
Bertaska 1 32nd Annual AIAA/USU

 Conference on Small Satellites

SSC18-WKIII-03

An Educational Platform for Small Satellite Development with Proximity Operation

Capabilities

Ivan R. Bertaska and John Rakoczy

NASA Marshall Space Flight Center

Mailstop EV41 Huntsville, AL 35812; (256) 544-6427

ivan.r.bertaska@nasa.gov

ABSTRACT

An alternative to ground testing of small satellites is presented here, where the kinematics of a 3U underactuated

CubeSat operating in 3 degrees-of-freedom (DOF) is reproduced by an omnidirectional wheeled platform, while

satellite dynamics are simulated in real-time. The system is equipped with a relative navigation sensor in the form

factor of a smartphone, the Smartphone Video Guidance Sensor (SVGS), allowing the platform to reproduce proximity

operation maneuvers. The wheeled platform is used as an educational tool for students over a large range of academic

levels, from high school to graduate school. A derivation of the kinematic relationship from satellite dynamics to

rotacaster wheel velocities is presented, along with the guidance and control laws of the system. Simulation and

experimental results demonstrate that the wheeled platform was able to successfully replicate detumble, slew, and

attitude hold maneuvers of a 3U CubeSat.

INTRODUCTION

Long term goals for small satellites seek to utilize their

force multiplier potential, where systems of small

satellites provide a cost-effective alternative to

monolithic systems. To achieve these goals, small

satellites will need to work in close proximity under

careful coordination. Traditional means to validate the

mission planning and GNC of these small satellite

networks use a combination of simulations and three

degree-of-freedom (3DOF) experiments on air bearings

floating over sufficiently flat surfaces. This method

closes the loop around the system dynamics, but brings

additional complexity, as the full system, along with all

sensors and flight software, needs to be tested. The size

of the flat surface will define the mission area and restrict

the capabilities that can be validated. The capacity of

pressurized tanks and length of air supply hoses may

further limit capabilities.

An alternative solution is presented here, where satellite

kinematics are simulated on a 3DOF, wheeled platform,

allowing for the rapid prototyping and development of

proximity operation logic. Closing the loop around the

system kinematics removes the overhead in testing the

full system – only the mission planning, GNC, and

ADCS/navigation sensors are integrated. A key benefit

is that GNC and proximity operation logic can be rapidly

reiterated and deployed on the platform, allowing for

debugging support and a partial physical realization.

This combined system is referred to as the Agilis Small

Satellite Kinematic Simulator (ASKS) in this text.

The wheeled vehicle simulator uses a Lego

Mindstorm/EV3 construction with rotacaster wheels

(“Agilis”), allowing for a full 3DOF range of motion. A

navigation stack common to small satellites can be

mounted on the Agilis, complete with a Xiphos Q7 board

running the GNC system. A relative navigation sensor is

installed in each unit capable of providing the relative

orientation and position. The chosen relative navigation

sensor is the Smartphone Video Guidance Sensor

(SVGS) – a proximity operation sensor in a smartphone

form factor1. The SVGS uses a known target pattern

modeled by either retroreflectors or LEDS, to produce

the relative orientation and position between a camera

and the target. It can be utilized as a proximity operations

or autonomous rendezvous visual sensor. The target

Figure 1 – The air-bearing enabled, floating 3U

CubeSat platform. GNC sensors include an IMU, a

sun sensor, and an SVGS (not pictured). This

platform and its navigation stack is emulated on the

Agilis LEGO-based platform.

Bertaska 2 32nd Annual AIAA/USU

 Conference on Small Satellites

pattern is mounted on the “target” spacecraft, while the

“chaser” spacecraft houses the camera and associated

avionics (in this case, a smartphone). The “chaser”

spacecraft can then rendezvous with the “target” using

feedback from the SVGS in conjunction with traditional

proximity operations sensors, like LIDARs.

In this work, an ASKS platform is designed to simulate

a “3U” (30cm x 10cm x 10cm) satellite floating on air

bearings performing proximity operations. The ASKS is

outfitted with a similar sensor suite as a traditional

CubeSat (relative navigation sensor, gyroscope, and

accelerometer). Satellite dynamics are simulated

onboard the ASKS, and spacecraft body velocities and

rotation rates are converted to ASKS wheel velocities.

Thus, only the kinematics of the system are tested in

closed-loop. Both simulation results of the 3U CubeSat

and experimental results with the ASKS are presented

here. Figure 1 displays the 3U CubeSat bus with key

components annotated. Two 0.5U propulsion units

bookend the inner avionics housing. Thrusters are

oriented such that a forces can be applied in the lateral

direction, but not in the longitudinal direction. Thus, the

3U system is considered to be underactuated. Figure 2

shows the Agilis platform equipped with both the 3U

navigation stack and the SVGS proximity operations

sensor. Not pictured is an SVGS target pattern with

retroreflectors on the rear of the vehicle.

This project doubles as an educational platform where

students at all levels, from primary school to university,

have an opportunity to contribute to development and

create a knowledgebase around small satellites. Using

the combination of LEGO products and a smartphone

based visual navigation sensor provides students with

familiar concepts as a launching point for further

progress. Tying these systems with Robot Operating

System (ROS) creates an environment with a graphical

front end and an active online community, permitting

access to ample resources for novice users. This text

details the development of the ASKS and educational

impact of this approach.

The paper is structured as follows: the first section

presents the equations of motion of the 3DOF planar

satellite, as well as the derivation of the kinematics of the

omnidirectional Agilis platform. Additionally, guidance

and control laws are detailed here. The second section

describes SVGS and its underlying mathematics. The 3U

CubeSat avionics architecture is described in the third

section, and its software architecture in the fourth

section. The fifth section presents simulation and

experimental results, and the sixth section gives an

overview of the educational impact of this project. The

last section concludes this work with some closing

remarks and descriptions of the future direction of this

project.

DYNAMICS, KINEMATICS, AND GNC

Satellite Rigid Body Dynamics

The dynamics of the simulated satellite can be expressed

through the traditional rigid body equations of motion.

More complex dynamics, such as flexible body and

sloshing, can be included as dictated by the mission. The

presentation of the spacecraft dynamics follows the same

notation as Terui2, with 𝑟𝐼 = [𝑥𝐼 , 𝑦𝐼 , 𝑧𝐼]
𝑇 ∈

ℝ3 representing the position of the chaser spacecraft

relative to an inertial frame, 𝜈 = [𝑢, 𝑣, 𝑤]𝑇 ∈ ℝ3

representing the body velocities, 𝜔 = [𝜔𝑥, 𝜔𝑦 , 𝜔𝑧]
𝑇

∈

ℝ3 representing the body rates, and 𝜃′ = [𝜙, 𝜃, 𝜓]𝑇 ∈ 𝕊3

representing the 3-2-1 Euler angles of the spacecraft.

Figure 3 displays the body frame of the spacecraft,
{𝑥𝑏 , 𝑦𝑏}, and the inertial frame, {𝑥, 𝑦}. The quaternion

representation of the vehicle attitude is neglected in this

presentation, as the ASKS platform is constrained to

operate on 3DOF planar motion and will not suffer from

a singularity.

