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Abstract

A recently developed cohesive zone traction-separation law, which includes the

effects of fiber bridging in a novel way, is extended from 2D to 3D. The pro-

posed cohesive model is applied to low fidelity (i.e. homogenized core rep-

resentation) and high fidelity (i.e. directly accounting for the core topology)

finite element models of a composite panel comprised of carbon fiber reinforced

plastic facesheets and a honeycomb sandwich core. This enables the inves-

tigation of 2D to 3D parameter transferability, width-dependent effects such

as thumbnail-shaped crack growth, and the verification of plane strain / plane

stress assumptions. A pronounced curvature of the initial interface-related crack

front is observed, while the bridging-related crack front is straight. Furthermore,

it is found that the cohesive parameters can easily be transferred from 2D to

3D under plane stress assumptions, but not under plane strain assumptions.

The numerical predictions are compared to experimental load-displacement and

R-curves.
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1. Introduction

The payload of launch vehicles is protected from aerodynamic and acoustic

loads during launch through payload fairings, i.e. large shell structures which

are mounted atop the structure. The baseline design of the payload fairing for

NASA’s Space Launch Systems (SLS) heavy lift vehicle involves separable petals5

composed of aluminum honeycomb sandwich panels with carbon fiber reinforced

polymer facesheets. There are a number of requirements and challenges which

need to be adressed in order to ensure that the expected life and performance

of honeycomb structures like the SLS fairing is not jeopardized. For instance

pre-existing flaws from manufacturing defects or damage during handling, as-10

sembly, payload encapsulation, vehicle integration and launch can impair the

ability of the fairing to fulfil its purpose: Protecting the payload during launch

and ensure a clean fairing separation from the vehicle after launch, without

the possibility of re-contact. A number of pre-existing defects can be detected

through non-destructive evaluation prior to launch will be repaired. However,15

the presence of undetected damage, as well as damage occurring during launch,

cannot be ruled out. Therefore, damage tolerance is a key component of the

SLS fairing design.

Among the most prevalent causes of post-manufacturing damage are low-speed

impacts, such as tool drops or unintended contact with ground support equip-20

ment. In the case of honeycomb sandwich structures, low-speed impacts result

in core crushing, delamination/disbonds, and matrix cracking [1, 2]. This can

be the cause of kink band formation (fiber microbuckling), indentation (core

crushing growth), and delamination/disbond growth [1–4] during subsequent

loading. The effect of such damage on composite honeycomb sandwich panels is25

typcically quantified through compression after impact (CAI) tests. CAI tests

produce a reduced design-to strength allowable for the honeycomb panel com-

posite facesheets, providing damage tolerance for strength-driven designs [5, 6].

However, the acreage payload fairing panel design is buckling-dominated, with

local stresses at the buckling failure loads being several times lower than the30
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strength allowable [7–9]. As such, understanding the failure mechanisms asso-

ciated with damage and buckling is critical for providing damage tolerance to

large composite honeycomb sandwich structures like the SLS fairing. This point

is further emphasized by observations that, for a large number of lightweight

designs, delamination is one of the most critical modes of failure [10, 11] as it35

limits the performance of composites in safety-critical structures e.g. due to the

buckling of delaminated sandwich beams [12, 13].

The established methods to characterize the mode I delamination resistance of

laminates are the double cantilever beam (DCB) and single cantilever beam

(SCB) tests according to ASTM D 5528 [14]. The standard requires the deter-40

mination of the current crack length by means of a moving telescope or similar

devices. One of the implications of this fact is that the measurements will be

inaccurate when the crack front is not straight. It has been shown [15–18] that

the crack front should be curved due to anticlastic bending, and the curvature

of the delamination crack front of DCB specimens has been subject to extensive45

research. In the pioneering papers on the curvature of the delamination front,

Davidson and Schapery [16–18] derived shapes of the crack front curvature de-

pendendent upon the facesheet layup and compared the results to finite element

(FE) calculations. The shape of the crack front was shown to be predominantly

driven by the degree of anisotropy of the levers, since this is the main determi-50

