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This paper is concerned with the high Reynolds number flow over a spanwise periodic array of 
roughness elements with inter-element spacing of the order of the local boundary-layer 
thickness. While earlier work by Goldstein, Sescu, Duck and Choudhari (2010) and Goldstein, 
Sescu, Duck and Choudhari (2011) was mainly concerned with smaller roughness heights that 
produced relatively weak distortions of the downstream flow, the focus here is on extending the 
analysis to larger roughness heights and streamwise elongated planform shapes that together 
produce a qualitatively different, nonlinear behavior of the downstream wakes. The roughness 
scale flow now has a novel triple-deck structure that is somewhat different from related studies 
that have previously appeared in the literature. The resulting flow is formally nonlinear in the 
intermediate wake region, where the streamwise distance is large compared to the roughness 
dimensions but small compared to the downstream distance from the leading edge, as well as in 
the far wake region where the streamwise length scale is of the order of the downstream 
distance from the leading edge.  In contrast, the flow perturbations in both of these wake 
regions were strictly linear in the earlier work by Goldstein et al (2010, 2011). This is an 
important difference because the nonlinear wake flow in the present case provides an 
appropriate basic state for studying the secondary instability and eventual breakdown into 
turbulence. _______________________________________________________________ 
1. Introduction 
It is generally agreed that the streaks induced by 3D distributed surface roughness play an 
important role in the so called bypass transition that often occurs in linearly stable or weakly 
unstable boundary-layer flows. In fact, it is well-known that certain types of streak-like 
perturbations of linearly stable shear flows may undergo a transient algebraic growth prior to an 
eventual exponential decay (Case, 1960; Ellingson & Palm, 1975; Landahl, 1980). It is, therefore, 
important to understand the physical mechanisms related to potential disturbance growth in 
the wake flow behind the surface roughness. 

Ergin and White (2006) investigated the steady and unsteady disturbances generated by a 
spanwise array of cylindrical roughness elements in the context of transient algebraic growth. 
They found that the steady disturbance energy decreases rapidly just behind the roughness 
element with transient growth occurring further downstream.  But transition to turbulence 
resulting from rapid exponential growth of secondary instabilities only occurred for larger 
roughness Reynolds numbers. They concluded that the transition behind the roughness 
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elements can be viewed as a competition between the unsteady secondary disturbance growth 
and the relatively fast relaxation of the basic steady flow toward a spanwise uniform Blasius 
flow. Rapid transition occurs when the steady disturbance generated by the roughness element 
is large because the unsteady secondary instabilities are then able to reach transitional 
amplitudes before the steady disturbance induced by the roughness elements relaxes to a stable 
state.    

 Algebraic or non-modal growth is believed to arise from the “lift-up” effect associated with 
spanwise varying displacement of a 2D shear flow (Stuart, 1965; Case, 1960; Landahl, 1980). This 
phenomenon is typically found to take place over streamwise length scales that are comparable 
to the downstream distance from the leading edge (e.g., Andersson et al.,1999), but  Goldstein, 
Sescu, Duck and Choudhari (2011, hereafter referred to as GSDC-2), showed that a purely 
transcendental (algebraic/logarithmic) growth can occur on a much shorter streamwise length 
scale that is large compared to the roughness elements themselves,  but small compared to the 
distance from the leading edge. Non-modal growth over the longer streamwise length scale is 
best characterized as transient growth since the disturbance eventually decays on the same 
scale.  

 Experiments by Fransson et al. (2004) have shown that steady (and stable) laminar streaks are 
capable of delaying transition by decreasing or eliminating the growth of Tollmien–Schlichting 
(T-S) waves without introducing streak instabilities. Fransson et al. (2004) also found that the 
stabilization of T-S disturbances increases with increasing streak amplitude for a prescribed 
spanwise periodicity of the streaks. They were able to obtain steady streak amplitudes of up to 
12% of the free stream velocity using roughness elements with circular planform, while Fransson 
and Talamelli (2012) were recently able to use vortex generators to generate stable streaks of 
even larger amplitudes.  

GSDC-2 and Goldstein, Sescu, Duck and Choudhari (2010, hereafter referred to as GSDC-1) 
obtained  an asymptotic high-Reynolds-number solution for the flow over a spanwise periodic 
array of relatively small roughness elements whose spanwise separation and plan form 

dimensions are of the order of the local boundary-layer thickness * . They showed that the 
local flow in the vicinity of the roughness has a double layer structure that is the same as in 
Choudhari and Duck (1996).  But this result becomes invalid over downstream distances 

comparable to the distance, say 0x , from the leading edge. Non-parallel effects come into play 

in this region and the flow is governed by the Boundary Region Equations (BRE) of Kemp (1951). 
The numerical results show that the wake velocity perturbations exhibit transient growth in the 
BRE region, but the flow perturbations always remained linear in this region even when the flow 
is nonlinear in the vicinity of the roughness elements. The earlier studies (Stuart, 1965; Case, 
1960; Landahl,1980) only considered exactly parallel base flows with inviscid streaks that 
exhibited purely  temporal growth and were completely independent of the streamwise 
coordinate. Case (1960), for example, analyzed the initial value problem for small amplitude 
disturbances on linearly stable parallel shear flows and showed that certain types of streak-like 
perturbations can grow algebraically in time before exhibiting exponential decay. 

Calculations presented in GSDC-1 and GSDC-2 suggest that the roughness elements with the  
largest roughness heights produced flows that develop recirculating flows immediately 
downstream of the roughness elements which are likely to break down and initiate vortex 

shedding before the streak amplitudes can become large enough to produce  1O  changes in the 

downstream flow. But (as shown in section 7, below) the breakdown of the recirculating flow can 
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be made to occur at larger roughness heights by increasing the aspect ratio of the roughness 
elements (i.e., making them more elongated in the streamwise direction) and therefore 
decreasing the slope of their downstream surfaces. The elongated elements can also provide a 
better representation of the vortex generators used by Fransson and Talamelli (2012) and the 
roughness element shapes used by Downs and Fransson (2014). 

 

A major purpose of the present paper is to show that streamwise elongated roughness elements 
can lead to a more interesting flow regime involving stationary streaks with relatively large, i.e., 
nonlinear amplitudes in the downstream region. The analysis is again based on an asymptotic 
high Reynolds number solution for the flow over a spanwise periodic array of relatively small 
roughness elements whose spanwise separation is of the order of the local boundary-layer 

thickness *  (Figure 1). But in order to maximize the strength of the downstream wakes while 
maintaining a steady flow by delaying the potential breakdown of the flow in the immediate 
vicinity of the roughness elements, the focus is now on roughness elements with streamwise 
length scales of the order of the triple-deck length scale.  The increased streamwise scale causes 
the roughness scale flow to become interactive even though it is only slightly longer that than 

the  O   length scale considered in GSDC-1 and GSDC-2. More important, the resulting 

intermediate scale flow and therefore the BRE flow further downstream is now formally 
nonlinear at lowest order of approximation. It is worth noting that in the related but somewhat 
different context of a single roughness element in a hypersonic boundary layer, Ruban and 
Kravtsova (2013) have shown that a fully interactive high-Reynolds-number flow can remain 
nonlinear asymptotically far downstream in the viscous wake region when the roughness height 
is sufficiently large.  

Downs and Fransson (2014) used a spanwise periodic array of streamwise elongated (i.e., rib- 
like) roughness elements to study the effect of their wakes on the amplification of T-S waves—
presumably because the longer streamwise length scales allowed them to obtain larger 
amplitude steady wakes.  These rib-like roughness elements had hemispherical caps and hence 
involved two disparate length scales corresponding to the roughness element tips and the 
roughness mid-region, respectively.  The present paper is quite germane to this experiment, 
even though it only considers roughness elements with a single streamwise length scale over 
the entire extent of the element. It is also worth mentioning that the motivation for the Downs 
and Fransson (2014) experiment was the stabilization of Tollmien-Schlichting waves while that 
the present work may be more relevant to the study of secondary instability. 

The solution for the roughness wake flow (which exhibits transient growth) is now governed by 
the nonlinear form of the BRE at the lowest order of approximation, and can, therefore, provide 
an appropriate base flow for studying the secondary instability and the eventual breakdown into 
turbulence that was noted by Ergin & White (2006). But, the second-order term in the BRE 
solution, which is O(R-1/8) relative to the zeroth order solution and formally corresponds to the 
linear solution given in GSDC-2, turns out to be much larger than the leading order nonlinear 
contribution at the start of the BRE region  (at least at the finite Reynolds numbers relevant to 
the experiments). The second order term can, therefore, not be entirely neglected even though 
its amplitude decreases with increasing downstream distance while the nonlinear term 
undergoes transient growth and eventually becomes dominant. Another advantage of the 
present scaling is that it increases the maximum allowable roughness height to the order of the 
triple-deck height. The nearfield flow behind the streamwise elongated roughness elements 
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considered in this paper directly matches onto the outer BRE flow and therefore possesses a 

much simpler asymptotic structure than the shorter roughness planforms with an  1O  aspect 

ratio that were considered in GSDC-1 and GSDC-2.   

The relevant problem for the streamwise elongated roughness elements is formulated in section 
2 and the local solution for the flow in the main boundary layer is considered in section 3. As 
usual, the main-deck solution becomes invalid near the wall and the appropriate equations for 
the wall region are derived in section 4. The resulting triple-deck structure is rather novel in that 
it is a hybrid between the fully interactive and compensation regimes-which seems to be 
somewhat different from what previously appeared in the literature (e.g. Bogolepov & Lipatov, 
1985; Duck & Burggraf, 1986; Bogolepov, 1987; Bogolepov, 1988). Its numerical solution is 
discussed in subsection 4.2. Section 5 considerers the asymptotic behavior of the roughness 
scale solution at large downstream distances and shows that this solution eventually becomes 

invalid at a downstream distance on the order of the streamwise length scale 0x .  A new outer-

scale solution that matches onto the inner roughness scale solution is discussed in section 6. Its 
numerical solution is discussed in subsection 6.4 and the results and conclusions are presented 
in Section 7 where it is shown that the true asymptotic behavior of the wall-layer solution can 
only be found by considering the fully nonlinear roughness scale solution, no matter how small 

the roughness height h  may be. It is also shown that the roughness elements can have a 
circular planform at moderate Reynolds numbers when their scaled streamwise length is only 
slightly smaller than their scaled spanwise length. The present results are therefore expected to 
be directly applicable to many of the previously reported experimental roughness studies 
involving roughness element plan forms with an O(1) aspect ratio. The analysis can even be 
applied to the stable flows produced by the miniature vortex generators studied by Siconolfi, 
Camarri & Fransson (2015) (see also, Fransson and Talamelli, 2012), but results are only 
presented for smooth roughness elements in section 7. Some concluding remarks are given in 
section 8. The short roughness problem is revisited in Appendix C where it is shown that the 
present long streamwise length scale solution is also needed in order to extend the short 
streamwise length scale solutions of GSDC-1 and GSDC-1 into the fully non-linear intermediate 
scale regime. 