For proximity operations under a sufficiently small

separation between spacecraft, orbital dynamics may be

neglected. A reference frame moving with both

spacecraft, such as the Clohessy-Wiltshire frame3, is

typically chosen. Since the ASKS platform mimics the

kinematics of a flat-floor satellite test, all equations of

motion are derived assuming an inertially fixed

coordinate system coincident with the target frame. The

rigid body dynamics can be expressed as,

 𝑚′�̇� + 𝑚′𝜔×𝜈 = 𝑓, (1)

Figure 2 – The Agilis platform with a SVGS sensor

and a navigation stack. Included on the navigation

stack are the flight computer, battery and EPS, and

IMU.

Bertaska 3 32nd Annual AIAA/USU

 Conference on Small Satellites

 𝐼�̇� + 𝜔×𝐼𝜔 = 𝜌×𝑓 + 𝜏, (2)

where the × superscript is the matrix representation of

the cross product of the annotated vector. Thus, 𝜔× ∈
ℝ3×3 is,

𝜔× = [

0 −𝜔𝑧 𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 −𝜔𝑥 0
].

(3)

𝐼 ∈ ℝ3×3 is the inertial matrix, 𝑚′ ∈ ℝ3×3 is the diagonal

mass matrix, 𝑓 = [𝑓𝑥, 𝑓𝑦, 𝑓𝑧] ∈ ℝ3 is the vector of control

and disturbance forces, and 𝜏 = [𝜏𝑥, 𝜏𝑦 , 𝜏𝑧] ∈ ℝ3 is the

vector of other torques on the vehicle (e.g., reaction

wheel torques, disturbance torques, etc.). The 3-2-1

Euler angle rates and inertial velocities are obtained from

the following,

�̇�′ = [

�̇�

�̇�
�̇�

] = [

1 𝑠𝑖𝑛𝜙 𝑡𝑎𝑛𝜃 𝑐𝑜𝑠𝜙 𝑡𝑎𝑛𝜃
0 𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙
0 𝑠𝑖𝑛𝜙 𝑠𝑒𝑐𝜃 𝑐𝑜𝑠𝜙 𝑠𝑒𝑐𝜃

] [

𝜔𝑥

𝜔𝑦

𝜔𝑧

],
(4)

�̇�𝐼 = 𝑇𝐵
𝐼𝜈,

𝑇𝐵
𝐼 = [

𝑐𝜃𝑐𝜓 −𝑐𝜙𝑠𝜓 + 𝑠𝜙𝑠𝜃𝑐𝜓 𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑠𝜃𝑐𝜓
𝑐𝜃𝑠𝜓 𝑐𝜙𝑐𝜓 + 𝑠𝜙𝑠𝜃𝑠𝜓 −𝑠𝜙𝑐𝜓 + 𝑐𝜙𝑠𝜃𝑠𝜓
−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

].

(5)

Where cos and sin have been abbreviated as 𝑐 and 𝑠,

respectively. The planar motion of the platform restricts

the spacecraft in the 𝑧𝑏 axis, which leads to constraints

on 𝜔𝑥, 𝜔𝑦, and 𝑤. The reduced nonlinear rigid body

dynamics can then be expressed in a state equation,

[
𝑚 0 0
0 𝑚 0
0 0 𝐼𝑧𝑧

] [
�̇�
�̇�
�̇�𝑧

] = [
0 0 −𝑚𝑣
0 0 𝑚𝑢

𝑚𝑣 −𝑚𝑢 0
] [

𝑢
𝑣
𝑟
] + [

𝑓𝑥
𝑓𝑦
𝜏𝑧

],
(6)

[

�̇�𝐼

�̇�𝐼

�̇�

] = [
𝑐𝑜𝑠𝜓 −𝑠𝑖𝑛𝜓 0
𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0

0 0 1
] [

𝑢
𝑣
𝜔𝑧

].
(7)

 Omnidirectional Wheeled Robot Kinematics

The derivation of the multi-wheeled vehicle kinematics

equations roughly follows that of Garcia-Sillas, et al.4. A

wheel frame is chosen as shown in Figure 4, with the 𝑦𝑖-

axis collinear with the axis of rotation of the main hub

and 𝑥𝑖-axis in the direction of travel. Let 𝑅 ∈ ℝ+ be the

radius of the main hub, 𝑟 ∈ ℝ+ be the radius of the roller

on the rotacaster wheel, and 𝐿 ∈ ℝ+ be the length of the

arm from the center of the Agilis platform to the point of

contact of each wheel (see Figure 5). Knowing that the

rotational axis of the roller is orthogonal to that of the

main hub, a transformation from the wheel angular

velocity 𝜔𝑖𝑦 ∈ ℝ ∀𝑖 ∈ {1,2,3}, roller angular velocity

𝜔𝑖𝑟 ∈ ℝ, and the planar rotation rate of the wheel, 𝜔𝑖𝑧

into the wheel velocities and rotation rates is defined as,

[
𝑉𝑖𝑥

𝑉𝑖𝑦

𝜔𝑖𝑧

] = [
𝑅 0 0
0 𝑟 0
0 0 1

] [

𝜔𝑖𝑦

𝜔𝑖𝑟

𝜔𝑖𝑧

].

(8)

The rotation rates of the wheel and roller, and the

corresponding velocities and rotation rates at the wheel

can be defined as �̇�𝑖 = [𝜔𝑖𝑦 , 𝜔𝑖𝑟 , 𝜔𝑖𝑧]
𝑇

∈ ℝ3 and �̂̇�𝑖 =

[𝑉𝑖𝑥 , 𝑉𝑖𝑦 , 𝜔𝑖𝑧]
𝑇

∈ ℝ3 respectively.

Figure 3 – The 3DOF planar motion CubeSat body

coordinate system ({𝒙𝒃, 𝒚𝒃}) and inertial coordinate

system ({𝒙, 𝒚}). Controlled vehicle states are yaw 𝝍

and yaw rate 𝝎𝒛, inertial position 𝒙 and 𝒚, and body

velocities 𝒖 and 𝒗.

Figure 4 – Wheel coordinate frame with positive

wheel angular velocity 𝝎𝒊𝒚 denoted.

Bertaska 4 32nd Annual AIAA/USU

 Conference on Small Satellites

Examining Figure 5, the kinematic relationship between

any individual wheel, 𝑊𝑖, and the geometric center of the

Agilis 𝑐 is given as,

[
𝑉𝑖𝑥

𝑉𝑖𝑦

𝜔𝑖𝑧

] = [
𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼 𝑝𝑦

𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 −𝑝𝑥

0 0 1

] [

𝜔𝑖𝑦

𝜔𝑖𝑟

𝜔𝑖𝑧

].
(9)

where 𝑉𝑖𝑥 ∈ ℝ, 𝑉𝑖𝑦 ∈ ℝ, and 𝜔𝑖𝑧 ∈ ℝ are the x linear

velocity, the y linear velocity, and the planar rotation in

the wheel frame, respectively. 𝑝𝑥 ∈ ℝ and 𝑝𝑦 ∈ ℝ are

the x and y coordinates of each wheel hub 𝑊𝑖. 𝛼 ∈ 𝕊 is

the rotation from the body frame to the wheel frame.

