station (ISS) cargo requirements or crew delivery requirements not otherwise met by available vehicles.

Space Launch System (SLS)

CPL = Comanifested Payload

EUS = Exploration Upper Stage


ICPS = Interim Cryogenic Propulsion Stage

LEO = Low Earth Orbit

PLF = Payload Fairing

SLS = Space Launch System

USA = Universal Stage Adapter

SLS EM-1 Launch Animation

Space Shuttle Main Engine (SSME)

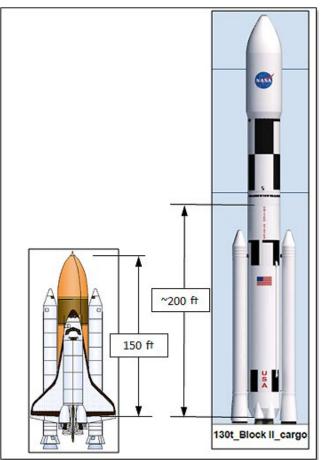

Propellants	O2/H2
Rated power level (RPL)	469,448 lb
Nominal power level (104.5% RPL)	490,847 lb
Full power level (109% RPL)	512,271 lb
Chamber pressure (109% RPL)	2,994 psia
Specific impulse at altitude	452 sec
Throttle range (% RPL)	67 to 109
Gimbal range	+/- 11°
Weight	7,748 lb
Service life	55 flights 27,000 sec
Total program hot-fire time	3,171 starts

Image: NASA

1,095,677 sec

SSME → RS-25 Adaptation

- Four RS-25 engines are used to power the core stage of SLS
- Initial flights will use RS-25 engines recovered from Space Shuttle program (RS-25 Adaptation program)
- Future flights will use the engines manufactured using cheaper and more affordable processes (RS-25 Restart Production)
- A hot-fire testing program was planned to test the engine performance over a range of operating conditions to demonstrate the capability to meet mission requirements
- Engine static fire testing is conducted on A1 test stand at NASA Stennis Space Center

System Requirements

RS-25 requirements overview

Vacuum Thrust

- -Rated = 470,000 lbf
- -Precision = ± 6000 lbf
- -Closed-loop control

Minimum Vacuum Isp

451.3 s (at 109% rated thrust)

Mixture Ratio

- -Nominal = 6.00
- -Precision:
 - ±1.7% (65% to 90% rated thrust)
 - ±1% (90% to 109% rated thrust)
- -Closed-loop control

Engine Gimbal = 8° circle

Engine Throttling

Steps 1% between 65% to 109% of rated thrust

Engine Mass = 8280 lbm

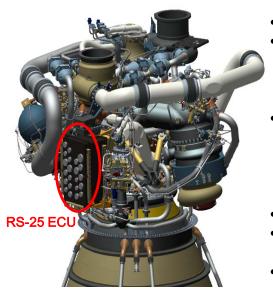
Engine Dimensions = 94" D X 167" L

Operational Life (Post delivery)

- -6 starts, 2500 seconds (1st and 2nd SLS flight)
- -3 starts, 1100 seconds (3rd and 4th SLS flight)

Engine Control system

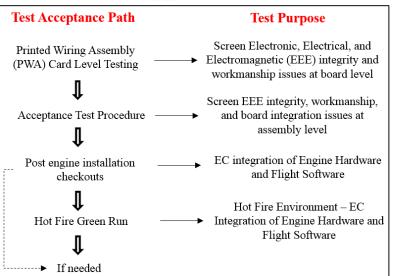
- -Electronic controller and software
- -Reprogrammable



Controller Development

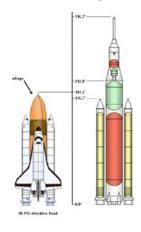
Controller Development

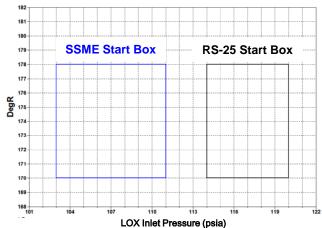
- In the RS-25 Engine Adaptation program, the only engine component that was upgraded was the Engine Controller (ECU)
- The Engine Control (EC) system is composed of ECU (hardware/software) and the new cabling/harness

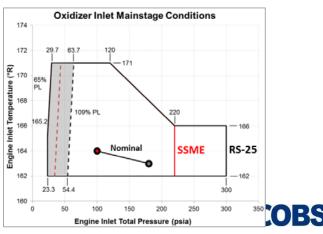

ECU Functions

- Receive and respond to commands from the vehicle.
- Provide closed-loop thrust and mixture ratio control of the engine during mainstage operation through position control of variable position propellant valves to the separate preburners.
- Manage engine state (i.e., start enable, start, mainstage, shutdown, etc.) transition and timing of effectors used during the different states. This includes the control of numerous purges and bleed flows.
- Continuously monitor engine health.
- Provide data and health status to the vehicle flight controllers.
- Provide electrical power to all engine control elements, sensors and effectors.