2. Formulation and Scaling 
 
Our interest here is in studying the transient growth of the wakes behind a linear array of 
roughness element, which usually occurs in a region where their spanwise length scale is of the 
order of the local boundary layer thickness (e.g., Ergin and White, 2006) and (as will be shown 
below) the flow is governed by the BRE.  We, therefore, consider an incompressible flat-plate 
boundary layer that is perturbed by a spanwise- periodic linear array of roughness elements at 

some downstream location, say 0x x  , where the boundary layer thickness is large 

compared to the roughness height, and suppose that the spanwise wavelength of the array, say 

2 l   , where l  is an  1O  constant, is comparable to the local value of the boundary-layer 

thickness
*

0 0
/ x R x

 
     (or equivalently, the similarity length scale) at 0xwhere 

0 /x UR


   is the Reynolds number based on 
0

x  and the free stream velocity U , with 
  

being the kinematic viscosity and 1/2 1R  being the scaled boundary layer thickness at 0x

.  
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(Note that we have omitted the star superscript on U  even though it denotes a dimensional 

quantity.) Then, in order to maximize the wake perturbation at the  0O x  downstream 

distances where (as shown in section 6 below) the streamwise ellipticity effects decay out and 
the motion is governed by the BRE, we require that the height of the roughness elements be as 
large as possible (as was done in in GSDC-1 and GSDC-2).  But we now allow their streamwise 

length scale to be much larger than their spanwise length scale
*   (but small compared to

0
x ) 

in order to minimize the recirculating flow, and thereby insure that the flow remains steady. The 
roughness scale flow will now match directly onto the outer BRE solution (and therefore-as 
noted in the introduction and as can be seen from Appendix C below-result in a much simpler 
asymptotic flow structure than that of the short-roughness-element flows considered in GSDC-1 

and GSDC-2) if we take this longer streamwise length scale to be of the order of 3

0x  where
1/8 1/4 1R    . (Notice that   is now defined differently than in GSCD-2.) 

The velocity components  , , ,ru X y z    , , , , ,r rv X y z w X y z  satisfy the no-slip boundary 

condition  

                                          , , , , , , 0r r ru X y z v X y z w X y z                                  (2.1) 

at the wall, where 

                                                    ,ry hF X z                                                                      (2.2) 

is the roughness height,  / ,  /z z y y      ,   3

0 0
/X x x x  

    and, as usual, the fluid 

velocity                                

                                                           , ,u v wv =                                                                      (2.3) 

and pressure p  are normalized by U  and  2U   respectively with  being the fluid density.  
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b)  
 
Figure1. Boundary-layer flow structure, a) side view, b) cross sectional view   

 
The scaled roughness shape function  

  

                                      , 0   F X z as X                                   (2.4) 

is assumed to be more or less localized (see equations (7.1)and 
Error! Reference source not found. below) in the streamwise direction and we require that   

                                          , , 0,  as p X y z X                                                          (2.5) 

and  

                                 , , ,    as B Bu X y z U y v V y X                                         (2.6) 

where   

                                           4/ ,  as 0B BU dF dy y O y y                                                  (2.7) 

and BV denote the streamwise and transverse components of the  Blasius velocity with the 

Blasius function BF  is determined by  

                                       
3 2

3 2

1
0

2

B B
B

d F d F
F

dy dy
                                  (2.8) 

with / 0  0,  / 1  B B BF dF dy at y dF dy at y      and 0.33206  , since y  is equal to 

the Blasius variable at 0x x  . 

  The present scaling is compared with the GSDC-1/GSCD-2 scaling in Table 1. 
 

 Roughness length Roughness height Roughness width 

GSDC-1, GSCD-2 δ   1 6δ /R  δ   

Present paper 1 8δ /R   1 8δ /R   δ  
 
           Table 1 Comparison of the present scaling with the GSDC-1/GSCD-2 scaling (Actual 
physical lengths are equal to order one constants times the scale factors.) 
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3. Asymptotic Structure of Near-Field Solution and Governing Equations: 
 
3.1 Main boundary layer 
 As will become clear subsequently, it is appropriate to divide the boundary-layer flow into an 
inner streamwise region in the vicinity of the roughness elements (referred to herein as the near 
field of the roughness array) and an outer region (referred to here as the far field) that lies 

further downstream (see Figure 1a). In the main boundary layer, where  1y O and the 

upstream velocity is large, the near field solution can be linearized and should, therefore, 
expand like      

      

          

           

0 0

12 2

1 1 1 0 1

, , , ,0,0,0 + , , , ,

+ , , , , , ,  , , , , , , ....

Bu v w p U u X y v X y P X

u X y z v X y z w X y z p X y p X y z

   

      

   (3.1)
 

As will be shown below the two-dimensional εO  terms are produced the two-dimensional 

distortion generated by nonlinear interactions in the wall layer (and would, therefore, be absent 

if the scaled roughness height were infinitesimally small). Substituting (3.1) into the 

incompressible Navier Stokes equations shows that these terms exhibit a triple-deck structure 

and are determined by the two-dimensional triple –deck equations  

                                  
 

0 0,     ,  B B

dA X
u U y A X v U y

dX
                                (3.2)                

                               

                                 
   2

2

/1 dP X dXd A X
dX

dX X X





 
                                    (3.3) 

with the latter equation coming flow in the upper deck. But the smaller three dimensional 

 2O   perturbations 1 1 1 1 1, , , ,u v w P p are now governed by the inhomogeneous linearized 

Euler equations  

  

                                        
   1 2
0 2

2

,
B

p X y d A
U

y dX





                                               (3.4) 

  

                                                    1 1 1 0
u v w

X y z

  
  

  
                                                       (3.5) 

 

                       
2

21
1

1 /

2

B
B B B

B

u dA d dU dy dP
U y vU U

X dX dy U dX

 
   

   
                           (3.6) 

and  
 

                      
2

1 1

2

B
B B

v p dU d A dA dA
U U A

X y dy dX dX dX

 
    

   
                                            (3.7) 
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where the prime on the Blasius velocity BU  denotes differentiation with respect to y .  

We now introduce the decomposition 
                         

                                          1 1 1 1 1 1 1 1 1, , , , , ,u v p u v p u v p                                                     (3.8) 

of the flow into its spanwise mean components (denoted by the over bars)  and its  spanwise-
varying components with a zero mean and rewrite these equations in the following form  

                                         
2 2

1 1 1

2 2

/
2 0.B

B

p p dU dy p

y z U y

    
  

  
                                        (3.9) 

  

                                  
2

1 1

2

/B
B

B

u dU dy p
U y

X U y

  
 

  
                                            (3.10) 

                                  

                              1 1 1 1,    B B

v p w p
U U

X y X z

     
   

   
                                        (3.11)                    

 

  

                                        
1 1,    ,u v

y X

 
  
 

                                                     (3.12) 

                                                                                                                              

                            
22 2 2

1

2 2

/

2

B
B

p d dU dy d A dA
U A

y dX dX dX

  
     

    

                                   (3.13) 

 
where we have put 
 

        

     
   

 

1 22 2

0

2

1 1 1

                                                                          
2

y

B

B

B

U y A X P X dy
U y yy

A XdU

dy

   
      

    





            (3.14) 

 Notice that the present scaling is different from that in GSDC-2 and that the  2O   pressure is 

now independent of z . It, therefore, only affects the spanwise mean velocity 1u   and does not 

contribute to the equation (3.10) for the spanwise variable velocity 1u  which causes it to differ 

from equation (3.3) of GSDC-2.   

Equation(3.3) implies that the Fourier transforms     

                                          0, , ikXP X A X A P k A k e dk





                                 (3.15) 
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of the  zeroth-order pressure and displacement perturbations     0,P X A X A  (where 0A  

is an arbitrary constant) are related by  
 

                                                       
2 2 20k P k A 

                           
                                (3.16) 

where 
2 20 0 0k k i k i     with the branch cut for 0k i  taken  along the negative/ 

positive imaginary axis. Since the flow is assumed to be periodic in the spanwise direction, it 
follows from equation (3.9) that the spanwise variable pressure must possess the Fourier 
expansion  

                                                  1

1

/

 0

, ,
nn

n
inz l

n
n

P Xp X y z y e





                          (3.17) 

in terms of the solution  n y  to the unit boundary value problem  

                          

                  
 

2

2

2

1
0,   1, 2,.......n

B n

B

d d n
U y n

dy U y dy l

  
        
  

                        (3.18) 

  

                                 0 1,   0  as ,n n y y                                                            (3.19) 

for the nth Fourier harmonic of the main deck pressure (which is now simpler than the boundary 

value problem (3.9) and (3.10) of GSDC-2). The spanwise Fourier coefficients    1

n
P X

 
of the 

limiting surface pressure distribution are given by  
  

                                           1

1 1

/

 0

, ,0, .
n

n
inz l

n
n

P XP X z p X z e





                                 (3.20) 

Then since 0y   is a regular singular point of(3.18), it follows from (3.19) and the method of 

Frobenius that the solution of (3.18)  behaves like 

                         
2

2 3 41
, 1 ,   as 0

2 3!

n

n

n b
y k y y O y y

l


     

 
                          (3.21) 

where nb  is a constant. And it, then follows from(2.7),(3.2)(3.10),(3.11),(3.20) and (3.21) that 

 

                                                   0 ,        as 0u A X y                                                 (3.22) 

    

                       
   2 2

1 1

2 2

, , ,1
  ,   as 0

u X y z P X z
y

X y z

 
 

  
                                (3.23) 

  
 and 
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   1 1, , ,1

,   as 0.
w X y z P X z

y
X y z

 
 

  
                                                  (3.24) 

 
4. Wall Layer/ Inner:  

4.1 formulation and scaling 

The cross flow velocity 1w has a critical layer singularity as 0y  which causes the expansion 

(3.1) to break down when 
                                                

                                                                 ˆ / 1 ,Y y O                                                      (4.1) 

and it is therefore necessary to obtain a new solution in this region, which brings in viscous and 
nonparallel flow effects (see figure 1a). Equations (3.1), (3.2), (3.12)-(3.14), (3.23) and (3.24)  
show that the solution in this critical layer region where the upstream velocity is small  (which 
we refer to here as the wall layer) is nonlinear and must expand like (see Choudhari and Duck, 
1996)                                 

                            2 3

1, , , , , , ,  +..... u v w p U V W P X P X z                                (4.2) 

where  P X  is the leading order spanwise invariant pressure perturbation that appears in the 

main deck expansion (3.1) and the spanwise variable component  1 ,P X z of the lower deck 

pressure is related to the second order main deck pressure  1 ,0,p X z by (3.20).  