Combining (8) and (9) yields,

[

𝑢𝑐

𝑣𝑐

𝜔𝑐𝑧

] = [
𝑅 𝑐𝑜𝑠𝛼𝑖 −𝑟 𝑠𝑖𝑛𝛼𝑖 𝑝𝑖𝑦

𝑅 𝑠𝑖𝑛𝛼𝑖 𝑟 𝑐𝑜𝑠𝛼𝑖 −𝑝𝑖𝑥

0 0 1

] [

𝜔𝑖𝑦

𝜔𝑖𝑟

𝜔𝑖𝑧

],
(10)

 ⇒ �̂̇�𝑖 = 𝐽𝑖�̇�𝑖, (11)

where 𝐽𝑖 ∈ ℝ3×3 represents the transformation in (10). A

relation is built from each wheel state velocity vector

�̇� = [�̇�1, �̇�2, �̇�3]
𝑇 ∈ ℝ9 to the body velocities �̇�𝑐 =

[𝑢𝑐 , 𝑣𝑐 , 𝜔𝑐𝑧]
𝑇 ∈ ℝ3 4,

[

𝐼3×3

𝐼3×3

𝐼3×3

] [

𝑢𝑐

𝑣𝑐

𝜔𝑐𝑧

] = [

𝐽1 03×3 03×3

03×3 𝐽2 03×3

03×3 03×3 𝐽3

] [

�̇�1

�̇�2

�̇�3

],
(12)

 ⇒ 𝐴�̇�𝑐 = 𝐵�̇� (13)

where 03×3 and 𝐼3×3 are the null and identity matrices.

The goal is to find the kinematic relationship between the

velocities of the body �̇�𝑐, and the wheel rotational

velocities 𝜔𝑊 = [𝜔1𝑦 , 𝜔2𝑦 , 𝜔3𝑦]
𝑇

∈ ℝ3 using the above

conditions. Using the Moore-Penrose pseudoinverse of

𝐴 to solve for �̇�𝑐 in (13), it follows that,

 �̇�𝑐 = (𝐴𝑇𝐴)−1𝐴𝑇𝐵�̇�. (14)

 ⇒ �̇�𝑐 = 𝐽�̇�. (15)

Imposing a no-slip condition, the following must be true,

 (𝐴(𝐴𝑇𝐴)−1𝐴𝑇 − 𝐼9×9)𝐵�̇� = 0. (16)

When (11) for each wheel is found and substituted into

(16), �̇� cannot be solved for since (𝐴(𝐴𝑇𝐴)−1𝐴𝑇 −
𝐼9×9)𝐵�̇� is not full rank. The uncontrolled variables 𝜔𝑖𝑟

and 𝜔𝑖𝑧 can be written in terms of wheel angular

velocity, 𝜔𝑖𝑦 . Through algebraic manipulations, the

transformation from wheel rotational velocities to body

velocities is found to be,

[

𝑢𝑐

𝑣𝑐

𝜔𝑧𝑐

] =

[

 −

2𝑅

3

𝑅

3

𝑅

3

0 −
𝑅

√3

𝑅

√3

−
𝑅

3𝐿
−

𝑅

3𝐿
−

𝑅

3𝐿]

[

𝜔1𝑦

𝜔2𝑦

𝜔3𝑦

].

(17)

It should be noted that the velocity of the vehicle is no

longer dependent on the roller rotational velocity, 𝜔𝑖𝑟 .

Inverting (17) allows to solve for the individual wheels

speeds given a commanded body velocity vector �̇�𝑐 =
[𝑢𝑐 , 𝑣𝑐 , 𝜔𝑐]

𝑇. Thus, from (6), the simulated plant

dynamics outputs are converted to wheel velocities for

the kinematic simulator platform,

[
𝑚 0 0
0 𝑚 0
0 0 𝐼𝑧𝑧

] [
�̇�
�̇�
�̇�𝑧

] = [
0 0 −𝑚𝑣
0 0 𝑚𝑢

𝑚𝑣 −𝑚𝑢 0
] [

𝑢
𝑣
𝑟
] + [

𝑓𝑥
𝑓𝑦
𝜏𝑧

]
(18)

Figure 5 – The Agilis platform frame. The {𝒙𝒄, 𝒚𝒄}
frame is located at the geometric center of the vehicle

and assumed to be the instantaneous center of

rotation. {𝒙𝒊, 𝒚𝒊} ∀ 𝒊 ∈ {𝟏, 𝟐, 𝟑} is the coordinate

system for each wheel whose 𝒚𝒊-axis is collinear with

the axis of rotation.

Bertaska 5 32nd Annual AIAA/USU

 Conference on Small Satellites

[

𝜔1𝑦

𝜔2𝑦

𝜔3𝑦

] =

[

 −

1

𝑅
0 −

𝐿

𝑅

1

2𝑅
−

√3

2𝑅
−

𝐿

𝑅

1

2𝑅

√3

2𝑅
−

𝐿

𝑅]

[

𝑢
𝑣
𝜔𝑧

].

(19)

Mission Planning and Controls

The guidance and control laws are given in this section

– however, the navigation and attitude determination

filters are excluded out of brevity. In brief, the navigation

and attitude determination filters are extended Kalman

filters based off of the approach in Crassidis and Junkin5,

where a known inertial attitude or position solution from

the SVGS is filtered with body rates and accelerations

from the IMU. This allows the position and attitude

estimates to continue to be propagated when no SVGS

solution is present (i.e., target is out field of view or the

SVGS is in between solutions).

Guidance and Steering

The 3U CubeSat has a thruster configuration with thrust

forces exclusively on the +Y and –Y faces of the

spacecraft. Thus, the thrusters can only provide a force

in the 𝑦𝑏 axis, and a torque about the 𝑧𝑏 axis. The

underactuation of this system lends itself well to

guidance and steering laws for marine vehicles, as most

marine vessels are underactuated. An “Enclosure Based

Steering” approach from Fossen6 is taken to minimize

the cross-track error Δ𝑒 and guide the spacecraft along a

desired path between waypoints. Note that this is a path

following approach rather than true trajectory tracking as

there is no time dependence on the desired state

{𝑥𝑑 , 𝑦𝑑 , 𝜓𝑑} of the system.

Figure 6 depicts the main components of the Enclosure

Based Steering law. The path between two desired

waypoints 𝑝𝑘 ∈ ℝ2 and 𝑝𝑘+1 ∈ ℝ2 can be taken to be a

straight line. A circle of radius 𝑅 ∈ ℝ+ is circumscribed

around the vehicle. For a sufficiently large 𝑅, the circle

will intersect the path at two distinct points. The point in

the direction of travel, (𝑥𝑙𝑜𝑠 , 𝑦𝑙𝑜𝑠) ∈ ℝ2 is taken to be an

intermediate waypoint that a line-of-sight (LOS) steering

law guides the vehicle towards. The desired orientation

of the system from the LOS guidance is calculated as,

 𝜓𝑑 = −𝑎𝑡𝑎𝑛2 [
𝑥𝑙𝑜𝑠−𝑥

𝑦𝑙𝑜𝑠−𝑦
]. (20)

Thus, the cross track error Δ𝑒 ∈ ℝ is minimized by

bringing the system pack to the path that is “snapped”

between waypoints. The calculation to obtain (𝑥𝑙𝑜𝑠 , 𝑦𝑙𝑜𝑠)

is left from this work, but can be found in full in Fossen6.