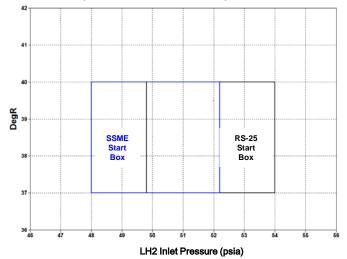
Controller Development

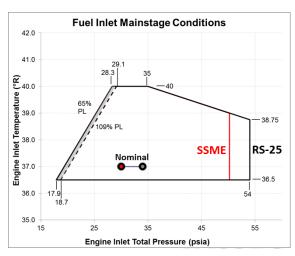



System DDT&E

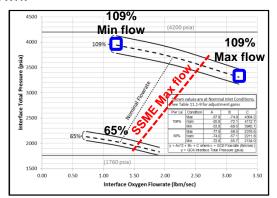


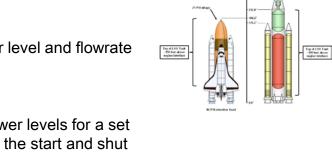
RS-25 Changes: LOX Inlet Pressure

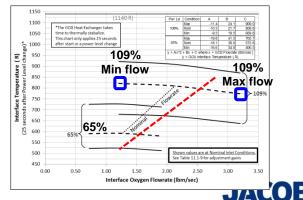

- Increased tank height
- Increased acceleration
- Changes in ullage schedule
- New start box
- New main stage envelope
- Beyond SSME start experience



RS-25 Changes: Fuel Inlet Pressure

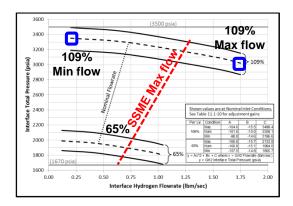

- Increased tank height
- Changes in ullage schedule
- Fuel tank pressurized to maintain gauge pressure
- Modified start box
- Main stage exposed to higher inlet pressure for extended period
- Beyond SSME start experience

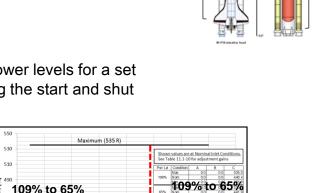




RS-25 Changes: GOX Tank Pressurization

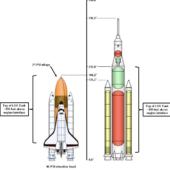
- Increased tank pressurization flow (repress) to maintain ullage pressure
- Valve material sensitive to GOX temperature
- Additional requirements as a function of power level and flowrate
 - Interface Pressure
 - Interface Temperature
- Test Max and Min repress flows at various power levels for a set duration during the mainstage and also during the start and shut down.





RS-25 Changes: Fuel Tank Pressurization

- Increased tank pressurization flow (repress) to maintain ullage pressure
- Core stage auxiliary power unit (CAPU) now driven by GH2 tap
 - Will power all hydraulics including thrust vector & valves
- Additional requirements as a function of power level and flowrate
 - Interface Pressure
 - Interface Temperature
- Test Max and Min repress flows at various power levels for a set duration during the mainstage and also during the start and shut down.

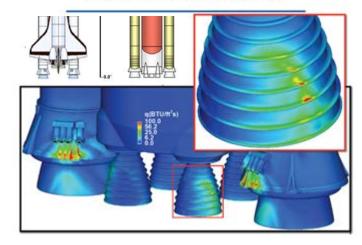

Min flow

Minimum (385 R)

Interface Hydrogen Flowrate (Ibm/sec)

390

370


Max flow

GH2 temperature is independent on power levels and flow rates.

RS-25 Changes: Nozzle Heating

- Engine is now close to in-plane with Solid Rocket Boosters (SRBs) resulting in increased convective and radiant heating
- Additional heating due to plume recirculation and radiant heat
- GH2 dumped overboard is ignited to prevent free hydrogen buildup which will cause some more heating
- Test strip of nozzle ablative (Adhesion test)

Surface Heat Flux Distributions

RS-25 Adaptation Testing - Summary

Vehicle Changes & Engine Effects

- Thermal conditioning
- Higher power level
- Higher inlet pressures
- Higher tank pressurization flows
- Helium ingestion
- Nozzle Heating