The Prandtl Transformation  
      

                                                       ˆ ,Y Y hF X z                                                                 (4.3) 

  

                                                    X zV V h F U FW                                                          (4.4) 

can be used to express the leading order solution  2

1, , ,U V W P P   in terms of the solution  

to the three-dimensional boundary-layer equations 

                                               0Y zXU WV                                                                            (4.5)  

                                   /
Y YYX zUU WU X dXVU dP U                                           (4.6) 

       

                                      
1

, /
Y YYX z

UW WW X z zVW P W                                            (4.7) 

subject to the boundary conditions 
  

                                      0    at 0U V W Y                                                                      (4.8) 
  
                                    ;  , 0,   as U Y V W x                                                         (4.9) 

and the matching conditions 

                   
 2 †

2

,1
, ,     as ,   

P X z
U Y A X hF X z Y

Y z


                 

   (4.10) 
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 

 
2 †

12

,
,

P X z
P X z

X


 


                                                            (4.11)  

                              
 1 ,1

    as 
P X zW

Y
X Y z


  

  
                                  (4.12)   

where we have used equations (2.7),(3.1), (3.22)-(3.24), (4.1)-(4.3), (3.22)-(3.24) to obtain the 
latter conditions. 

 It should be noted that  the spanwise mean and spanwise variable components of the pressure,

 P X  and  1 ,P X z respectively, are not externally imposed in this case  but are determined as 

part of the viscous-inviscid interactive solution --with the novel feature being that  1 ,P X z

satisfies  the zero displacement requirement implied by (4.10) while   P X
 
is related to the 

mean boundary layer displacement  A X  in the usual way by  (3.3).  This is different from the 

more conventional boundary value problem (3.19)-(3.24) of GSDC-2 which involves the single 
(internally determined) pressure variable P  . 

4.2 The numerical solution   

The numerical scheme for treating (4.5)-(4.6) was an adaptation of the spectral method of Duck   

& Burggraf (1986). Differentiating (4.6) with respect to Y  and invoking the continuity equation 

(4.5) yields                   

              
 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,
X

YY X z X X Y Y z zY W U U V V W U W R                            (4.13) 

where we have writtenU Y  U  and set 

                                                                    ˆ Y  U                              (4.14) 

so that the  hat and script variables are zero in the case of undisturbed flow and satisfy the 
transverse boundary conditions  

                            ˆ, ,  0   as ,   A X hF X z Y     U               (4.15) 

                                    ˆ0,  = /   at 0,   Y dP dX Y U =                                                 (4.16) 

Correspondingly we write (4.7) in the form 

                                   
   1

.z

z

YY X X Y zW YW W VW WW RP    U                              (4.17) 

where W  satisfies the obvious homogeneous boundary conditions at 0Y  and Y®¥ . 

It is natural to use a spectral method in the spanwise direction z  since the flow is periodic in 

that direction, but we also use a spectral method in the streamwise direction  X  and, 

therefore, Fourier decompose the solution in those directions to obtain  

                                /

1 1
ˆ, , , , , , , .

ninz ikX

n n n n

n

W P F e e dk 







  U U W P F                 (4.18) 
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  The Fourier transforms of the momentum equations, (4.13),(4.14) and (4.17) can then be 

written in the following symbolic form, for each choice of k and n :  

                                             
/

X

nYY n n nik Y i n l     W R                                                (4.19) 

                       

                                                1
/

z

nYY n n nik Y i n l  W W P R                                               (4.20) 

where 
 X

nR and
 z
nR  represent the double spectral decompositions of  X

R and  z
R

respectively and it follows from(4.16), (4.15) and (3.16) that n  satisfies the following 

conditions 

                                    2 2 2

,0

0

F 0 /n n ndY h P k k



                                       (4.21) 

                                                   ,0 ,  for  0nY nik P Y                                                             (4.22) 

where ,i j  denotes the Kronecker Delta and  P k  is defined by (3.15). Note that some of the 

integration contours in(4.18) have to be deformed in the manner described in section 5 below 
because some of the quantities on the left hand side become unbounded as X  and that  

(4.15) implies that 0 as  n Y   .  

 Second-order finite differencing was employed in the Y -direction in conjunction with a non-
uniform grid that concentrated grid points close to 0Y   and also extended the grid to 
relatively large values inY  in order to capture the algebraic decay as Y®¥ . Generally we 

used the transformation  1 1/ 1Y Y Y  with a uniform grid in
1

Y . 

In Duck& Burggraf (1986) the nonlinear contributions to the momentum equations were 
evaluated using a pseudo-spectral approach, using fast Fourier transform (FFT) algorithms to 
switch  between physical and spectral space (taking advantage of the associated speedup in 
computation). However, although an FFT procedure was implemented, a convolution procedure 
to evaluate the nonlinear terms was preferred. The reason for this was that the far downstream 

 X   behavior of the solution is of particular interest in this study. While some of the 

integrals in (4.18) have to be interpreted as contour integrals because their integrands become 

singular as 0k only integrable singularities appeared in the integrals used in the 
computations and the integrations could be carried out along the real axis. But this still required 

the use of an extremely fine spectral resolution in k -space in order to perform accurate 
computations of the downstream asymptotes. Consequently, a non-uniform grid was again 

taken, specifically,
2

1 1(1 ( ) )k k exp k   , which had the effect of concentrating points close to 

0k   when a uniform grid in 1k  space was taken. Needless to say, extensive numerical grid 

studies were undertaken in order to confirm the accuracy/integrity of our computations. The 
Hermitian property of the transform variables was also exploited. The downside is that this 
renders the overall system inconvenient for FFT procedures.  An iterative approach which first  

considered all k  points and then all n  terms in turn, was repeatedly used , until the required 
level of tolerance had been achieved. 
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5. Asymptotic structure of near field solution at large downstream distances   

When  X ®¥ , the  second order surface pressure  1 ,P X z  is expected to decay like 

 1/3ln /X X
 

  (see GSDC-1 and GSDC-2)  which means that the  first-order displacement must 

grow like    0 11/3ln /X X
  

 in order to balance the nonlinear terms (see analysis in Appendix 

A) , i.e.,   

                               
 01/3 1

0
ˆ ln / / /A X A A X X


    

 
                                           (5.1)                    

and 

                                     
 

 

1/3

1

ln /
ˆ, 0,  as .

/

X
P X z p z X

X





 
  


                              (5.2) 

where 0
ˆ, , ,A     are constants (see GSDC-1 and GSDC-2) and we have introduced the  ˆ 0,p z

term in anticipation of  the  ˆ 0,p z term that appears in the downstream asymptote of the  

main-deck solution.  It then follows from (3.17) and (3.20) that the spanwise-variable pressure in 
the main deck has the downstream asymptote given by  

                         
1/3

1
ˆ, , , ln / / /   as ,p X y z p y z X X X

     
 

                      (5.3) 

where 

                                   /

0

ˆ , .n n

n
inz l

n
n

p y z y A e





                                                     (5.4) 

Substituting the expansion (3.21)  for the near wall behavior of the unit solutions n  into (5.4)

yields 

                                  

   
2

2 3 /

0

1
1

2
ˆ ,

n

inz l
n

n
n

n
O A

l
yp y z y e






 
 

  
  

                           (5.5)
  

as 0.y   

Page 13 of 49



14 
 

 

                                 Figure 2 Integration contour for (5.6) with 0X    
 

Deforming the integral (3.15) onto the contour C  shown in figure 2 and inserting the pressure- 
displacement relation (3.16) yields  

  

                                     2 2, / 0,1 iX

C

P X A X A e d                        (5.6) 

It then follows from equations 6.1.4 and 6.1.17 of Abramowitz and Stegun (1965) that 
  

                                   
   

 

/2 3 /2

1

1i i

iX

C

e e
e d

iX

  

 



  
                                                       (5.7) 

and 

                      
   /2 3 /2

0 0

i i

iX

C

e e
e d

Xi i

  




  
 

   
                                       (5.8) 

  

where 1   denotes a non-integer constant, the branch cut of 
  is taken along the positive 

imaginary axis and     denotes the Gamma function. (This also follows from (3.15)and Table I 

of Lighthill, 1964.) 

Then  A X  will exhibit the asymptotic behavior (5.1) when 0  is not an integer and 0  if 

 A k   behaves like  

                  

C 

 

 

Branch cut for   

Branch cut for 
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                                            
    00 2 /2

2
  as  0

i
ae k

A k k
k

  


 


                                 (5.9) 

where a  is related to the constant Â  in (5.1) by  

                                                    0 0
ˆ 2 sin 2 1A a                                                 (5.10) 

 In which case (5.8) would show that  

                                        
    00 2 /2

  as  0
0 0

i
ae k

P k k
k i k i

  


 
  

                                        (5.11) 

 
and, therefore, that the leading order spanwise invariant pressure perturbation in the main deck 
has the downstream asymptote                      

                                                0ˆ / / ,    P X P X X


                                              (5.12) 

where                       

                              
   0 02 cos 2ˆ a

P
     




                                           (5.13) 

Aside from its scaling, the downstream flow is similar to that in GSDC-2, which shows that it is 

completely linear when   is sufficiently large and that solutions only exist when / 3,n   

for 1,2,..n  . However, GSDC-1 also showed that the wall layer equations can become 

nonlinear when  is decreased to 4/3 with 0  . And since our interest here is in maximizing 

the strength of the downstream we now choose  =4/3, 0   and set 
0

2 / 3   in order to 

match the resulting main deck solutions to the similarity wall layer solution. (It will show in 
section 7 below that this scaling is consistent with the asymptotic behavior of the numerical 
nearfield solutions for fairly generic roughness shapes.)    
 
The main-deck equations  (3.2) and (3.10)-(3.14)  then possess the exact solution 

                                                       
1/3

0
ˆ / ,Bu U y A X                                                (5.14)             

                                                   
2/3

0
ˆ / 3 / ,Bv U y A X    
 

                                    (5.15) 

                                   
2/3ˆ / /P X P X                                       (5.16) 

                             
   

 2

1 2 5/3

0

ˆ2
,

3 /
B

y

U y dy
A

p X y
X

 
 

                            (5.17) 

                                          
4/3

1
ˆ, , , / / ,p X y z p y z X                                        (5.18) 

                                           
     

 
 

2 2/3

1 2

3 /
ˆ, , , ,

2
B

B

X U y
u X y z p y z

U y y

  
  


          (5.19)                                    
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                                             
   

 
1 1/3

ˆ ,3
, , ,

/ B

p y z
v X y z

yX U y


 


                        (5.20)   

                                              
   

 
1 1/3

ˆ ,3
, , ,

/ B

p y z
w X y z

zX U y





                     (5.21) 

which can be regarded as the leading-order terms in an asymptotic expansion of the solution to 
the complete boundary-value problem. It then follows from (2.7), (3.17), (3.21), (5.1)and (5.5)
that  

                                                             
1/3

0
ˆ ,u AX                                                                (5.22)             

                                          
 

 
1 1/3

ˆ 0,3
, ,   ,

/

p z
w X y z

zX y




                                     (5.23) 

 

                             1 , ,u X y z
   

2/32 2

2

ˆ3 / 0,
,

2

X p z

zy

  



                            (5.24)      

as 0y  . 