Control Systems

The 3U satellite has two main control effectors – a

reaction wheel assembly (RWA) for fine attitude control

and a reaction control system (RCS) to provide “coarse”

Figure 6 – The “Enclosure Based Steering” guidance law. The main benefit of this guidance law is that it allows

an underactuated system, like the 3U CubeSat, to minimize the cross track error 𝚫𝒆 on a path between two

waypoints, 𝒑𝒌 and 𝒑𝒌+𝟏. The steering law produces a desired orientation that guides the system to an

intermediate waypoint (𝒙𝒍𝒐𝒔, 𝒚𝒍𝒐𝒔) at the intersection of a circle around the system and the path.

Bertaska 6 32nd Annual AIAA/USU

 Conference on Small Satellites

attitude corrections and translations. A proportional-

integral-derivative (PID) controller drives the RWA

control system, while a phase plane controller is

responsible for RCS control. A mode controller dictates

the criteria that causes the switch between the control

systems.

The RWA controller provides a small amount of torque

to the body through a change in the angular momentum

of the wheels. A torque command is generated from a

common PID controller,

𝜏𝑅𝑊𝐴 = 𝐾𝑝,𝑅𝑊𝐴�̃� + 𝐾𝑖,𝑅𝑊𝐴 ∫ �̃� 𝑑𝑡 + 𝐾𝑑,𝑅𝑊𝐴�̇̃�. (21)

where �̃� ∈ 𝕊 is the error in angular orientation of the

vehicle from the desired value, �̃� = 𝜓𝑑 − 𝜓, and 𝐾𝑝,𝑅𝐶𝑆,

𝐾𝑖,𝑅𝐶𝑆, and 𝐾𝑑,𝑅𝐶𝑆 are the PID gains, respectively.

The CubeSat is equipped with a 1,1,1-3,3,3-

hexaflouropropane-based, green propellant reaction

control system. The RCS is tasked with primarily

translating the spacecraft between desired waypoints, but

has the capability to induce a torque about the 𝑧𝑏-axis.

This can be used in active steering or simulating a

“detumble” scenario. For brevity, only the translation

controller is described here.

The translation controller for the RCS system uses a

phase plane design to guide the spacecraft towards a

desired waypoint. Most autonomous rendezvous and

docking platforms use a fully actuated thruster

configuration – both its lateral and longitudinal

velocities can be controlled. The 3U design is

underactuated and relies on the Enclosure Based

Steering approach to guide the vehicle towards an

intermediate waypoint to minimize cross tracking error.

A single longitudinal controller operates on the 𝑦𝑏 axis

of the vehicle.

The phase plane controller can be expressed as a

discontinuous function of the error in position in the

body frame, �̃�𝑏 ∈ ℝ, and the velocity, �̃� ∈ ℝ,

 𝑢𝑅𝐶𝑆 = 𝐾𝑝,𝑅𝐶𝑆�̃�𝑏 + 𝐾𝑑,𝑅𝐶𝑆�̃�. (22)

𝑓𝑅𝐶𝑆

= {
−𝑓𝑅𝐶𝑆 , 𝑢𝑅𝐶𝑆 < −𝑢𝑚𝑖𝑛 𝑎𝑛𝑑 �̃� < |�̃�𝑚𝑎𝑥|

𝑓𝑅𝐶𝑆 , 𝑢𝑅𝐶𝑆 > 𝑢𝑚𝑖𝑛 𝑎𝑛𝑑 �̃� > −|�̃�𝑚𝑎𝑥|

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(23)

where 𝐾𝑝,𝑅𝐶𝑆 and 𝐾𝑑,𝑅𝐶𝑆 dictate the slope of the

switching line, ±𝑢𝑚𝑖𝑛 ∈ ℝ determines the y-axis

intercepts, and �̃�𝑚𝑎𝑥 limits the maximum velocity of the

spacecraft. Figure 7 depicts the phase plane controller

switching lines, with the grayed-out area in-between

them denoting the deadband of the controller – the

combination of �̃�𝑏 and �̃� that produce no thruster firings.

It can be readily seen that a system with initial conditions

at an arbitrary point in the phase plane will be driven

towards a neighborhood around the origin.

SMARTPHONE VIDERO GUIDANCE SENSOR

The SVGS is a Marshall Space Flight Center-developed

sensor that obtains the relative position and orientation

between a camera and a known target. An

interchangeable set of retroreflective targets or LEDs are

used to create a pattern denoting the target. The camera

images the target, lightly process the image to obtain the

target blobs, and performs photogrammetric operations

to obtain a relative distance and orientation from the

camera frame to the target frame. A predecessor, the

Advanced Video Guidance Sensor (AVGS), was flown

on the DART and Orbital Express missions in 2005 and

2007, respectively. SVGS is the evolution of AVGS

technology, reducing the form factor to that of a

“smartphone.”

To calculate the 6DOF states between the camera and the

target, the SVGS uses an inverse perspective algorithm

with an adaptation of the collinearity equations7, 8. Given

a thin lens camera, an object 𝐴 has all it light rays

entering the camera at a point 𝐿, known as the

perspective center. An image of 𝐴 will be formed on the

camera plane, annotated by 𝑎. Figure 8 displays these

objects, along with two frames – the object (target)

Figure 7 – The RCS phase plane controller design.

Areas highlighted in gray depict the deadband of the

controller. All other areas would prompt either a

positive (above switching lines) or negative (below

switching lines) thruster firing.

Bertaska 7 32nd Annual AIAA/USU

 Conference on Small Satellites

coordinate system, {𝑋, 𝑌, 𝑍}, and the image (chaser)

coordinate system, {𝑥, 𝑦, 𝑧}1.

A vector form the perspective center to point 𝐴 is defined

as,

𝑣𝐴 = [

𝑋𝐴 − 𝑋𝐿

𝑌𝐴 − 𝑌𝐿

𝑍𝐴 − 𝑍𝐿

].
(24)

Another vector is defined from the perspective center to

𝑎,

𝑣𝑎 = [

𝑥𝑎 − 𝑥0

𝑦𝑎 − 𝑦𝑜

−𝑓𝑜

],
(25)

where 𝑓𝑜 is the vertical distance to point 𝐿. This new

vector is simply a rotation and scaling of 𝑣𝐴 as,

 𝑣𝑎 = 𝑘𝑇𝐴
𝑎𝑣𝐴. (26)

Dropping the 𝑎 and 𝐴 subscripts, solving for the image

frame coordinates 𝑥, 𝑦, and 𝑧, and eliminating the

scaling factor 𝑘 by dividing by 𝑧 yields,

𝑥 = 𝑓𝑜
𝑇11(𝑋 − 𝑋𝐿) + 𝑇12(𝑌 − 𝑌𝐿) + 𝑇13(𝑍 − 𝑍𝐿)

𝑇31(𝑋 − 𝑋𝐿) + 𝑇32(𝑌 − 𝑌𝐿) + 𝑇33(𝑍 − 𝑍𝐿)
+ 𝑥0

= 𝐹𝑥

(27)

𝑦 = 𝑓𝑜
𝑇21(𝑋 − 𝑋𝐿) + 𝑇22(𝑌 − 𝑌𝐿) + 𝑇23(𝑍 − 𝑍𝐿)

𝑇31(𝑋 − 𝑋𝐿) + 𝑇32(𝑌 − 𝑌𝐿) + 𝑇33(𝑍 − 𝑍𝐿)
+ 𝑦0

= 𝐹𝑦

(28)

where 𝑇𝑖𝑗 are the elements of the transformation matrix.

