An Open Avionics and Software Architecture to Support Future NASA Exploration Missions

NASA

SPACE COMPUTING & CONNECTED ENTERPRISE RESILIENCY CONFERENCE 2018

June 5, 2018

Adam Schlesinger, Manager (Acting), AES Avionics & Software Project NASA-Johnson Space Center (JSC), Houston, TX

NASA Exploration Campaign

In LEO Commercial & International partnerships

In Cislunar Space

A return to the moon for long-term exploration

On Mars Research to inform future crewed missions

Lunar Orbital Platform – Gateway Development

LUNAR ORBITAL PLATFORM-GATEWAY DEVELOPMENT

Establishing leadership in deep space and preparing for exploration into the solar system

FOUNDATIONAL GATEWAY ELEMENTS 2024 +2022 2023

Power/Prop Bus

These foundational gateway capabilities can support multiple U.S. and international partner objectives in cislunar space and beyond.

CAPABILITIES

- Supports exploration, science, and commercial activities in cislunar space and beyond
- Includes international and U.S. commercial development of elements and systems
- Provides options to transfer between cislunar orbits when uncrewed

OPPORTUNITIES

- Logistics flights and logistics providers
- Use of logistics modules for additional available volume
- Ability to support lunar surface missions

INITIAL ACCOMMODATIONS

At least 55 m³

Habitable Volume

Orbit of the Moor

Orion

Advanced Exploration Systems (AES) Division

- NASA's Advanced Exploration Systems (AES) division is pioneering innovative approaches and public-private partnerships to rapidly develop prototype systems, advance key capabilities, and validate operational concepts for future human missions beyond Earth orbit
- AES activities are related to crew mobility, habitation, vehicle systems, robotic precursors, and foundational systems for deep space
- AES infuses new technologies developed by the Space Technology Mission Directorate and partners with the Science Mission Directorate to address Strategic Knowledge Gaps for multiple destinations
- AES is leading NASA's Lunar Orbital Platform Gateway (LOP-G) Efforts

AES Avionics & Software (A&S) Project

• AES Avionics & Software (A&S) Project Goal:

 Define and exercise an avionics architecture that is open-source, highly reliable with fault tolerance, and utilizes standard capabilities and interfaces, which are scalable and customizable to support future exploration missions

• A&S Drivers:

- Technology Transparency
 - The underlying hardware should not have any impact on an application either during development or execution
 - Code reuse and portability

- Reliability and Maintenance

- Operate in the presence of failures so that Maintenance Free Operating Periods (MFOPS) can be achieved
- Provide autonomous operations
- Minimal number of unique spares

- Incremental Update & Certification - Designed for Growth and Change

- Applications can be inserted/altered with minimum impact on other systems and on the supporting safety case
- Flexible scheduling to meet the deadlines of all the applications for each viable configuration and when system is upgraded

- A&S Focus Areas and Objectives:
 - Command & Data Handling (C&DH) Define a reliable, high-performance
 & modular C&DH architecture and build HW catalog
 - Software Provide a reusable software architecture and tools suitable for human-rated missions
 - Human Interfaces Identify, integrate & test human interface technologies that are scalable, sustainable, and evolvable to support future exploration
 - Communication and Wireless Systems Enable interoperable, wireless
 & networked communication for inter/intra-vehicle systems
 - Systems Engineering and Integration (SE&I) Model, build & test flexible and robust integrated vehicle systems

A&S Benefits:

- Results in an open architecture that allows use of hardware from multiple vendors
- Enables use of evolving (near-launch) technology
- Ability to upgrade capabilities and infuse new technologies with costeffective validation

Avionics & Software Architecture

Blueprint of the Architecture: Distributed Integrated Modular Avionics (D-IMA)

	Description	Rationale
Distributed	 Resources (both hardware and software) are physically distributed 	 Reduce harness mass Provide for local control of local functions Lowers flight computer load
Integrated	 Multiple functions of different criticalities running on separate, high integrity, partitions 	• Re-locatable functions not limited to a single line replaceable unit (LRU) boundary
Modular	 Standard interfaces/Virtual Backplane Avionics boxes built up of hub card(s), power supply(s) and subsystem slices Software constructed of re-locatable modules 	 Provides for composability Allows for hardware reuse Allows for software reuse
Avionics	 Board level building blocks used to assemble boxes into systems 	Allows for multiple vendor hardware components
Processors Network		

Brain of the Architecture: NASA's Core Flight Software (CFS)