Equation (5.16) implies that the spanwise mean pressure must drop out of the wall layer 
equations (4.5)-(4.12) when X  and the resulting equations  then an exact similarity 

solution ,which corresponds to setting λ 4 3/  in the general (4.12) of GSDC-2 and is 
therefore of the form                

                   
1/32/3 1/3

/ , ,   / , ,    / , ,W X W z U X U z V X V z


                    (5.25) 

 with the similarity variable   given by  

                                                               
1/3

/ / .Y X                                                      (5.26) 

 and  , ,U V W are determined by  

                                                  
1

0,
3

zU U V W                                                        (5.27) 

  

                       
 ˆ 0,1

2 ,
3

z

p z
U W W V WW W

z
W  


  


                          (5.28) 

 

                                    
1

,
3

zU U U V WU UU                                             (5.29) 

 
subject to the no-slip/ impermeability boundary conditions       

                                             0, 0, 0, 0.U z V z W z                                                (5.30) 

Equations (3.1), (4.2) and (5.22)- (5.25) show that these solutions will match onto the near-wall 
behavior of the main boundary-layer solution if we require that 
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                                            
 ˆ 0,3

, ,
p z

W z
z


 

 
                                                          (5.31) 

                                 

                                    
 22

2

ˆ 0,3ˆ , ,
2

p z
U z A

z


  

 
                                            (5.32) 

as  .  

Equations (5.27)-(5.29) can be simplified by introducing the variable  
 

                                       
3

V U


 V                                                                (5.33) 

to obtain 

                                                 
2

0,
3

zU W  V                                                 (5.34) 

                                    
 ˆ 0,2

,
3

z

p z
UW W WW W

z
 


     


V                               (5.35) 

                                           21
,

3
zU U WU U   V                                           (5.36) 

 And it now follows from (5.32)-(5.34) that 
 

                                 22 ˆ  ,   as  
3

A O 

     V                                       (5.37) 

while equations  (5.30), (5.34) and (5.33) show that  
 

                               0  at 0  V V                                                         (5.38) 

Using (5.34) to eliminate U  in (5.35) yields  
 

                                         
 2
ˆ 0,

,
z

p z
W W W

z



   


V                                         (5.39) 

The system (5.34)-(5.38) can be further reduced to a set of two equations in the two 

independent variables W  and V  by using (5.34) together with this result to eliminate U in 
(5.36)  to obtain  
        

               
 2

2

2

ˆ 0,3

2
z z z z

p z
W W WW W

z
   




         

V + V V V V             (5.40) 

 
However, it turns out to be more convenient for numerical purposes to solve system (5.34)
,(5.36), and (5.39) rather than (5.39)and (5.40) and the former were, therefore, used for the 
computations described in section 7 of this paper.  It is easy to construct an analytical solution 

to the boundary value problem obtained by linearizing these equations aboutU   and

21

3
  V  . We obtain the solution to the nonlinear problem by iterating about the linear 
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result since the numerical computations show that U    is quite small and, hence, the linear 

solution is expected to be a fairly accurate approximation to the solution to the nonlinear 
problem. The details are given in Appendix A and the exact solution to the linearized problem is 

given by equations (A.6),(A.10) and (A.11) with 0F G  . 

The exact homogeneous solution (5.14)-(5.21) and (5.25) does not satisfy the complete 
boundary value problem (4.5)-(4.12), but the asymptotic solution to this problem can be found 
by treating this solution as the lowest order term in an asymptotic expansion in inverse powers 

of 1/3X . For example, the spanwise variable pressure is expected to expand like 

                       
4/3 5/3

1 1
ˆ ˆ, , , / / , / / .....,p X y z p y z X p y z X                     (5.41) 

while the wall layer solution should have an expansion of the form 

           
1

2/3 1 1/3
/ , / , ....,   / ,W X W z X W z U X U z

 
           

  

                                        
1 1

1/3 2/3
, ... ,    / , / , ....,U z V X V z X V z

 
              (5.42) 

The second-order terms are important because, as will be shown in section 7 below (see figures 

8 and 11),  1
ˆ 0,p z  turns out to be much larger than  ˆ 0,p z . This implies (among other things) 

that the leading-order terms only become dominant at very large positive values of X (see 
figure 7 below). 

6. Far field solution and matching with the near field (see Figure 1a):Equation Section (Next) 

 Inserting equations (5.22) and (5.24) into the expansion (3.1) shows that the near-field solution 

breaks down when  1/3 1X O  because the  O  and  2O  terms then become of the 

same order of magnitude. It is, therefore, necessary to obtain a new expansion in the far field 
(or outer region) where 

                                                     
3

0
1,/x x Xx                                                             (6.1) 

is  1O . The flow in this (outer) region now has an expansion of the form         

           2

0, , , , , , , , , , , , , ,u v w p u x y z v x y z w x y z p x p x y z      

                     1 2

1 1 1 1, , , , , , , , , , , ......u x y z v x y z w x y z p x p x y z                 (6.2)                 

with 1/2 4R     and the lowest order solution  , , ,u v w p  being determined by  the full 

nonlinear BRE  
 

                                                        0,y zxu wv                                                                      (6.3) 

                                                ,y z yy zzxuu wuvu u u                                                         (6.4) 

                                             ,y z yy zzx yuv wvvv p v v                                               (6.5) 
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                                               ,y z yy zzx zuw wwvw p w w                                          (6.6) 

indicating that spanwise ellipticity effects must be preserved in this region.  The leading-order 
flow variables must satisfy the wall-normal boundary conditions  

                          , , 0;   for  0;   1, , 0,   as  ,u v w y u w p y                         (6.7) 

along with appropriate upstream matching conditions.  

6.1 Main boundary Layer: 

It can be verified by direct substitution that equations (6.3) to (6.6) permit a solution with an 
inner (i.e., upstream) limit of the form 

                                             
1/3 2/30 1

1 1 , ....Bu U y x u y x u y z                       (6.8) 

 

                
 

 

   

 

   
   

2/3 1/3

10

1

,1 1

1 1 ,
...

0 0

B
y zy

x x y z

vv V y v

w w 

        
          

         

         (6.9)                            

                                 1 15/3 4/3
, , / 1 , / 1 ...,p x y z P y x p y z x                        (6.10)                                  

as 1x  with  1y O
,
 where the coefficients 

       1 1 1 1
, , ,u w pv  satisfy  the linear equations 

                                                
     1 1 12

0,
3

y zu wv                                                              (6.11) 

                                       1 12

3
0,B BU y u yv U                                                      (6.12) 

                                                 
 

 

 

 

11

11

1
.

3

y

B

z

v
U y

w

p

p

     
    

      

                                        (6.13) 

Eliminating 
     1 1 1

, ,u wv between (6.11)-(6.13) shows that 
 1

p  satisfies 

                                          
     1 1 12 2

2 2
2 0,B

B

p p U p

y z U y

  
  

  
                                               (6.14) 

6.2 Matching 

It now follows from(6.1) and, (6.8)-(6.10) that the inner expansion of the outer solution as 

1x  is  

                                 0 11/3 2 2/3 , ...,Bu U y X u y X u y z                                 (6.15)              

       
      

         
     

   
   

10

2 3

2/3 1/3 1

,1 1
.......,

0 0 ,

B
v y zv V y v y

w X X w y z

        
            

         

       (6.16) 
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       1 1

2 3 4

5/3 4/3

,
  +....

P y p y z
p

X X
                                  (6.17)                            

 
Substituting (6.12) and (6.13) into the above confirms  that the result will match onto the outer 
expansion (5.14)-(5.21) of the near field solution (3.1) if  

                                      0 1/3ˆ / ,Bu y U y A                                                           (6.18) 

                              

                                                   0 1/3ˆ ˆ / 3,Byv U y A                                                        (6.19) 

  

                                                     1 2

2 1/3

0

ˆ2

3

y

B

A
P y U y dy 

                                                  (6.20) 

and  

                                                    1 4/3 ˆ, , ,p y z p y z                                                         (6.21)            

where  ˆ ,p y z is given by (5.4), since equations (3.9), (5.18), (6.10)and (6.14) show that that 

the  spanwise variable pressure    1
,p y z  satisfies the same equation and boundary conditions 

as the near field pressure p̂ .  

However, the solutions  (6.11)-(6.13) do not satisfy the correct wall boundary condition since 

equations(3.21), (5.5)-(6.13) and (6.21)  show that  1
w   as 0y  . In fact it follows from 

(5.5)and (6.21) that  

                                  
         

2 2
1 1 1

2
0, 0, .....

2

y
p p z p z

z


 


                                         (6.22) 

when    1
0,p z is non-zero, which implies that 

                                            
   1

1 0,3
,

p z
w

y z



 
                                                               (6.23) 

                         

                                         
     

2
1 1

2

3
0, ,v p z

z



 
                                                                    (6.24)                             

                               

                                           
     

2 2
1 1

2

3
0,

2
u p z

y z

 

 
                                                                (6.25) 

as 0y  .  

6.3 Wall Layer 

The lowest-order terms in the expansion (6.8) to (6.10)  satisfy inviscid equations and, therefore, 
clearly cannot satisfy the no-slip condition at the wall. This means that it is necessary to derive 
solutions in a viscous wall layer near the surface of the plate. The viscous and inertial terms will 

be of the same order of magnitude in the BRE when   2/ 1 1/ ,y x y which suggests 

introducing the similarity variable           
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 

1/3

1/3
1

y

x





                                                               (6.26) 

It then follows from the spanwise momentum equation (6.6) and the expansions (6.8) to (6.10)

that the viscous and inertial terms will balance the spanwise pressure gradient if w  is of the 
form 
 

                                                         
2/32/3 1 ,w x W z


                                                 (6.27) 

while the continuity and the streamwise momentum equations (6.3) and (6.4) then imply that u

and v  must be of the form  

                                                         2/3 1/3
ˆ1 ,  u x U z                                                (6.28) 

and 

                                                       1/31/3
ˆ 1 ,v x V z


                                                    (6.29)     

Inserting (6.27) and (6.28)  into the BRE (6.3)-(6.6) shows that  , ,U z   , ,V z  ,W z  must 

satisfy (5.27) to (5.29) subject to the boundary conditions (5.30)-(5.32) but with   now given by 

(6.26) instead of by (5.26). The outer (or far wake) wall layer solution is therefore identical to 
the asymptotic wall layer of section 5--in fact equations (2.4), (4.1), (4.3) and (6.26) show that it 
is merely the continuation of that layer into the outer region. These results imply that there is an 
overlap domain in which the far downstream asymptotic form of the near field solution matches 

onto the inner expansion of the BRE solution that satisfies (6.8) to (6.10)  as 1x in the main 
part of the boundary layer.  

