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• In-space motors have the same components as launch 
vehicle boosters or stages

• In-space motors have had different design drivers

In-space motors are finding new roles

Thrust vs. time

≈ Neutral trace
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Space Solids experience highlights

• Inertial Upper Stage (IUS)1 – 2 solid stages 
flown out of Shuttle, Titan

• Leonidas Stg 2 & 32 – Super Strypi upper stages

• Delta II – 60+ STAR 48B launches

• Magellan – Longest in-space aging before firing, 15 mos3

• Ulysses – highest DV (4 km/s), max acceleration (11 g’s)

• New Horizons – highest final velocity leaving earth

• LADEE Minotaur V – recent 5-solids lunar launch vehicle
– 3 Peacekeeper stages, STAR 48BV, STAR 37FMV

• SFDT4 – Demonstrated offload repeatability and lots of data

• Parker Solar Probe –
STAR 48BV atop a Delta IV-Heavy – high DV mission
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When to use Solids?  When the mass fraction pro 

outweighs the Specific Impulse con
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What’s new now? 

Missions where time and shape is of the essence

• 0 impulse
– Specific impulse

• 1 burn time and dimensions

• 2 shape-limiting
– Limit Q or g: approximate regressive trace

– Scaling a catalog design

• 3 variation sensitive

DV, 

impulse 

estimate

Detail 

design & 

analysis?
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0: Estimate Propellant Mass & Specific Impulse

• A: General target motor
– Assume typical high-performance propellant (c* contribution to Isp)

• For first iteration, fi = 0.9 and Isp = 290 s

– Expansion ratio (e) is primary driver for Isp

• propellant mass can change it, but less drastically than for fi

– Correlations:

• B: Departing from a reference motor 

Δ𝑉 = 𝐼𝑠𝑝 ln 1 +
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State of the Art

• Longer burn times 
drive innovation for 
smaller motors

– End burners possible, 
but increase fi

• Smaller motors 
 higher pressure 
easier

– “Min gage” 
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1: Burn time and dimensions

• If burn rate is limited: 
4 equations, 7 unknowns = 
2 independent variables 
– Often, case diameter and 

pressure drive 

• Burn Time

• Thrust

• Case Length

• Throat Area

• With selectable burn rate, 
one more free variable

𝑃𝑎𝑣𝑔𝐴𝑡𝑡𝑏,𝑚𝑎𝑥 = 𝑚𝑝𝑟𝑜𝑝𝑐
∗

𝐹𝑎𝑣𝑔 =
𝑚𝑝𝑟𝑜𝑝𝐼𝑠𝑝

𝑡𝑏,𝑚𝑎𝑥

𝑚𝑝𝑟𝑜𝑝 ≈ 𝑓𝑣𝜌𝑝𝑟𝑜𝑝𝜋𝐷𝑐𝑎𝑠𝑒
2

1

6
𝐷𝑐𝑎𝑠𝑒 +

1

4
𝐿𝑐𝑎𝑠𝑒 − 𝐷𝑐𝑎𝑠𝑒

𝑡𝑏,𝑚𝑎𝑥 ≈
0.8𝐷𝑐𝑎𝑠𝑒/2

ሶ𝑟𝑟𝑒𝑓
𝑃𝑎𝑣𝑔
𝑃𝑟𝑒𝑓

𝑛
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2: Design-to regressive trace

• Goal: Notional but realistic traces limiting dynamic pressure 
at separation
– 0: Set 

• mprop & Isp

– 1: Set 

• Propellant

• Case Diameter

• Throat Area

– 2: Set Fmax/Fweb

– Results in

• Pressure (max & avg)

• Thrust (max & avg)

• Burn Time

• Case Length

– Burn time and dynamic pressure or acceleration not acceptable? 
iterate

Thrust
Acceleration

Dynamic 

Pressure

Fweb

Fmax
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2: “Can I get this thrust trace in a size XXL?”
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• Assume same propellant

• 2 steps: 
– Scale to new diameter and 

propellant mass, at 
constant pressure

– Scale to new condition by 
setting throat
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3: Lander mission driven by variation

• Isp
Th
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Thrust reduces, 

ሶ𝑚, burn time stay 

the same
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Thrust & ሶ𝑚 reduce, 

burn time slightly 

increases

Thrust & ሶ𝑚 move from 

late to early, burn time 

maintains

• Burn time, due to: 
– intrinsic burn rate variation

– Propellant Mean Bulk Temperature (PMBT) 

• Propellant mass • Thrust Shape Magnitude

Thrust & ሶ𝑚 reduce, 

burn time increases: 

conserves impulse
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How does burn time affect mission performance?

3s range 

variation 

2700 m

“Physics class” 

model example:

The longer you burn, 

the further you go
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Variation Effects on Distance
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• Isp proportional to DV 

• Burn time proportional 
to range traveled; Isp
affects less

Δ𝑉 = 𝑰𝒔𝒑 ln
1

𝑚𝑝𝑟𝑜𝑝

𝑚𝑓𝑖𝑛𝑎𝑙
+ 1

Δ𝑥 = 𝒕𝒃 𝑉0 − 𝑰𝒔𝒑
𝑚𝑓𝑖𝑛𝑎𝑙

𝑚𝑝𝑟𝑜𝑝
ln

1
𝑚𝑝𝑟𝑜𝑝

𝑚𝑓𝑖𝑛𝑎𝑙
+ 1

+ 1



14

Example: Combined effect of burn rate and Isp

• Range footprint dominated by 
burn time variation (2700 m)
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Thrust shape effect on range estimation
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More thrust later instead 
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Conclusions

• For lander de-orbit missions
– Variations matter

– For planning estimates, a bit of margin on burn time variation should 
cover range variation from all sources

• For loads-driven missions like Mars ascent
– Use dimensions, pressure, and thrust to extend burn times

– Scale a desired regressive shape for other sizes
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Questions?
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