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Relevance

* Critical Need: “NASA’s future missions show a diverse set of navigational
challenges that cannot be supported with current methods. Onboard
autonomous navigation and maneuvering (OANM) techniques are critical.”
Addresses TA-05 for minimization of mass, power and volume while increasing
performance, avoiding navigation from becoming a constraint, and eliminating
Earth from the real-time decision loop.

* Problem: Current inertial sensors limited in precision and require periodic
attitude or position updates (e.g. using GPS or Star-trackers).

e Conventional means of increasing precision:
1) Increase gyro size — problematic in spaceflight

2) Increase measurement integration time — upper limit due to higher-order noise.
Not useful for rapid accelerations.

 Technologies relying on external signals (GPS, DSN, Star-trackers, XNAV, etc.)
limited by large lag times (measurements in the past) and/or low flux (long
integration times). They can be spoofed, incorrectly identified, occluded,
obscured, delayed, attenuated, or insufficiently available.

* Fundamental improvements needed in precision of inertial sensors!



Problem: Best gyros limited in precision, resulting in
errors that require periodic correction. Fundamental
improvements needed in gyro technologies!
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Solution: Develop ultrasensitive superluminal (or
fast-light) gyros = more rapid and precise
measurements with smaller gyros.
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» Cavity detunings A and 0 not measured directly
in real time in an operating device. Instead S and
¢ are deduced, after the fact, from the spectra

— Slow (5 mins vs. <1 sec. for closed-loop). Large
amount of unnecessary data recorded.

— No real experimental evidence of enhancement. C
inferred for ideal (QNL & high-SNR) conditions only.

» Instability due to mode pushing — data scarce
near resonance. Large uncertainty in S.
Stabilization needed.
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Passive FL Gyro

* Obijective: Scale-factor enhancement for rotation has never
been demonstrated in any experiment.

Table Shaker Laser and Cavity on Rotation Stage

* Monolithic, vacuum-enclosed, magnetically-shielded, and
temperature-stabilized to reduce noise.



dvantages / Limitations of Passive FLGsS ”(A\%“

Advantages

e Simpler and less costly to obtain preliminary data
* Avoids nonlinear dynamics from gain medium
* Only system so far to have shown boost in S to OPL changes.

Challenges / Limitations
* Sensitive to relative motion of components external to cavity
* Cavity modes attenuated by absorption. Reduced signal to noise.

e Saturation alters lineshape, couples counterpropagating beams, and
limits achievable signal to noise.

* Require complicated closed-loop locking schemes

e Cavity linewidth also broadens. Not necessarily true for active
cavities. Active FL gyros may have higher enhancement in precision!



Challenges for Active FL Gyros ”(A\%“

 Dynamics of gain medium may cancel enhancement to some degree.

* No known composition of gases that eliminate gain competition for
the two directions = unidirectional lasing

 Current approaches significantly more complex requiring multiple
lasers. Rely on NLO processes generated by added pump beams
— Difficult to miniaturize
— Careful control of cavity and pump parameters
— Sophisticated control schemes required

— Added sensitivity to environmental effects

* Enhancement in S still not demonstrated directly, only inferred.
 Reliance on discrete material transitions (applies for passive as well)

— Transitions are inherently temperature dependent, requiring SOA stabilization
techniques to minimize the resultant noise.

— Limited operation wavelength inhibits wide adoption. RLG manufacturers want
to stick with He-Ne wavelengths.
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Advantages

* Easy to miniaturize via microfabrication
* Entirely linear effect, no saturation = higher signal-to-noise

* Eliminates temperature dependence of atomic absorption = potential for
better scale-factor stability.

* Not limited to operation at atomic resonance frequencies. Any wavelength
possible, including He-Ne.

Challenges / Limitations

* PT-symmetric gyros not common path. Resonators suffer from
independent amounts of noise and drift. = Reduced common-mode noise
rejection.

* PT-symmetric gyros haven’t shown any definitive boost in sensitivity, b/c
at small rotation rates the two modes (at each gyro output direction) are
not distinguishable.
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1) Demonstrate scale-factor enhancement, S, to rotation.
2) Demonstrate enhancement in precision, C.
3) FL gyros that:

— Are common path

— Are not limited in signal to noise

— Do not require frequency locking

— Permit operation at any wavelength

— Can be easily miniaturized

— Are relatively insensitive to environmental (e.g.
temperature) variations

— Can operate in varying G-conditions



Active FLGs

Passive FLG

In-house Program

¢ MagiQ Technologies (P2)
Fiber SBS FLG

@ Lenzner Research (P1)
Pulsed FLG

Digital Optics Technology (P1, P2)
Rb Raman FLG

Northwestern University -

Focusing on Goal 3

U.S. Army
Nav Group

U.S. Army
Atomic
Physics

NASA MSFC
Optical Physics

Focusing on Goals 1 and 2

Other Past & Present: Torch Technologies, Triad Technology, Aegis Technology, Honeywell, Los Gatos Research,
Photodigm, Vescent Technologies, Freedom Photonics, Rochester Scientific, College of William and Mary.

International Efforts: Tel Aviv Univ. (Israel), National Univ. of Defense Technology (China), Harbin Institute of

Technology (China), Thales Aerospace (France).

Valley of Death: To accomplish goal 2 may require development of a high-quality gyro. Sufficient funding for such

development less likely until goal 2 met.

Future State: IMUs incorporating FL gyros/accelerometers with orders-of-magnitude (108 upper limit) reduced ARW.