Since the BRE are parabolic in the streamwise direction, equations (6.8)-(6.10) and (6.26)-(6.29) 
provide appropriate upstream boundary conditions for those equations in their appropriate 
range of validity. These conditions are best implemented numerically by solving the BRE system 
(6.3)-(6.7) subject to the uniformly valid composite upstream boundary conditions (Van Dyke, 
1975, pp. 94-96)                                                           
 

              
 

 
 

 
4/3

4/3

2

5/32 1/3
0

ˆ ,

1

ˆ2
, ,

3 1

y

B

p y z

x

A
p x y z U y dy

x 


 

 
                                  (6.30)                  

 

  

           

      

1/3 1/3 11/3

2 1/3
2/3

ˆˆ 1 1 ,

3 1
ˆ ˆ                  0, / 0, 1 tanh + ,

2 2

B B

zz yyy

u U y y x U y A x u y z

p z y p z U z

 
           



 
     

 

                   (6.31)           
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   
 

 

 

     
1/3

1/3 1/3

2
1 1/3

2

ˆ
1

1 1
ˆx, , , 3 0,
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B

B

A

x x

U y y
v y z V y v y z p z

z



 

        


  

                                                                                            1/3 ,V z


  


      (6.32) 

                                                                                                         

     
 

     
 

 
1/3

1/3 1 2/3

2/3

ˆ 0,1 3
, , 1 , , ,

1

p z
w x y z x w y z W z

y zx

   
      

    

          (6.33) 

 as 1x .  The various terms in these equations can be obtained from (6.12), (6.13) with

 , ,U z    , , ,V z W z   being obtained by solving the boundary value problem (5.34)-

(5.38) and (5.30)-(5.32) with  now given by (6.26).  We have included the higher order term 

proportional to  ˆ 0,yyyp z in the wall layer solution in order to insure that 0  at 0u y  when 

1x  is reasonably large. The  1 tanh  factor eliminates the contribution from the main 

boundary layer. 

The  O   terms in the expansion (6.2) satisfy linearized  equations and match onto the second 

terms in the expansions (5.41)and(5.42) in the limit as 1x . The relative size of the first two 

terms in (6.2) is therefore expected to be      1
ˆ ˆmax 0, / 0,O p z p z when 1x  is 

sufficiently small.  

6.4 Numerical solution 

The non-linear BRE (6.3)-(6.7) are parabolic in the streamwise x-direction and can, therefore be 
solved by a marching algorithm. The wall-normal (y-direction) and spanwise (z- direction) 
derivatives were discretized by a centered finite-difference scheme that was second order in the 
y-direction and fourth order in the z-direction. A backward finite difference scheme of first order 
of accuracy is utilized in the streamwise x-direction. The pressure and velocity fields were 
computed on separate grids that were staggered in the wall-normal y-direction, in order to 
avoid pressure-velocity decoupling that could contaminate the solution by generating spurious 
waves (Harlow & Welch, 1965). No wall boundary condition was required for the pressure 
component, while the velocity components were set to zero there (no-slip condition). Due to 
the spanwise symmetry of the flow with respect to the center of the roughness elements, we 
were able to use symmetry conditions for the pressure, streamwise and wall-normal 
components of velocity, and anti-symmetry condition for the spanwise component of velocity to 
compute the numerical solution on half of the spanwise length (representing the distance 
between the centers of two roughness elements). A relaxation algorithm, with pseudo-time 
derivatives added to the equations was used to solve the resulting system of nonlinear 
discretized equations (Jameson, 1991), which were then converged to the final solution via a 
Runge-Kutta method with appropriate preconditioning applied to the first equation (6.3) to 
avoid stability issues. 
 
The initial/upstream conditions for this solution are given by the uniformly valid composite 
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solution (6.30)-(6.33), with the similarity variables  , ,U z    , , ,V z W z   obtained by 

using the iterative procedure described in Appendix A to solve the boundary value problem 
(5.34)-(5.38) and (5.30)-(5.32). Gauss quadrature was used to approximate all integrals in 
equations (A.12)-(A.20) and a relaxation method was used to solve (A.14)  for (Young, D. M., 

1954),  , ,U z in order  to avoid approximating  the triple integrals in (A.10),which are prone 

to errors. Second order finite difference schemes were used to approximate all first order 
derivatives in equations (A.12) and (A.14) . Only three or four iterations, depending on the 
roughness element height, were needed to converge the similarity solution.

 

 

7. Results and Discussion  
The previous sections provide a theoretical description of the near field, intermediate field and 
far field flow over a spanwise periodic array of elongated roughness elements with a 
fundamental spanwise spacing of the order of the boundary-layer thickness. The numerical 
behavior of these flows will be discussed in this section and all computations will be based on 
the smooth shape function 

                                     
 

 
2

0

,
1 /

ˆ z
X z

X d

F
F 


                                       (7.1) 

where  ˆ zF is  taken to be  the compact infinitely differentiable function    
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      


 


 



         (7.2)                      

 with d l  . The coefficients in its Fourier expansion  

                                                           /ˆ
n

inz l

n

n

F z B e




                                                               (7.3) 

are then given by        
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2 2

2

0 0

/1 1ˆ cos exp
2 1
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in

n

inz lB F z dz De D n d
l

e
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     
 

  
    

  
           (7.4)            

 
where 

                                                / 1,D d l                                                                  (7.5)    

The compact infinitely differentiable shape function    

will also be discussed. These roughness shapes are amenable to future experiments which we 
hope will be inspired by this analysis. 
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Figure 3 is a plot of  F̂ z
 
vs.   /z l d  for 1/ 2D  .   

                 

       Figure 3 Spanwise shape function  F̂ z vs.   /z l d  for / 1 / 2D d l     

The roughness elements will have a circular planform when 83 6 561R ,   for a roughness 

array corresponding to the compact shape function Error! Reference source not found.with

0 3d d .  The present elongated-roughness scaling is therefore an attractive alternative to the 

short equi-dimensional planform scaling in Appendix C even for the circular shapes since the 
latter leads to a considerably more complicated analysis than the former. 

7.1 The near field solution 

    Since the near field problem has a somewhat novel asymptotic structure, it seems appropriate 
to plot some typical results for the quantities usually calculated in triple-deck papers. The wall 

shear parameter   can be scaled out of the near field triple-deck problem in the usual way and 

it follows from (4.5)-(4.12) and (7.2) that the scaled wall  pressure    1 3P X ,z /   and scaled 

wall shear YU /   can only depend on the scaled roughness shape parameters 3 4/ h , l , 

5 4

0

/ d  , D d / l ,   and 0  when considered as functions of the scaled coordinates 5 4/ X  

and z . The results are, therefore, quite universal and, in particular, apply to any flow originating 

from a two-dimensional upstream boundary layer with 1O  wall shear.  Boundary layer 

profiles with near zero wall shear are not formally governed by the present asymptotic 

structure. The largest scaled roughness height,3 4 4h / , considered in the following 
computations corresponds to an actual roughness height that lies between five and ten percent 

of the local boundary layer thickness. The unit Reynolds numbers 0R / x  would lie between 

10^5/meter and 10^6/meter for free stream speeds between 1.5 and 15 m/s in air and between 
0.1 m/s and 1 m/s in water and, with a reference location of 0.1 m to 1.0 m, would require the 
use of plate lengths of about 2 meters in the relevant experiments, which is not too 
unreasonable. The roughness spacing would lie between 1.28 mm and 0.04 mm when R  is 
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between 105    and 106 and 0 0 1x . m , and between 12.8 mm and 4 mm when R  is between 105    

and 106 and 
0 1 0x . m . 

 Figure 4, which shows the wall shear distribution along the symmetry plane /z l    of the 

roughness element, gives some indication of the local flow field for  1O values of h . The shear 

perturbation downstream of the peak roughness height at X = 0 is somewhat similar to that 
shown in Fig. 2 of GSDC-2 for roughness element planforms with an O(1) aspect ratio.  Both 
figures imply that there is a smooth retardation of the near wall flow behind the crest of the 
roughness element, followed by a local minimum in skin friction that leads to the slow recovery 
in near-wall velocities at large X.  There are, however, several noteworthy differences between 
the wall shear distributions along the center plane in these two cases.  First, there is a local (but 

not global) minimum in skin friction near 1X   which corresponds to a rather weak 
perturbation relative to the unperturbed boundary layer (less than 5 percent change) while this 
downstream minimum was also the global skin friction minimum in GSDC-2 and the skin friction 
was nearly reduced to zero for the largest roughness height investigated in that study.  
Furthermore, the skin friction minimum in figure 2 of GSDC-2 was located much farther behind 
the roughness element crest than that shown in Fig. 4-indicating that the region of flow 
deceleration is considerably shorter in the present case.  Finally, the wall shear approached the 
unperturbed wall shear monotonically for all roughness heights considered in GSDC-2, while Fig. 
4 shows that, the wall shear perturbation actually crosses over into a positive region at a finite 
wake location when h > 3  (i.e., faster near wall flow than the unperturbed boundary layer) and 
eventually approaches a constant nonzero value at the larger values of X , which is consistent 
with the continuous growth in the streamwise velocity perturbation noted in subsection7.2 
below.    