- Core Flight Software (CFS) is a NASA-developed asset for spacecraft flight software reuse that is available as open-source:
 - <u>http://sourceforge.net/projects/coreflightexec/</u>
- Productized real-time flight software developed over several years by Goddard Space Flight Center to serve as reusable software framework basis for spacecraft missions, test missions, real-time systems
- AES has since advanced the product line, including achieving humanrating, as a reusable software solution for future exploration missions
- CFS provides a published service layer (cFE) and an Operating System Abstraction Layer (OSAL) for common services to run on multiple platforms and with several operating systems
 - Pub/Sub message bus, time services, events, tables, file, task execution
 - <u>http://sourceforge.net/projects/osal/</u>
- CFS provides common reusable spacecraft functions as open-source or government-purpose applications
 - Scheduler, commanding, telemetry, communication, data recording, limits, system health, sequences

CFS Architecture

 CFS also provides a mechanism to link distributed CFS instances called Software Bus Network (SBN), including an SBN library (SBN-lib) for non-CFS applications that need access to software bus data

Some CFS Supported Platforms: Non-Exhaustive

CFS has been ported to work on many processors...

• ...and with many operating systems, both real- and non-real-time

Backbone of the Architecture: Time-Triggered Ethernet

- Time-Triggered Ethernet (TTE) is compatible with, can coexist with on the same physical media, and expands classical Ethernet with services to meet time-critical or deterministic conditions, supporting three message types:
- Time-triggered (SAE AS6802): Sent over the network at predefined times and take precedence over all other message types
 - Occurrence, delay and precision of messages are predefined and guaranteed
- Rate-constrained (ARINC 664 p7): Used for applications with less stringent determinism and real-time requirements
 - Bandwidth is predefined and guaranteed for each application and delays/jitter have defined limits
- Best-effort (IEEE 802.3): Follow classical Ethernet policy
 - Use the remaining network bandwidth and have lower priority than TT or RC messages
- TTE Standards exist or are in-work and NASA supports development of an open TTE Standard
 - SAE AS6802 Time-Triggered Ethernet
 - European Cooperation for Space Standardization (ECSS) ECSS-E-ST-50-16 Time-Triggered Ethernet
 - Consultative Committee for Space Data Systems (CCSDS) Sub-Network Services WG

Sikorsky S-97 RAIDER

NASA's Orion Spacecraft

Reliability and Robustness: Triplex Voting Architecture

- Developed a 1-Byzantine Fault tolerant voting architecture using TTE and CFS using current COTS technologies
 - Three Onboard Computers (OBC)
 - Three High-Integrity (command/monitor) TTE
 Switches
 - Remote Interface Units (RIU)
- Architecture is scalable through additional network planes, high-integrity devices, etc.
- Approach uses TTE for data distribution and sync and built CFS apps to do so
- Benefits of the voting architecture:
 - Enables the use of COTS single board computers
 - Eliminates need for separate cross-channel data link
 - Eliminates need for separate timing hardware
- **Paper:** "A Proposed Byzantine Fault-Tolerant Voting Architecture using Time-Triggered Ethernet"

The Crew Element: Human Interface Architecture

- Developed a human interface architecture to reduce barriers between the crew and the vehicle
- Core component is the Human Interface Management Computer (HIMaC) that acts as a Display Server, Telemetry/Command Exchange Server and Audio/Video Server
 - HIMaC is tied to flight software bus network and supports different traffic classes
- Architecture consists of open interface standards to provide flexible and reconfigurable peripherals
 - Displays, Controls, Wearables, Audio, Video, Virtual/Augmented Reality
- Provides a robust approach to data security
- Designed to be scalable, sustainable, and evolvable enabling support for system build up, upgrades and extensions

Can You Hear Me Now?: Wireless and Communication Architecture

- The communication links that the architecture is designed to support include:
 - LOP-G \leftrightarrow Earth
 - LOP-G ↔ Lunar Surface
 - LOP-G \leftrightarrow Visiting Vehicle
 - LOP-G ↔ Proximity/Wireless Communications (i.e. Extra-Vehicular Activity (EVA))
- Architecture supports several standard wireless standards and technologies for internal spacecraft and proximity communications
 - IEEE 802.11 Family
 - 5G Technology (LTE)
 - Wireless Sensor Networks
 - Radio Frequency Identification (RFID) for both logistics and sensing
- Candidate standards and technologies have been identified, are still being evaluated, and have not been finalized
 - Optical communication is also being looked at for DSG
- Will leverage the Interagency Operations Advisory Group (IOAG) Service Catalog and Consultative Committee for Space Data Systems (CCSDS) Standards
- Internetworking capabilities are a requirement, and must operate in the presence of time delays and outages
 - Delay/Disruption Tolerant Networking (DTN) is the solution