The relative 6DOF state vector is given by,

 𝑉 = [𝑋𝐿 , 𝑌𝐿 , 𝑍𝐿 , 𝜙, 𝜃, 𝜓]𝑇. (29)

Performing a Taylor series expansion on (27) and (28),

and then linearizing produces,

 𝑥 = 𝐹𝑥(𝑉0) +
𝜕𝐹𝑥

𝜕𝑉
Δ𝑉 + 𝜖𝑥, (30)

 𝑦 = 𝐹𝑦(𝑉0) +
𝜕𝐹𝑦

𝜕𝑉
Δ𝑉 + 𝜖𝑦, (31)

where 𝑉0 is an initial guess for the state vector, and Δ𝑉

is the difference between 𝑉0 and the actual state vector,

 Δ𝑉 = 𝑉 − 𝑉0. (32)

𝜖𝑥 and 𝜖𝑦 are the error terms associated with the

linearization of (27) and (28). The SVGS target contains

four feature cubes, each of which is a known distance

from the target origin. Each will have two set of

equations corresponding to 𝐹𝑥 and 𝐹𝑦 as above,

 𝑌 = [𝑥1, 𝑦1, … , 𝑥4, 𝑦4]
𝑇

𝑌0 = [𝐹𝑥1, 𝐹𝑦1, … , 𝐹𝑥4, 𝐹𝑦4]
𝑇

𝐻 = [
𝜕𝐹𝑥1

𝜕𝑉
,
𝜕𝐹𝑦1

𝜕𝑉
, … ,

𝜕𝐹𝑥4

𝜕𝑉
,
𝜕𝐹𝑦4

𝜕𝑉
]
𝑇
.

(33)

Thus, the vectorial representation of (30) is written as,

 𝑌 = 𝑌0 + 𝐻𝑉 + 𝜖. (34)

The equation above is solved for the 𝑉 that most

minimizes the square of the residuals 𝜖. This value is

then added to 𝑉0 to get an updated state vector. This

process is iterated until the residual are sufficiently small

yielding the final estimate of the 6DOF state vector 𝑉.

The process described above is implemented on an

Android smartphone. Accuracy and solution rate are

highly dependent on the processor of the platform, as

well as the resolution of the image. Accuracy and a faster

Figure 8- Object (A) and camera frame (gray)

geometry.

Bertaska 8 32nd Annual AIAA/USU

 Conference on Small Satellites

update rate can be traded off by decreasing the image

size (less accurate, faster update) or increasing it (more

accurate, slower update). The experiments described in

this text utilize a legacy platform, the Samsung Galaxy

Nexus, with a 1.2GHz dual core ARM Cortex-A9

processor. With a maximum supported image size of

1920 x 1080 pixels, an update rate of 4Hz can be

achieved. The SVGS algorithm has been ported to a

newer model, the Samsung S8, with a 2.35/1.9 GHz octa-

core Qualcomm Snapdragon processor. A solution rate

of up to 33Hz has been achieved on this platform at the

same 1920 x 1080 pixel image size.

The target configuration is wholly left to the user.

Solutions have been more successful when at least a

single target cube is out of plane with respect to the

others. The target configuration utilized in the

experiments described here is composed of four retro-

reflective cubes as shown in Figure 9. The retroreflective

cubes were placed such that they would fit within a 3U

footprint.

PLATFORM INTEGRATION AND AVIONICS

The 3U CubeSat is outfitted with a conventional sensor

and avionics suite, as well as an SVGS. An ADIS16488

IMU is the main inertial sensor for the platform. A

Sinclair Sun Sensor is utilized to obtain a partial attitude

solution and to test “safe mode” behaviors. A custom

developed board running a 32-bit TIVA processor is

used to preprocess the sensor output, and optionally, run

attitude and navigation filters. These sensors are located

on the navigation stack of the 3U and can be optionally

placed on the ASKS platform.

A MAI reaction wheel assembly is used for fine pointing

control. It features full three-axis control with ~11mN-

m-s of capacity and a maximum torque of 0.635mN-

m.This RWA can be swapped with a single axis 30mN-

m-s reaction wheel from Sinclair capable of producing

2mN-m of torque. A custom developed cold-gas

propulsion unit from the University of Arkansas is used

for translational control as well as coarse attitude

corrections and detumble. It utilizes a green propellant,

1,1,1-3,3,3-hexaflouropropane, with a nominal ISP of

47s. Although the effectors cannot be utilized on the

ASKS platform, high fidelity models of each have been

developed and are simulated within the ASKS plant

dynamics. This lends itself to situations where each

effector is “plug-and-play.” For instance, if the ASKS

system is exhibiting sluggish response utilizing the

0.635mN-m MAI reaction wheel, this component can be

“swapped” for the higher capacity Sinclair 2mN-m

reaction wheel.

The Xiphos Q7 was selected as the flight computer, due

to its easy integration with the core software package of

ROS and the ability to run a near-real time Linux OS.

The latter is especially important when working with

students and interns. It has been the authors’ experience

that the prevalence of cheap single board computers

(e.g., Raspberry Pi, Beaglebone Black, Pixhawk, etc.) in

the hobbyist markets and educational facilities has

exposed many students to embedded systems running a

lightweight OS. Often, students come into an internship

with an already-developed skillset in building software

for embedded Linux devices. This expertise that can be

leveraged and directed towards aerospace system during

their term.

SOFTWARE ARCHITECTURE

Software Architecture

Software development is scheduled in two major phases,

as shown in Figure 10. In Phase I, the onboard gyroscope

and accelerometer of the Galaxy Nexus is used for

feedback, and the GNC algorithms are run from within

the phone, alongside the plant dynamics. This is all

programmed within a Java/Android environment. The

EV3 “brick,” the microcontroller regulating the motors

and communicating with the Galaxy Nexus, runs the

“LeJOS” operating system – an alternative, Java-based

OS developed by the LEGO community. During Phase I

development, the only necessary piece of hardware is the

SVGS compatible phone – all sensors and simulation

suites are hosted on it.

For Phase II development, the navigation stack is

integrated onto Agilis platform as modeled in Figure 2.

This allows for the “flight” IMU, the ADIS16488, to be

used for feedback in the control system, as well as

Figure 9 – SVGS target pattern configuration using

retroreflective cubes, with the center cube out of

plane. The target frame is denoted in blue.

Bertaska 9 32nd Annual AIAA/USU

 Conference on Small Satellites

enabling processor-in-the-loop simulations. The Robot

Operating System is chosen as the main environment to

tie these systems together. Both the Xiphos Q7 and the

LEGO EV3 are both capable of running the core ROS

package. The publish/subscribe model of ROS

interprocess communication eases the development of

the interfaces between these systems, as well as gives

access to full featured front-end GUIs. The end goal of

the second phase of development is to have a full flight-

like navigation stack running on the ASKS, creating a

partial physical realization of the plant with hardware-in-

the-loop capabilities.

A key benefit of the ASKS architecture is in its capability

for the rapid redevelopment and deployment of the GNC

system. This is enabled through the use of the Simulink

Coder, Embedded Coder, and a wrapper using the Java

Native Interface (JNI). This wrapper is used exclusively

for Phase I development. For Phase II development, the

GNC source code can be integrated directly into a ROS

project, and compiled into a separate ROS node. This

permits a greater level of modularity when swapping in

and out different GNC systems when compared with

Phase I development.