These differences in the downstream wall shear are preceded by more dramatic differences in 
the upstream region.  The upstream behavior was rather simple for the O(1) aspect ratio 
roughness elements considered in GSDC-2 and indicated that there was a slow, mild 
deceleration of the unperturbed boundary layer as it approached the roughness element 
followed by a  relatively rapid acceleration up to just upstream of the roughness element crest.  
In contrast, the wall shear distribution in Fig. 4 suggests a more complex behavior involving a 
slow deceleration followed by an acceleration to a positive wall shear perturbation, which is, in 
turn, followed by another region of deceleration that leads to a global minimum in wall shear 
ahead of the roughness element, and eventually, a rapid acceleration up to the crest of the 
roughness element at X = 0.   Another important difference between the two roughness shapes 
is related to the overall minimum in wall shear, which indicates a flow that is far from separation 

even at 1/3h = 4 while the minimum skin friction for the same roughness height would have 
been less than 20 percent of the unperturbed wall shear (in comparison with the minimum of 
nearly two thirds of the unperturbed wall shear in Fig. 4) in the GSDC-2 case.   The increased 
resistance to flow separation in the present case is consistent with the expected behavior for 
streamwise elongated roughness planforms, which provide a stronger spanwise relief for the 
flow approaching the surface obstacle.   Given the robust, positive wall shear values for all 
roughness heights shown in Fig. 4, a spontaneous onset of unsteady vortex shedding within the 
wake region (as observed by Acarlar and Smith (1987) and Klebanoff et al. (1992) for roughness 
elements with O(1) aspect ratios) is deemed to be rather unlikely for the roughness shapes 
being considered in the present paper.  
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Figure 4) Scaled wall shear distribution along the symmetry plane πz l  z of the roughness 

element for
0

1 / 2,   / 1 / 2,   2,  1d d l d       and various values of h   

Figure 5 displays the numerically computed spanwise variable component of the surface 

pressure normalized by 3 . It is similar to figure 3 of GSDC-2, but carries the computations to 

slightly higher h values. The results show the increasing effects of nonlinearity as h becomes 
large, especially along the peaks and valleys of the streamwise pressure distribution.  Although 
not shown here, the pressure perturbation decays monotonically upstream of the region plotted 
in figure 5, i.e., there is no correlation between the upstream pressure distribution and the local 

minimum and maximum in wall shear within the region X 5/4 < -5 in figure 4.  The acceleration 
of the near wall flow in between the local extrema is caused by a non-monotonic behavior in the 
spanwise pressure gradient that leads to lateral convergence of the perturbed flow within that 
region. 

                          
Figure 5 Normalized spanwise variable component of surface pressure distribution over the 

roughness elements computed from the nearfield solution for 
0

1 / 2,   / 1 / 2,   2,d d l       

1d  and various values of h   
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The scaled pressure perturbation 1p  is smaller than that for the roughness elements with O(1) 

aspect ratio planforms and the unscaled pressure perturbation is asymptotically smaller than 

the wall shear perturbation by a factor of  4ε  in the asymptotic regime of interest. Figure 4 

shows that the unscaled normalized wall shear U / Y  varies between 0.055 and 0.134 when 
510R  and between 0.04 and 0.1 when 610R ,while Figure 5 shows that normalized 

unscaled wall pressure perturbation 4

1ε 0 πp X , , l  varies between -2.71x10-4 and 1.085 x10-4  

when 510R and between -8.6 x10-5  and 3.4 x10-5 when 610R .  

7.2 Intermediate scale flow 

The intermediate scale flow (where X is large compared to the dimensions of the roughness 
elements but small compared to the downstream distance from the leading edge) is similar to 
that in GSDC-2, which shows that this flow is completely linear when the coefficient  in the 

asymptotic expansion is sufficiently large and that solutions only exist when / 3,n 

for 1,2,..n  . GSDC-1 obtained a linear solution for small h  and found that 8 / 3  and 0 

while GSDc-2 extended the analysis to second order, i.e. to  2O h , and showed that 5 / 3   

and 1    in that case, which suggests that the small- h asymptotic expansion breaks down (or 

becomes disordered) when X becomes sufficiently large. Analogous behavior is expected to 
occur in the present case. In fact, an analysis similar to that given in GSDC-2 suggests that 

 1 ,y,p X z  should expand like 

                        
   2 1/3

1 2

1 8/3 5/3

ˆ ˆ, ... ln , ...
,y, ......

hp y z h X p y z
p X z

X X

 
       (7.6) 

whenh®0  and X  : which implies that  

                      1 1
0 0

lim lim ,y, lim lim ,y,
X h h X

p X z p X z
   

                                   (7.7) 

 
The results given in GSDC-1 imply that the asymptotic wall layer flow can only become nonlinear 

when the spanwise variable component of the wall pressure decays like
4 3

1
/

/ X . Section 5 shows 
that the resulting flow still possesses a similarity solution even though it is now (at least 
formally) governed by nonlinear equations. The asymptotic behavior of spanwise mean 

displacement  A X
 
is primarily determined by the spanwise mean flow generated by the local 

nonlinear effects-which explains why the numbers are so small.  Figure 6 clearly shows that it 

exhibits the assumed asymptotic behavior (5.1)with 0 2 / 3   and 0   as postulated in 

section 5 (in the paragraph below(5.13)).  
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a)                                                                                       b)    

Figure 6 a)  A X  vs.  b)    
1/3

/ /A X X   vs.  computed from the near field solution for 

and h=3, 3.5 and 4   

Figure 7, which is a plot of   
4/3

1 ,0, /p X z X   in the range 
5/4

1000 3500X    and 

  
5/3

1 ,0, /p X z X   in the range 
5/4

50 400X   ,  with z l   shows that the spanwise 

variable wall pressure eventually decays like 4/3X   when X  becomes very large and that it 

exhibits the 5/3X   decay found in GSDC-2 at moderately large values of X . This verifies that 

 1 ,0,zp X exhibits the limiting behavior identified in  (5.41) with    1
ˆ ˆ0, 0,p z p z .  

It should be noted that only the spanwise variable component  1 ,0,p X z  of the wall pressure 

contributes to the asymptotic wall layer flow, even though the corresponding spanwise mean 

component  P X of the pressure decays more slowly than the former. The intermediate scale 

wall layer flow, therefore becomes relatively  generic at very large values of X  and only 

depends on the near field flow in the vicinity of the roughness through the coefficient  ˆ 0,p z  of 

the first term  in the asymptotic expansion (5.41) of the spanwise variable component of the 

surface pressure    1 1, ,0,P X z p X z .  

 

X X

0 1/ 2,   / 1/ 2,   2,  1d d l d     
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                    a) 

 
                     b) 

Figure 7 Scaled surface pressure    3 3

1 1,0,z / ,z /p X P X     vs. 
5/4

X   computed from 

the near field solution directly behind the roughness element for 3 4λ / h  =3, 3.5 and 4 and

0 1/ 2,  / 1/ 2,  =2, =1d d l d     a)   5/3 3

1 ,z /P X X   in the range
5/4

50 400X   , b) 

  4/3 3

1 ,z /P X X   in the range 
5/4

1000 3500X    

The computations shown in this sub-section were  very challenging numerically and required   
great care because i) the asymptotic (far downstream) growth of the dependent variables 

corresponds to a singular behavior of their Fourier transforms as 0k   and ii) because, as 
shown in figure 7, the final downstream asymptotic state is only achieved at very large 

downstream distances (even when h   is fairly large) while the magnitude of the leading-order 

coefficient  ˆ ,p y z  of the asymptotic pressure expansion (5.41) turns out to be exceedingly 

small relative to the coefficient  1
ˆ ,p y z  of the second-order term.  

The iterative solution constructed in Appendix A shows that the similarity solution will exist even 

when the coefficient  ˆ 0,p z  of 4 31 // X  in the asymptotic expansion of spanwise variable 

component of the surface pressure becomes arbitrarily small and the intermediate scale flow 
becomes linear. This suggests that the spanwise variable pressure will exhibit this 4/3 decay rate 

even when 0h , which again implies that the inequality (7.7)  should hold. This leads to the 
rather surprising conclusion that the true asymptotic behavior of the wall layer solution can only 
be found by considering the full nonlinear near-field solution no matter how small the 

roughness height h  may be. This is, of course, distinctly different from the near field roughness 
scale nonlinearity considered in GSDC-2.  

There are, therefore, two types of linearization that can be used to simplify the asymptotic 
solution of the nonlinear wall layer equations (4.5)-(4.7). The first is a linearization of the near 

field solution obtained by expanding in powers of h  and the second is a linearization of the 

intermediate scale solution with  1h O . Unfortunately there does not appear to be any 

natural expansion parameter and therefore no formal asymptotic limit associated with this 
latter linearization. However, we capitalize on this linearization in Appendix A to construct a 
rapidly convergent iterative solution to the fully nonlinear equations(5.34), (5.36) and(5.39).  
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Figure 8 is a plot of the lowest order scaled asymptotic surface pressure coefficient  ˆ 0,p z  in 

the asymptotic pressure expansion(5.41). It shows that the highest pressures directly behind the 

roughness element ( z =  l ) and, as expected, that it increases in magnitude with increasing .h   

                          

Figure 8 Scaled asymptotic surface pressure coefficient  ˆ 0,p z  vs z  computed from the 

nearfield solution for  0 1/ 2, / 1/ 2, 2, 1d d l d       3/4 3,3.5,4h    

Equations (5.25) and (5.26) show that the ratio 

                          
   , , ,

,  
U X Y z Y U z

Y

  

 

 
                                                    (7.8) 

of the maximum distortion velocity U Y  to the local undisturbed velocity at max    where 

                       max max, , 0 ;  constant U z Max U z z                      (7.9) 

does not actually grow in magnitude as X   but merely moves up into a higher velocity 
region. In other words, the distortion velocity does not increase relative to the local mean flow 

velocity in the intermediate scale (overlap) region. It does, however increase like 
1/3X  relative 

to the free stream velocity even though this only occurs because the
1/3X increase in wall layer 

thickness causes distortion to move up into a higher undisturbed velocity region. So in this sense 
the distortion does not actually grow but merely persists over long streamwise distances until 
the action of viscosity in the BRE region causes it to decay on the long streamwise length scale. 

It does, however increase like 
1/3X  relative to the free stream velocity. This is in contrast to the 

linear wake distortions considered in GSDC-1 and GSDC-2 which decay relative to the local mean 
flow. 

Figure 9 is a plot of the streamwise distortion  ,U z   vs   computed from the similarity 

solution at various values of z  with  ˆ 0,p z  calculated from the near field solution.  
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a) 3/4 3h                                                                   b)         3/4 4h   

Figure 9 Streamwise distortion  ,U z   vs   computed from the similarity solution with 

 ˆ 0,p z determined from the near field solution with 0 1/ 2,   / 1/ 2,   2,  1d d l d        

The corresponding level surfaces of  ,U z   are plotted against z in Figure 10.  

        

a) 3/4 3h                                                                      b) 3/4 4h   

Figure 10 level surfaces of  ,U z   as a function of z with  ˆ 0,p z  determined from the 

nearfield solution with 0 1/ 2,   / 1/ 2,   2,  1d d l d        
 
These figures show that the intermediate scale similarity solution(5.25) has a streak-like 
structure which is presumably due to a horseshoe vortex system at the leading edge. But the 
true nature of the downstream distortion can only be assessed by considering the flow in the 
longer outer region where the wall layer fills the entire boundary layer.  
7.3 Far field solution 

The flow in this region, where the normalized streamwise coordinate  1 1x O  , is governed 

by the nonlinear BREs discussed in section 6. The relevant solution is obtained by using the 

Page 31 of 49



32 
 

numerically computed wall pressure coefficients  ˆ 0,p z  and  1
ˆ 0,p z  in the intermediate scale 

expansion (5.41)to calculate the upstream boundary conditions for the boundary region 

equations that describe the flow on the long streamwise length scale 1x  . The solutions are, 
therefore, less universal than the near field solutions discussed in the previous subsection, but 
the analysis can be extended to any flow originating from a two-dimensional upstream 
boundary layer by inserting the appropriate, externally determined streamwise pressure 
gradient term in the streamwise momentum equation(6.4). 