Connecting to the Solar System Internet (SSI): Delay/Disruption Tolerant Networking (DTN)

- Delay/Disruption Tolerant Networking (DTN) is an AES developed protocol suite that extends the terrestrial Internet capabilities into highly stressed data communication environments where the conventional Internet does not work
 - These environments are typically subject to frequent disruptions, unidirectional/asymmetric links, long delays and high error rates
- DTN is being standardized by the Consultative Committee for Space Data Systems (CCSDS) and the Internet Engineering Task Force (IETF) DTN Working Groups
- NASA's Interplanetary Overlay Network (ION) DTN implementation is open-source software:
 - <u>https://sourceforge.net/projects/ion-dtn/</u>

Exists

 Some of the benefits of DTN include improved operations and situational awareness, interoperability and reuse, space link efficiency, utilization and robustness, security and qualityof-service

In-Work

Putting it All Together: Systems Engineering and Integration (SE&I)

- Determined the necessary avionics functions for architecture, allocated the functions to abstract systems and implemented the systems to perform the functions
- Modeled the avionics and software architecture using Model-Based Systems Engineering (MBSE) tools using the Systems Modelling Language (SysML) throughout life-cycle
- Led the migration of other spacecraft subsystems to run CFS applications on path-to-flight processors and connect to the architecture
 - Power, Environmental Control and Life Support System (ECLSS), Vehicle Autonomy applications, etc.
- Conceptualized mission scenarios to exercise/stress the architecture through both simulation and testing

An Enabling Architecture: Supporting Future Autonomous Systems

- As human exploration moves farther out into space, the need for autonomous systems significantly increases
 - Many functions of the current Mission Control Center (MCC) will need to move onto the spacecraft
- AES, STMD and others within NASA are researching various autonomy applications that could be used as part of the Lunar Orbital Platform Gateway efforts
- NASA is also closely tracking commercial developments that could support autonomous systems
 - AI and Cognitive Computing, Deep-Learning Algorithms, Model-based Condition Monitoring, Industrial and Home Automation, IoT, etc.
- The developed avionics and software architecture will serve as a platform to exercise autonomy applications and concepts
 - Exercise onboard autonomous Integrated Vehicle Health Management (IVHM) applications
 - Explore distributed and centralized autonomy concepts
 - Build crew and ground operator familiarity and comfort with autonomy applications
 - Provide reliable command/control capabilities for spacecraft subsystems
 - Provide additional processing/storage for less-capable systems
 - Monitor subsystems and serve as an operations advisor
- Open architecture will also serve as a technology development platform to help establish partnerships and collaborations to further enhance architecture
 - Support Academia, International Partner or commercial technologies

What's Next?: Future Architecture Needs/Gaps

- NASA
- Availability of high-performance, radiation-tolerant processors, memory and display hardware
- Ability to use Commercial-Off-The-Shelf (COTS) hardware/software from multiple vendors
- Consensus on common interconnects for space applications
- Support for high-bandwidth applications, including audio, video, autonomy, high-resolution imagery, etc.
- Maturation and publication of relevant standards
- Increased cybersecurity awareness and protection

Key Takeaways

- The AES A&S project has developed and implemented an Avionics & Software architecture that is:
 - Open-source, with standard capabilities and interfaces
 - Highly reliable with 1-Byzantine fault tolerance
 - Scalable and customizable to support future exploration missions such as the LOP-G
 - Built on a foundation of NASA's Core Flight Software (CFS) and Time-Triggered Ethernet (TTE)
 - Realizable with currently available COTS technology and supports multi-vendor hardware
 - Fully modeled in SysML, implemented and tested in relevant environments
 - Designed to support various autonomy technologies that will be needed for deep-space human exploration
- The Lunar Orbital Platform Gateway will be built up in phases, with individual elements likely being provided by both International and commercial partners, making interoperability more of a challenge for the overall avionics architecture of the integrated spacecraft
- Open standards and abstraction layers allow for late selection of hardware platforms and in-flight upgrades as advances occur in the areas of high-performance, radiation-tolerant processors, memory and display hardware