The GNC system, as well as the plant model, for the 3U

CubeSat is modeled in Mathworks Simulink – a visual-

based tool for time domain simulation, with the capacity

to analyze a system in the frequency and 𝑠-domains. The

creation of GNC flight software can be streamlined by

taking advantage of Simulink Coder and Embedded

Coder – “toolboxes” that compile a Simulink block

diagram into C or C++ source code. Embedded Coder

allows for greater control of the “autogenerated” source

code with the ability to target specific platforms, such as

ARM-based or Microchip (PIC) architectures. JNI is a

framework that allows native programs to be called from

the Java Virtual Machine (JVM). The recommended

platform for Android app development, the IntelliJ-

derived Android Studio, allows for the easy integration

of native source code (e.g., C or C++) into Android

projects through the CMake build system.

The workflow for testing on the ASKS platform

functions as follows: the GNC system and plant model

are initially developed within Simulink with Matlab

helper scripts to setup parameters. Gains and filter

coefficients are optimized within that environment to

produce the “best” response given mission requirements.

Then, the GNC system and the plant model are

separately configured and autocoded. This produces two

software packages – one for GNC and one for the plant.

For Phase I development, both of these codebases are

integrated directly within an Android app through a

wrapper using the JNI. This same app runs the SVGS

process in the background, producing relative orientation

and position estimates that are fed into the GNC system

as pictured in Figure 10. The app queries telemetry from

the onboard gyroscope and accelerometer, which are also

used as inputs to the GNC system. The GNC system is

run for a single time step, and its outputs (actuator

commands) are piped to the plant dynamics. The body

Figure 10 – Phase I and Phase II software block diagrams for the Agilis kinematics simulator platform. For

Phase I, all GNC and plant dynamics are run directly on the android phone, using the onboard gyroscope and

accelerometer. Phase II uses the “flight” IMU, the ADIS16488 as the main inertial sensor, and moves the

GNC software to the Xiphos Q7 to enable processor-in-the-loop simulations

Bertaska 10 32nd Annual AIAA/USU

 Conference on Small Satellites

velocities 𝑢 and 𝑣 and rotation rate 𝜔𝑧 are then converted

to ASKS wheel velocities 𝜔𝑖𝑦 . These are then sent as

motor commands to the EV3 “brick” motor controller.

The simulated 3DOF platform can now be run and its

response logged. Depending on the performance during

the experiment, the GNC system can be easily updated

simply by tweaking parameters, or if a structural change

is needed (e.g., increasing the order of a filter, adding a

gain in path where one was not included, etc.), the GNC

system can be autocoded and deployed to the Android

app. The latter typically takes less than five minutes to

go from a Simulink block diagram to an application

running on the ASK.

Robot Operating System

The Robot Operating System (ROS) provides a flexible

framework to create an autonomous system/robotic

middle layer on top of an operating system9. It handles

message passing (on a centralized publisher/subscriber

model) and comes bundled with package control. Many

features are available “out-of-the-box” through ROS

packages, such as Kalman filter implementations and

visualization software. ROS is compatible with a variety

of popular platforms including the Microsoft Kinect, a

three dimensional camera originally designed for the

Microsoft Xbox 360, and the Beaglebone Black, a

single-board computer that is popular in the hobbyist

community. ROS has been applied to differing platforms

in radically different environments, including personal

robotics9, marine vehicles10, intravehicular robotics on

the International Space Station11.

One important distinction is that ROS is not a real-time

operating system (RTOS), nor is it out-of-the-box

compatible with other RTOS, such as FreeRTOS and

VxWorks. However, ROS does excel at ease of use, with

a large online community and easily available tutorials.

It has been the experience of the authors that real-time

programming has a relatively steep learning curve for

students unfamiliar with RTOS concepts (e.g., tasking,

priority levels, semaphores, etc.). Transitioning the

software architecture from RTOS to ROS-based

significantly decreased the learning curve from 4-6

weeks to 1-2 weeks. Additionally, the availability of

ROS sample code further streamlined development in

later stages, as students could modify existing code

rather than reproduce it wholesale.

Language implementation is equally as important. ROS

is available both in C++ and Python. RTOS are typically

only available in C and C++, since both of these

languages compile down to native machine code rather

than rely on a non-deterministic virtual machine. It has

been the authors’ experience that engineering students

across all levels have a greater familiarization with the

Python language when compared to C, and especially

C++.

Figure 11 – Simulation results for the rendezvous operation described above. The spacecraft’s position is

shown on the left in blue, with the desired waypoint 𝒑𝒌+𝟏 in red. The target position is specified in black. On

the right, the spacecraft body rate 𝝎𝒛 is broken down by mission phase: A) detumble and target search, B)

slew towards target, C) translation towards desired waypoint, D) reorientation to guide towards waypoint.

Bertaska 11 32nd Annual AIAA/USU

 Conference on Small Satellites

SIMULATION AND EXPERIMENTAL RESULTS

Simulation Results

Simulations of the autonomous rendezvous procedure

were produced using the Matlab/Simulink software suite

from Mathworks. The SVGS target frame was taken to

be coincident with the inertial frame, i.e., the spacecraft

started the simulation at an arbitrary point in the mission

area and then was guided towards the origin to perform

a proximity operation.

The simulation tasked the vehicle to perform four

separate tasks in order:

1. Detumble from an initial tip-off rate.

2. Perform a target search.

3. Slew towards the target.

4. Translate to a meter in front of the target.

The results presented here set an initial tip off rate at

10deg/s, and positioned the spacecraft 5m and -10m

from the target in the X and Y axis, respectively. The

mission area of this simulation roughly fits the footprint

of the portion of the flat-floor facility at Marshall Space

Flight Center that is dedicated for small satellite testing.

A desired “waypoint” was set -1m from the target in the

Y axis.

Results show the spacecraft successfully detumbling

utilizing the RCS thrusters, and proceeding towards a

target search, finally homing in on the target at roughly

~25deg. For the latter maneuver, the mode controller

switched the system to reaction wheel control. The

spacecraft then translated toward the desired waypoint

utilizing the Enclosure Based Steering guidance law.

Once the SVGS was able to produce an attitude solution,

a path was created between the current position (𝑝𝑘) to

the desired waypoint (𝑝𝑘+1). The spacecraft then

translated to approximately one meter in front of the

target before the simulation completed successfully.

A strength of Enclosure Based Steering is its ability to

compensate for outside disturbances. Simulation results

from the Simulink model are displayed for a spacecraft

with a faulted thruster, where an RCS thruster was

misaligned by 10 degrees from the nominal orientation.

A comparison between the cross track error during

translation for an Enclosure Based Steering guidance law

versus a simple LOS law,

 𝜓𝑑 = −𝑎𝑡𝑎𝑛2 [
𝑥𝑘+1−𝑥

𝑦𝑘+1−𝑦
], (35)

is presented in Figure 12. It can be readily seen that the

Enclosure Based Steering approach was able to bring the

vehicle back to the desired path, whereas the pure LOS

guidance failed to do so, incurring a cross track of up to

0.7m.