Figure 11 is a plot of the second-order (linear) surface pressure coefficient  1
ˆ 0,p z determined 

from the best fit of the full two term expansion (5.41) to the numerically computed . 

The figure shows that it increases fairly rapidly with increasing h . Comparison with figure 8 

shows that  1
ˆ 0,p z is about an order of magnitude larger than the nonlinear coefficient 

 ˆ 0,p z even for the relatively large roughness heights considered in this paper --which means 

that, as noted at the end of section 6, the second term  in the outer BRE expansion (6.2), which 
satisfies linearized equations, will be larger than the first when x  is close to 1 and the Reynolds 
number is not too large. But, as shown below, the second term either remains constant or 
decays while the nonlinear term initially exhibits spatial growth and therefore becomes 
dominant over the long outer length scale on which the transient growth occurs. The figure also 
shows that the pressure maximum is no longer directly behind the roughness elements.  

                           

Figure 11 Plot of  1
ˆ 0,p z vs. z   determined from the best fit of the full two term expansion 

(5.41) to the numerically computed  for 0 1/ 2,   / 1/ 2,   2,  1d d l d       an d 

h=2, 3, 3.5 and 4  

The nonlinear scale factor  ˆ 0,p z
 
in (5.41) could be larger for other roughness shapes.  But 

since it is quite small in the present case the nonlinear effects can be neglected when calculating 
the second-order solution to both the BRE solutions and the asymptotic near field (intermediate 
scale) flow. This means that the results can be well approximated by linearizing about the 

Blasius flow. The appropriate linearized BRE for the resulting linear  O   term in the outer 

expansion (6.2) are given by equations (5.3)-(5.7) of GSDC-1 and the corresponding upstream 

 1 ,0,p X z

 1 ,0,p X z
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matching conditions, which  are only  given implicitly in  that reference, are written out explicitly 
in Appendix B for convenience.  

The extension of the GSDC-1and GSDC-2 equi-planform-dimension solution to the fully 
nonlinear case, which was precluded in those references by the requirement that the near field 
pressure vanish at downstream infinity, is discussed in Appendix C.  The results show, among 
other things, that the solution to this problem would also lead to an asymptotic pressure 
perturbation of the form (5.41) in the large X limit.  

The present results show that the leading order terms in (5.41) and (5.42) are  quite small (at 

least for h  and R -values being considered here) and  ˆ 0,p z can be set to zero when calculating 

the second order term in these expansions—which is precisely what was done in GSDC-1 and 
GSDC-2. The present analysis, therefore, justifies the results given in GSDC-1. 

Some typical streamwise velocity profiles computed from the BRE equations with the upstream 
boundary conditions determined by the numerically computed pressure coefficients shown in 
figures 8 and 11 are displayed in Figures 12-20. Figure 12 is a plot of the streamwise velocity 
perturbation profiles produced by the first (nonlinear) term in the outer expansion (6.2) at the 

roughness centerline z l  , and Figure 13 is a plot of the corresponding perturbation profiles 
between the adjacent roughness elements (at z = 0).  

             

Part   a) 3/4h =3.                                                                                         Part   b) 3/4h =4                                                 

Figure 12. Scaled streamwise velocity distortion directly behind the roughness elements 

computed from the first term in the expansion (6.2)  for 0 1/ 2,   / 1/ 2,   2,  1d d l d        

Page 33 of 49



34 
 

                

      Part a)  3/4h  =3                                                                                 Part b) 3/4h  =4                                      

             Figure 13. Same as Figure 12, except 0z  instead of z l  .  

Figures 12 and 13 clearly show that the non-linear (i.e. lowest order) term in the outer 
expansion (6.2) continues to grow over a significant distance before it begins to decay. The peak 

velocity perturbation is found at x-1 = 0.285 or x-1 = 0.572 for both 3/4h  = 3 and 3/4h  = 4, 
depending on the spanwise location and roughness height parameter. In other words, it exhibits 

transient growth over the long streamwise length scale 1x  . They also show that the 
corresponding velocity profiles are jet-like directly behind the roughness elements and wake-like 
between the elements. Previous studies have shown that that the velocity profiles behind the 
roughness elements can be either jet-like or wake-lake depending on nature of the horseshoe 
vortex system (formed by the wrapping of spanwise vorticity lines in the incoming boundary 
layer) which, in turn, depends on the shape parameters  of the roughness elements. (See 
Fransson et al., 2004 and Choudhari & Fischer, 2005 for a summary of the available literature.) 
The jet-like profiles occur because the horse shoe vortex system induces a down welling along 
the roughness centerline, which accelerates the flow directly behind the roughness elements 
and progressively counteracts the velocity defect created by the upstream flow retardation due 
to the presence of the surface obstacle. The figures also show that the velocity 
minimum/maximum moves up towards the outer edge of the boundary layer with increasing 
downstream distance. The peak velocity perturbation more than doubles in magnitude with an 

approximately 33 percent increase in roughness height from 3/4h  = 3 to 3/4h  = 4, indicating 
the strongly nonlinear dependence of wake perturbations on the roughness height parameter.  
Similar dependence has been previously found for roughness element planforms with an O(1) 
aspect ratio (White and Ergin 2003). 
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         Figure 14 Peak velocity distribution directly behind roughness element computed from the 

first term in the expansion (6.2) for     

The transient growth behavior on the longer BRE scale is more clearly depicted in figure14, 

wherein a representative streak amplitude is plotted as a function of 1x    for selected values 

of the roughness height parameter 3/4h .  For simplicity, this amplitude is defined as the peak 
streamwise velocity perturbation directly behind the roughness element, which is not identical 
to the amplitude measure used by Fransson et al. (2004), but is expected to closely approximate 
the latter metric over most of the wake region of interest. Figure 14 shows that the maximum 
streak amplitude is achieved at downstream distances from the roughness elements that are 
comparable to their distance from the leading edge.  The figure also shows that the distance 
from the roughness array to the peak amplitude location (i.e., the approximate range of 
locations over which transient growth occurs) increases with roughness height.  These findings 
are in qualitative agreement with the experimental measurements by Fransson et al. (2004) and 
Fransson and Talamelli (2012) for roughness elements in the form of cylindrical disks and micro 
vortex generators, respectively.  
 
Figure 15 is a plot of the streamwise velocity perturbation profiles computed from the second 

term in the expansion outer expansion (6.2) at the roughness centerline z l  , and Figure 16 is 
a plot of the corresponding perturbation profiles between the adjacent roughness elements (at 
z  =0).  

0 1/ 2,   / 1/ 2,   2,  1d d l d     
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Part   a) 3/4h =3.                                                                                         Part   b) 3/4h =4 

Figure 15. Scaled streamwise velocity distortion directly behind the roughness elements 
computed from the second (linear) term in the expansion (6.2) for 

0 1/ 2,   / 1/ 2,   2,  1d d l d       

    

Part a)  3/4h  =3                                                                                                           Part b) 3/4h  =4                                      

                   Figure 16. Same as Figure 15, except 0z  instead of z l  .  

These figures show that while the linear (second) term in the outer expansion (6.2) is much 
larger than the non-linear term, the velocity perturbation either remains constant or decays 
with increasing downstream distance-which means that the nonlinear term will eventually 
dominate over the linear contribution.  They also show that while the velocity profiles between 
the roughness elements are always wake-like the profiles directly behind the elements change 
from wake-like to jet-like with increasing downstream distance.  

This behavior is shown more clearly in figures 17 and 18, with figure 16 showing  the streamwise 
velocity perturbation computed from the full two term expansion(6.2) at the roughness 

centerline z l   and figure 18 showing corresponding perturbation profiles at a spanwise   
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location in between the adjacent roughness elements (at  = 0). The maximum streak 
amplitudes are rather small compared to the free stream velocity, but the present results 
suggest that other roughness shapes and larger height parameters can lead to much stronger 
streaks without producing any flow separation in the vicinity of the roughness element.  

       

           Part   a) 510R                                                                 Part    b) 610R   
Figure 17. Scaled streamwise velocity distortion directly behind the roughness elements 

computed from the two term expansion (6.2) for =4,

0 1/ 2,   / 1/ 2,   2,  1d d l d      a) 510R   and b) 610R     

          

       Part   a) 510R                                                                    Part    b) 610R   

         Figure 18. Same as Figure 16, except instead of .  

Figures 19 and 20 show contours of constant streamwise velocity perturbation over the cross 
section of the wake at various values of x, with the Reynolds number R  equal to 105 in the first 
of these and 106 in the second. Visual inspection of these figures suggests that the initial wake 
structure is dominated by the second harmonic in z, which coincides with the spanwise width of 
the roughness element.  However, the fundamental mode corresponding to the spanwise 

z

3/4h

0z  z l 
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spacing between the adjacent roughness elements becomes dominant farther downstream 
which is consistent with the numerical simulations of Choudhari and Fischer (2005). (A strong 
second harmonic would produce additional peaks and valleys within the contours.). This implies 
that the emergence of the fundamental mode as the dominant harmonic takes place over the 
longer scale of the BRE region since Figure 10 shows the asymptotic nearfield solution is 
dominated by the second harmonic.   

 

            

  
Figure 19. Contour plot of surfaces of constant streamwise velocity perturbation at various 

values of x , with 3/4 4h  , 0 1/ 2,   / 1/ 2,   2,  1d d l d      and 510R    
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                         Figure 20. Same as figure 19, except for 610R   

The wake evolution in figures 18 and 19 further shows that the peak in the streamwise velocity 
distortion is initially concentrated in the wall layer in the intermediate (algebraic growth) region, 

1,X   1 1x   but again moves out into the main boundary layer at downstream locations 

and that the lowest order (nonlinear) contribution eventually dominates and causes the total 
velocity perturbation to exhibit streamwise growth. But  even the total streamwise velocity 
perturbation eventually saturates and undergoes a slow decay with further increase 
downstream distance —which is why we refer to this outer region as the transient growth 
region.  

8. Summary and Concluding Remarks 

    This paper is based on a high Reynolds number asymptotic solution for the flow over a 
spanwise periodic array of relatively small roughness elements. The roughness elements are 
assumed to be elongated in the streamwise direction with both the spanwise dimension and the 
array spacing being of the order of the local boundary-layer thickness and the streamwise 
dimension being of the order of the local triple deck length scale. The roughness height is 
assumed to be small enough to produce only local separation. The problem is formulated for a 
flat plate boundary layer but the results can easily be extended to boundary layers with arbitrary 
pressure gradient by inserting an appropriate streamwise pressure gradient term in the BRE 
(6.4) which only depends on the slow streamwise coordinate x  and can be computed from the 
external potential flow. The results show that the downstream wakes are comprised of positive 
and negative streak-like perturbations that exhibit algebraic growth and that their maximum 
amplitude increases with Reynolds number.  