Controller Changes & Engine System

- Mixture ratio control
- Throttle control

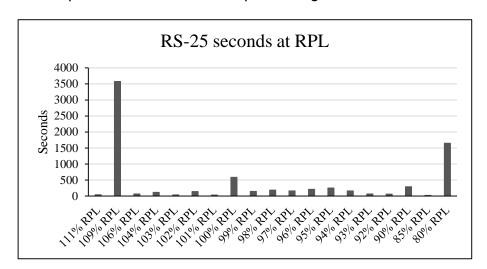
Adaptation Plan

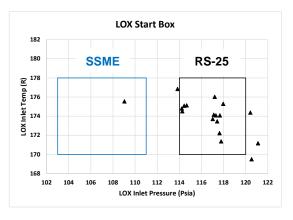
- Green Run
- Life Extension
- DVR Verification Requirements
- Development Objectives

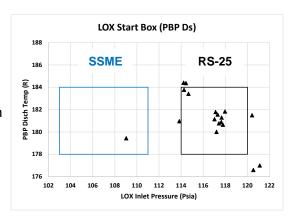
Engine System Testing

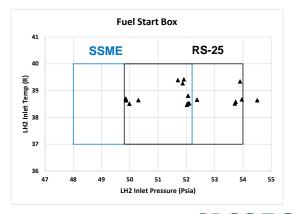
RS-25 Adaptation Test: A-1 Test Stand

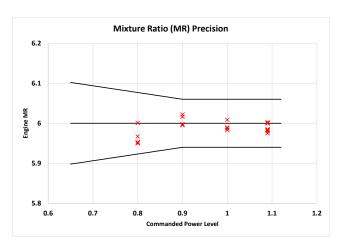
- The A-1 test stand located in NASA's Stennis Space Center was chosen to conduct all the tests
- Capabilities
 - Maximum test article size 33 ft in diameter
 - 1.1 M-lb (vertical)
 - 0.7 M-lb (horizontal)
 - Supplied with cryogenic fluids
- LOX and LH₂ are supplied from cryogenic barges
- Propellant feed lines and other run lines were changed as per RS-25 requirements
- Thrust Measurement System (TMS) was updated
- LOX runline piping spools were electropolished ro remove any metal particles

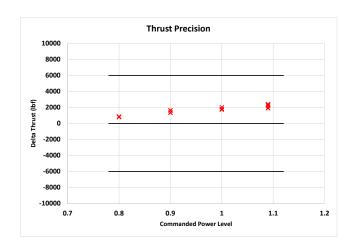


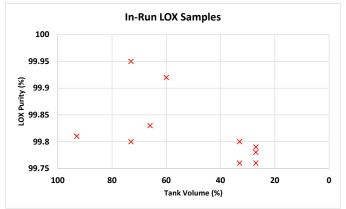

RS-25 Engine mounted on the stand

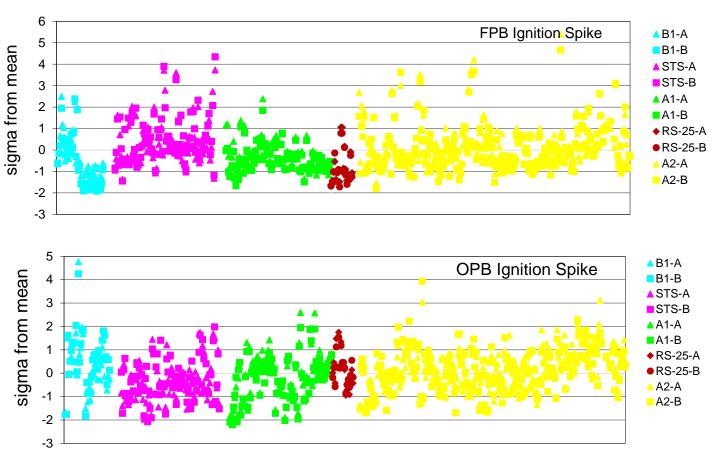

- A total of 18 hot-fire tests were performed as part of the Adaptation test series between Jan 2015 – Jan 2018.
- Two of the tests were engine acceptance tests where flight engines were tested and tagged.
- Sixteen tests were performed on two development engines




▲ RS-25 adaptation tests




- The first test in the series was a baseline of the engine performance at SSME start propellant inlet conditions
- Some tests were conducted at the corners of the start boxes to test the system to component hardware operating limits



x RS-25 adaptation tests

Summary

- RS-25 adaptation test series successfully demonstrated that the flight controllers meet the mission requirements
- All the other RS-25 requirements have been successfully tested
- Lessons learned during the test program will help the future tests in the RS-25 restart production program

Acknowledgements

The authors wish to thank the following those who made valuable suggestions and helped in completion of this package and the manuscript: Richard Ballard (XP20), Michael Nelson (ER22), John Butas (ER21), and Tim Duquette (ER21).