Experimental Results

Experimental results are presented for a subset of the

tasks described in the previous section. The experiment

focused exclusively on “detumbling” the satellite, then

slewing towards the target, and performing an attitude

hold for a set duration of time (tasks 1-3 as described

previously). This is analogous to a spacecraft detumbling

after ejection, followed by moving into a stable pointing

orientation (e.g., a solar inertial hold, or relative hold on

a target). The ASKS was outfitted with the “Phase I”

avionics architecture depicted in Figure 10 to perform

these experiments.

The ASKS platform was placed approximately one

meter away from the target at a slight offset of 2cm. For

this series of tests, the accelerometer was disabled, and

the position output was directly taken from the SVGS. If

the SVGS failed to find a solution, the last valid solution

was latched. The attitude filter was similarly modified

where the SVGS attitude solution was taken to be the

attitude estimate of the system without fusing gyroscope

measurements. If the SVGS was not able to produce an

attitude solution, the filter would then propagate the

attitude estimate using the body rate measurements.

Figure 12 – Comparison of cross track errors 𝚫𝒆

between the Enclosure Based Steering and LOS

guidance steering laws.

Bertaska 12 32nd Annual AIAA/USU

 Conference on Small Satellites

Figure 13 presents the results from experimental test.

The figure on the left displays the commanded attitude

𝜓𝑑 in blue and the estimated attitude �̂� in red. On the

right, there is a comparison between the simulated plant

rate 𝜔𝑧, the unfiltered ASKS platform IMU rate (gray),

and the filtered IMU rate (black). The three main phases

are demarked in each figure by the vertical dashed line:

the detumble phase (A), the slewing maneuver (B), and

the “hold and point” maneuver (C). The system utilizes

a bang-bang controller with the RCS for the detumble

phase, and a fine pointing reaction wheel control for the

remainder of the phases. Examining both figures, it is

clear that the kinematic simulator platform detumbled

successful, with the rotation rate of the platform

dropping to zero for both the simulated plant and ASKS

IMU. It is noteworthy that the filtered IMU signal closely

matched that of the simulated plant output, signifying

that the inverse kinematic operation from the spacecraft

body velocities and rate to Agilis wheel velocities was

successful. The remainder of the experiment continued

to be successful in this regard, with the sensed rate of the

ASKS platform closely trending with the simulated plant

output. In the second phase, the system was tasked to

perform a slew towards the target. A desired orientation

𝜓𝑑 was constructed from the estimated position of the

ASKS to the a priori target position such that the SVGS

would acquire a successful solution. A position solution

was first obtained during the detumble operation, where

the target passed in the line of sight of the SVGS. This

solution was then maintained during the slewing

maneuver, which did not have the successful lock on the

target until the 45s mark. A noticeable drift then occurred

in the desired attitude signal as the SVGS reacquired a

lock on the target and produced an updated attitude and

position solution. The remainder of the mission

demonstrates a successful attitude hold maneuver with

the SVGS maintaining the target in its sights. The reader

may note a small offset between the desired orientation

and the estimated orientation. This is the result of two

main causes. The first is due to a quantization effect

when requesting a wheel velocity from the LEGO EV3

controller. During phase C), the steady state error was

not large enough to overcome this quantization given the

gains on the RWA PD controller. For this particular run,

the integral gain 𝐾𝑖 was disabled for the RWA controller,

which did not allow the steady state error to accumulate

over time. This would have built up a control signal large

enough to dominate the quantization. As part of a

redesign of the ASKS platform, the gearing ratio will be

stepped down such that a larger motor command will

produce a lower wheel speed, allowing for finer control

of the platform.

EDUCATIONAL OUTREACH

A variety of students with varying skill sets have

contributed to this project. These have spanned the

academic spectrum from high school seniors to graduate

students. The authors serve only as system integrators

Figure 13 – Results from the experimental test with the ASKS performing a detumble (A), slew (B), and hold

and point (C) maneuvers. The desired attitude 𝝍𝒅 (blue) is compared against the estimated attitude �̂� (red)

from the attitude filter on the left. The right displays the simulated plant rotation rate (blue), the unfiltered

IMU rate from the ASKS platform (gray) and the filtered rate signal (black).

Bertaska 13 32nd Annual AIAA/USU

 Conference on Small Satellites

and mentors – the majority of the development of this

project has been contributed by students, interns, and

volunteers. The following section relays the experience

of the authors’ in working with these students. It is not

intended to be an impartial assessment, but rather, is a

series of best practices that the authors’ have found to be

successful.

The multidisciplinary aspects of the ASKS platform are

used to its advantage. A range of disciplines are used to

create the platform, which allows mentors to select the

strengths of each student and direct them to develop

along that particular path. These disciplines are broken

down across the columns of Table 1 – mechanical

design, avionics and software, GNC, and SVGS

development. The rows give the educational level of

each student and tasks that he or she is likely best suited

for.

Through educational outreach programs in public

schools, high school students have worked on ASKS

development. These students are high performing, but

have only had a fraction of the courses taught in a college

engineering program. However, traditional high school

engineering curriculums stress computer aided design

(CAD). With the advent of low-cost 3D printers, students

now have the complete experience of designing a part

and manufacturing a prototype. This experience is

leveraged in this project where students are given

requirements for a single part, and must deliver a

prototype by the end of their rotation. This gives a

“hands on” introduction to the engineering development

cycle. These students often have some experience in

calculus and basic linear algebra, but typically have not

had an opportunity to use it in practice. The ASKS

platform serves as a test bed for this purpose. Concepts

such as integration and derivation (through the vehicle

acceleration, velocity, and position), matrix inversion

(through the inverse kinematic relation in (18) and (19))

and gear ratios are given a physical anchor. The selection

of Java as one of the main languages for this project

leverages its continued use in Advanced Placement

computer science courses, as well as its popularity in

Introduction to Computer Science and object-oriented

programming courses. Although high school students

may not have the skillset to make significant

development in the codebase, they can make small

modifications to deploy different concepts. The use of

LEGO robots and cellular phones creates an

approachable environment where students are familiar

with the toolset, creating a launch point for furthering

their knowledge of small satellites and general

engineering.

Students further along in academic level, like later

college or early graduate school, get introduced to

concepts that are more specified. These include image

processing, computer vision, Kalman filters, and control

systems. The latter two are especially important as many

engineering curriculums do not focus heavily on GNC,

and may not sufficiently bridge the gap between theory

and practice. Students may have some familiarization

with concepts like PID controllers and linear filters, but

have not had the opportunity to exercise them in a design

environment. The ASKS provides this opportunity with

its ability to rapidly redeploy the entire GNC system.

Upper level students have contributed to this program in

terms of software development both on the avionics

platforms and the SVGS, as well as implementation of

controllers and mission planners for wheeled vehicles.

Students of all levels have contributed to this project as

described below:

 Design of mechanical interfaces and mounts

between the navigation stack and the Agilis

robot.

 Design of mechanical interfaces between the

SVGS phone and target and the Agilis robot.

 Construction and implementation of PID

controllers and mission planners for wheeled

vehicles and CubeSats.

 Construction and implementation of navigation

filters using an extended Kalman filter for

position estimation on wheeled vehicles and

CubeSats.

 Low-level device drivers for Linux systems

wrapped in ROS nodes.

 Software architecture design in the ROS

environment for the GNC system

 Processor-in-the-loop testing of the Xiphos Q7

with the GNC system in a ROS environment.