The maximum streak amplitudes are somewhat small (less than two percent of the free stream 
velocity) at finite values of the Reynolds number.  However, suitable modifications to the 
roughness shape should increase the streak amplitudes.  And more importantly, the above 
streak amplitudes can be achieved in the present asymptotic regime without any flow reversal 
that could otherwise precipitate an onset of other unsteady phenomena via Kelvin Helmholtz 
instabilities of the separated flow.  This finding makes the present regime particularly relevant 
to potential control of Tollmien-Schlichting waves via the stationary streaks.  It is, however, 
worth noting that Goldstein & Wundrow (1965) and Wu & Luo ((2003) both showed that even 
small amplitude streaks can support inviscid instabilities. 

  Transient growth over long streamwise length scales of the order of the downstream distance 
from the leading edge was identified by Andersson et al. (1999), Luchini (2000), and Tumin and 
Reshotko (2001) in the context of the linearized boundary region equations. But these studies 
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were based on optimal growth theory which addresses a hypothetical initial value problem that 
determines the initial disturbance profiles at a given station that would maximize the energy 
growth up to a specified downstream location.  It does not involve any consideration of whether 
or not the optimal initial disturbance profiles will be excited in practice as a result of naturally 
occurring external disturbances. In fact, it does not even provide any information about what 
type of actuation could be used to excite a disturbance field that would match the optimal 
growth predictions starting from the initial station of interest.   The present paper treats a 
concrete physical problem that can be easily simulated in an experiment.  The resulting 
transient growth is, therefore, realizable. The present paper examines realizable transient 
growth behavior in the context of the nonlinear Boundary Region Equations together with a 
modified form of the usual interactive boundary layer equations and shows that the leading 
order streak-like velocity perturbations can exhibit a weaker, i.e., suboptimal growth of the form 

1/3X as X   on the roughness scale before exhibiting transient growth on the longer 
downstream length scale. However, the second order term in the large- X  asymptotic 
expansion, which does not exhibit streamwise growth, turns out to be numerically much larger 
than this term (at finite values of R ) and, therefore, tends to dominate the intermediate scale 
flow as well as the initial behavior of the BRE solution in the downstream region.  But, the 
initially small nonlinear term corresponding to the zeroth order BRE solution undergoes 
transient growth and eventually becomes dominant. So the algebraically growing solution, 
which is initially hidden in the background in the intermediate scale (algebraic growth) region 
eventually becomes dominant and produces transient growth on the outer BRE scale.  While it 
would have been difficult to discover these results with a strictly numerical approach, the 
overall behavior of the present asymptotic solution is roughly consistent with the finite Reynolds 
number computations of Choudhari and Fischer (2005).  

Since the theoretical formulation is valid for arbitrary roughness configurations, the present 
computations can easily be extended to other roughness shapes and, in particular, to compact 
shapes such as mini-vortex generators or circular disks, which are likely to result in flow 
separation at smaller values of roughness height than for the smoother shapes considered 
herein.                                   

Appendix A Iterative solution to nonlinear problem  

A.1 Basic equations 

The comments following equation (5.40) suggest that W will be a relatively small perturbation  

of the undisturbed flowU   .  We can capitalize on this by noting that the system(5.34),(5.36)  

and(5.39) shows that                                 

                                    21ˆ ˆ,     
3 3

U U V U


      V V +                            (A.1) 

are determined by  
                                                   

                                                   
2 ˆ ˆ 0,
3

zU W  V                                                            (A.2)     

                              3 32 /9 /9 ˆ 0,1

3

p z F
W W W

z
e e  

        
    

                   (A.3) 
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                                           22 1ˆ ˆ ˆˆ
3 3

U U U G     V +                                               (A.4)  

 

                   2 2 2

0 0

ˆ ˆ ˆˆ ˆ ˆ,    
n

z z z
F W W d W W d G U U WU

 

 

       
   V V + V      (A.5) 

together with the transverse boundary conditions implied by (5.30)-(5.32). 
                                              
 Equation(A.3) can be formally integrated to obtain 
 

          

 
 

 

3 3 3 3

3 3

0 0

0

/9 /9 /9 /9

/9 /9

ˆ 0,
,

                                                                  

p z
W d F z d

z

a z d

e e e e

e e

 



   

 


    



 

 



           (A.6) 

which satisfies the boundary condition (5.31), since successive integrations by parts shows that                                                                                                          

3 3 3 3

4 2 5

0 0

/9 /9 /9 /93 9 3 2 9
..... 0,   .... 0 d de e e e

 

           
         (A.7) 

as  .  

 Eliminating V̂  on the left side of (A.4) shows that  

                                             
3 3/9 /9 ˆ

z

G
e e U W 





 


                            (A.8) 

which upon integrating with respect to  , using(A.1),(5.29) and (5.30),  and integrating the 

result by parts shows that   

 

 
   

 3 3 3 3
2

2

0 0

/9 /9 /9 /9ˆ 0, ,ˆ p z F z
U d d

z z
e e e e
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
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      

    

          

             
 

 
3 3 3 3

0 0

/9 /9 /9 /9da z G
d d

dz
e e e e

 

    
   

                                           (A.9) 

and it follows from(A.1), (5.30)and (5.32)that  
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            (A.10)                                                                                                                            

which will satisfy all the transverse boundary conditions provided   /da z dz  and Â  satisfy the                                                                                                                                                                                                                        

solvability condition 
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where we have again integrated by parts to obtain this result. 
A.2 numerical procedure 

It now follows from(5.37)(A.2),(A.5)- (A.9) and (A.11)that the nonlinear problem can be solved 
iteratively by using the following equations to determine the determine the nth approximation 

         ˆ ˆ, , ,
n n n n

a z W U V  to   ˆ ˆ, , ,a z W U V   
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 

3 3

2

2

1 1

0 0

0 0

3 3

/9

/9

ˆ 0,

, , ˆ     

                                                                      

n

n n

n

da z p z

dz z

F z G z
d d A

z

e d d

e
 
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
 



    
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 (A.12) 

The preceding equations suggest the following iteration procedure be used to determine  n
W  

and  n
U  

           
3 3 3 31

0 0 0

/9 /9 /9 /9ˆ 0,n n np z
W d F d a z d
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e e e e

  

   
  

      
  

      (A.13) 
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  for 1,2,3....n    ,  where      
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for 1,2,3....n   .Note that that    n
a z  is determined by the spanwise variable component of 

(A.12) and can therefore be taken to have zero spanwise mean, while  ˆ n
A  is determined by the 

spanwise mean component of that equation. 
 
Appendix B Summary of upstream matching conditions for 2nd order BRE solution   
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and  , ,U a b z denotes the Hypergeometric function defined by (13.1.3) of Abramowitz & 

Stegun (1965).    
 

C. Short roughness elements with similar streamwise and spanwise length scales  
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 Instead of solving the near field boundary value problem described in sections3 and 4, we could 

consider the initial value problem obtained by setting roughness shape function  , 0F X z   

and specifying an upstream boundary condition at 0X  .  Since equations  (5.14)-(5.21) are an 
exact solution to the main deck  equations (3.10)-Error! Reference source not found. they can 

also be thought of as the leading terms in an 0X   asymptotic expansion of a  solution to 
these equations and, therefore, be taken as the initial conditions for the complete boundary 
value problem which satisfies(2.5) at downstream infinity. But it is more interesting to consider 
the slightly different case where  

 

                                          
2/32 ˆ / ,  0P X P X X                                                     (C.1) 

which corresponds to  setting  0 2 / 3    in(5.1) rather than to  +2/3 as was done previously. 

It then follows from(5.1), (5.10)and (5.13) (which remain valid when the  symbol is replaced 

by an equals sign) that  
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0
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where, as before,  Â  is a constant related to P̂  . The solution is still exact but the spanwise 

mean conditions (5.14)and (5.15) must be replaced by  
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The wall layer flow still possess the exact similarity solution (5.25)but with the streamwise 

momentum equation(5.29) replaced by  
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Introducing the inner variable 
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where  1/6R   , into(5.18)-(5.21),(5.25)and (C.1)-(C.4)  shows the result  will match onto the 

two layer inner expansion                      
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for  1y O  and  

                  , , , , , , , , , , , , ,  +..... ,u v w p U X Y z V X Y z W X Y z P X z                       (C.8) 
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for  / 1 ,Y y O    whose first order terms behave like                
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as X   for  1y O  and like  
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

         (C.12) 

with      , , , , ,W z U z V z    determined by the similarity equations(5.26)-(5.28)and (C.5)for

 1Y O since   

                                                    
1/31/3

/ / / / .Y X Y X                                            (C.13) 

This is precisely the asymptotic behavior that the near field solution constructed GSDC-1and 
GSDC-2 would have had if the decay exponent   were taken to be 4/3 (instead of 5/3) in the 
main boundary layer asymptotic solution (4.1), and (4.3)-(4.5) of GSDC-2 with the explicit form 

of the spanwise mean terms determined by using the small k  asymptotic expansion of 

 0 ,y k  given by (A7) of GSDC-1. This corresponds to the fully nonlinear case, which must 

satisfy (C.10) and was, therefore, precluded in GSDC-1and GSDC-2 by the requirement that the 
near field pressure vanish at downstream infinity.  The present result shows that the required 
pressure decay is actually produced by the outer solution which applies on the long triple deck 

length scale  1X O and  eventually exhibits the asymptotic behavior (5.14)-(5.21)and (5.25)

as X  .  

An alternative approach was used by Smith (1973) and Smith, Brighton, Jackson, and Hunt 
(1981) to embed a short (boundary layer length scale) two-dimensional hump in an outer triple-
deck solution. Their analysis, which is based on shrinking a triple deck scale roughness element 
down to a short boundary layer length scale element, indicates that the roughness (hump) 
behaves like a small amplitude (i.e. small h) element with delta function shape in so far as the 
outer scale flow is concerned and they conclude from this that the flow must be linear. The 
present result shows that the corresponding outer flow can, at least in principal, be nonlinear in 
the three dimensional case.  A complete proof would require that a numerical solution to the 
governing equations be constructed, which is beyond the scope of the present paper where the 
focus is on elongated roughness elements. The present analysis does not seem to apply to the 

Page 46 of 49



47 
 

two dimensional flow considered by Smith. In fact Ruban & Kravtsova (2013) argue that the 
nonlinear wake behavior is associated with the rollup of streamwise vortices.  
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