 Development of graphical user interfaces to log

telemetry and display telemetry from the

ASKS/CubeSat system.

 Extension of the SVGS blob tracking algorithm

to work with colored LEDS in addition to

retroreflective targets.

 Refactoring and documentation of SVGS

software.

 Development of interfaces between LEGO

EV3 “brick” and Android smartphone.

A diversity of “soft skills” have also been introduced as

part of this project. These skills apply in breadth of fields

and range from professional writing, mentoring, as well

as configuration management. Concepts such as

interface control documents are introduced such that

each students work can be taken to be a “black box” that

interfaces with the rest of the system.

Bertaska 14 32nd Annual AIAA/USU

 Conference on Small Satellites

Internships at NASA range anywhere from 12 weeks in

the Summer semester to 16 weeks in Fall and Spring

Semesters. The key challenge is identifying a deliverable

that each student is capable of producing within that

time. There is no systematic process in assigning a

student tasks – it has been the authors’ experience that

one-on-one mentorship provides the best results for both

parties. Mentors are better able to grasp the strengths of

each student and assist them where necessary, and

students are able to work on projects that align with their

proficiencies.

CONCLUSION

An alternative to “floating” CubeSat systems mounted

on air bearings is given here, where the kinematics of the

system can be represented by the motion of an

omnidirectional wheeled vehicle equipped with

rotacaster wheels. Plant dynamics are simulated within

the wheeled robot to produce velocities and body rates.

This allows the engineer to test high level guidance and

navigation algorithms without the overhead of the

traditional air-bearing method, which may be limited by

mission area or length of air supply hoses. An

omnidirectional robot is constructed out of LEGO EV3

parts and equipped with a smartphone-based relative

navigation sensor, the SVGS, making it accessible as an

educational platform. Multiple ASKS units may be

constructed to simulate complex multi-satellite mission.

The ASKS platform is detailed with a derivation of the

inverse kinematic solution from 3DOF planar body

velocities and rate to wheel speeds. Two separate control

laws are given – a phase plane controller focusing on the

translational and coarse attitude control using a cold-gas

RCS, and a PID controller for fine pointing control using

reaction wheels. Due to the underactuation of the 3U

CubeSat system the ASKS platform was based on, an

Enclosure Based Steering approach is given to direct the

vehicle back to a path between waypoints during

translational control. Simulation and experimental

results are presented of the 3U CubeSat and the ASKS

platform operating in a proximity operation-like

scenario. It was shown that the ASKS was able to

successfully replicate detumble, slew, and attitude hold

maneuvers of the 3U CubeSat.

Forward Work

The system can be further improved in modeling the

3DOF planar motion of a satellite by increasing the

gearing ratio between the motor and the wheels. For slow

slews, as would be expected on a small satellite platform

with small reaction wheels, a greater control of the

position of each wheel of the Agilis is necessary. The

authors’ noticed some limit cycle oscillations driven by

quantization effects of the wheel controller on the EV3

robot. A smaller gearing ratio would allow a greater

range of motion of each motor, reducing the impact of

quantization.

The construction of multiple units allows for simulation

of complex proximity operation missions and formation

flying. This creates an easy to use platform for students,

interns, and young engineers that enables the simulation

Table 1 – Recommended roles and responsibilities for a multidisciplinary project given a students’ level of

education and experience.

Academic
Level

Mechanical Design Avionics and Software GNC SVGS

High School CAD’ing simple
geometries, 3D printing

parts, assembly and
integration of systems

Introduction to Ohm’s law,
power calculation, polarity.

Java programming
introduction.

Basic linear algebra
introduction (e.g.,

determinants, matrix
inversions).

Operation of SVGS.

Early College

(Freshmen And
Sophomores)

Advanced CAD’ing,

coordination with high
school interns for 3D

printing.

Debugging of avionics

interfaces, simple
input/output programming.

Basic Java programming.

Updating UI of SVGS.

Late College

(Juniors And
Seniors)

- Integration of GNC project

into ROS. Wrapping FC
hardware drivers into ROS

nodes. Processor-in-the-

loop and hardware-in-the-
loop simulations.

Designing of Kalman

filters, redesign of control
system gains, advanced

mission planning

(trajectory planning),
integration of A* planner.

Enhancement of capabilities

of SVGS outside of core
engine (e.g., different blob

tracking algorithms,

optimizing
implementation).

Graduate - -

Bertaska 15 32nd Annual AIAA/USU

 Conference on Small Satellites

and testing of collaborative multi-satellite scenarios with

familiar components.

Acknowledgements

The authors would like to thank the following students

for their contribution this work: Zachary Prihoda, Elijah

Johnson, Amarri Cole, Tevon Walker, Eric Bradshaw,

Dylan Hunziker, Chris Carter, Logan Bolingbroke, Zakk

Giacometti, Brian Adams, James Holt, Bryce Brown,

and Joshua Bryant. A special thanks to Devon Sanders

for his support in the initial phases of this project.

REFERENCES

1. C. Becker, R. Howard and J. Rakoczy,

"Smartphone Video Guidance Sensor for Small

Satellites," in 27th Annual AIAA/USU Conference

on Small Satellites, Logan, Utah, USA, 2013.

2. F. Terui, "Position and attitude control of a

spacecraft by sliding mode," in American Control

Conference, Proceedings of, Philadelphia,

Pennsylvania, USA, 1998.

3. J. E. Prussing and B. A. Conway, Orbital

Mechanics, New York City, New York, USA:

Oxford University Press, 1993.

4. D. Garcia-Sillas, E. Gorrostieta-Hurtado, J. Vargas,

J. Rodriguez-Resendiz and S. Tovar, "Kinematics

modeling and simulation of an autonomous omni-

directional mobile robot," Ingeniera e

Investigacion, vol. 35, no. 2, pp. 74-79, 2015.

5. J. L. Crassidis and J. L. Junkin, Optimal estimation

of dynamics systems, CRC Press, 2011.

6. T. I. Fossen, Handbook of marine craft

hydrodynamics and motion control, John Wiley &

Sons, 2011.

7. F. H. Moffit and E. M. Mikhail, Photogammetry,

New York City, New York, USA: Harper & Row

Inc., 1980.

8. J. Rakoczy, Application of the photogrammetric

collinearity equations to the orbtial express

advanced video guidance sensor six degrees-of-

freedom solution, MArshall Space Flight Center,

AL: NASA Internal memo #XD-31-(-05-004),

2005.

9. M. Quigley, K. Conley, B. Gerkey, J. Faust, T.

Foote, J. Leibs, R. Weeler and A. Y. Ng, "ROS: an

open-source Robot Operating System," ICRA

workshop on open source software, vol. 3, no. 3.2,

p. 5, 2009.

10. J. Wampler, T. Mosciki and K. von Ellenrieder,

"Towards adjustable autonomy for human-roboit

interaction in marine systems," in OCEANS 2017 -

Aberdeen, Aberdeen, Scotland, UK, 2017.

11. J. Yoo, I.-W. Park, V. To, J. Q. Lum and T. Smith,

"Avionics and Perching Systems of Free-Flying," in

AIAA SPACE 2015 Conference and Exposition,

Systems Engineering (ISSE), 2015 IEEE

International Symposium on, 2015.