nant of anticlastic bending. The anticlastic bending leads to a saddle-shaped

deformation of the levers and the crack front therefore propagates further at

the centerline of the specimen compared to the edges of the specimen. This

concept has been used and recently extended by e.g. Shokrieh et al. [15] where

the focus was finding correction factors which permit a calibration of experi-55

mental data to the true values. Very recently, Reiner et al. [19] used digital

image correlation (DIC) to conduct a top surface analysis of a DCB in order to

obtain in situ measurements of the delamination front of DCB specimen during

ASTM D5528 tests. Krull et al. [20] used a light source and overhead and side-

mounted cameras to determine the crack curvature of translucent continuous60

glass fiber-reinforced DCB specimen and Adams et al. [21] used dye penetrant
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to mark the crack progression and crack curvature of foam core SCB specimen.

However, the latter method is feasible neither for continuous crack monitoring

nor for honeycomb core specimens. In summary, the curvature of the delami-

nation front of DCB and SCB specimen is well-documented, but still subject to65

research.

While monolithic laminates have received a great deal of attention, the delami-

nation of sandwich panels in general and, in particular, the delamination front

curvature, has received much less attention and the definition of a test standard

is still an active research topic [21]. Ratcliffe and Reeder [22] proposed a single70

cantilever sizing method based on an analytical representation of the SCB on

an elastic foundation. From this solution they derived a list of 11 limitations

for e.g. the intact specimen length, specimen width, minimum thickness of the

facesheet, which can be used as a guideline for the sizing of an SCB specimen.

This work is continued by Rinker et al. [23] where an extensive experimen-75

tal investigation the effect of the honeycomb cell size, facesheet thickness and

specimen width of SCB carbon fiber reinforced plastic (CFRP) facesheet hon-

eycomb core sandwich panels was conducted. Rinker et al. [23] further raised

several important questions for future research. Of these, the two most impor-

tant questions with respect to the current investigation are: 1.) Are the plane80

strain boundary conditions, which are assumed in the data reduction, met in the

experiment? 2.) Is it valid to smear the meso-level strain and stress distribu-

tion of the highly inhomogeneous honeycomb structure over the cross-section?

In addition, the authors numerically investigated the effect of initial disbond

radii and facesheet thickness on the mode I ground-air-pressurization-driven85

facesheet/core delamination of honeycomb sandwich panels in [24].

A number of authors have published research on the experimental determina-

tion of the cohesive parameters of honeycomb core sandwich panels. Ural et al.

[25] for instance, use flatwise tension tests in order to determine the cohesive

strength of the honeycomb core to composite facesheet interface and DCB tests90

in order to characterize the fracture toughness. They find a remarkable differ-

ence in fracture toughness values between bag side and tool side. Shivakumar
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et al. [26] compare various testing conditions, like the cracked sandwich beam

test, the SCB and tilted sandwich debond test as well as multiple data reduction

techniques like modified beam theory (MBT), compliance calibration method95

(CC) and modified compliance calibration method (MCC) [27]. Both MBT and

MCC were found to give virtually identical results and Shivakumar and Smith

[26] therefore recommend the usage of MBT due to its simplicity, as done in the

present paper. It is of note that, some authors mention the propagation of the

crack into the core from the interface [21] or even from the interface into the100

interface between the plies of the facesheet [28] and find a number of influence

parameters.

Numerically, delamination is typcically modeled by using zero-thickness cohe-

sive zone models (CZM) which relate the separation of two surfaces to a traction

that acts between the surfaces. The traction-separation law can have a bilinear105

[29, 30], tri-linear [31–36], quadratic [37], square root [38], exponential [39, 40]

or power law shape [41, 42]. Alternatively, finite thickness delamination at

moderate failure strains can be treated in a suited continuum damage frame-

work [43–46] or through a strategy which combines cohesive zone modeling and

extended finite elements [47]. A comprehensive overview of methods to incor-110

porate failure in a composite context is provided by Orifici et al. [48] and in

terms of more general traction-separation relationships across fracture surfaces

by Park and Paulino [49] as well as Dimitri et al. [50].

When fiber bridging is to be accounted for in the CZM framework, this is usu-

ally accomplished by a tri-linear traction-separation relationship. Noteworthy115

examples of this technique have been published by, for instance, Li et al. [31–

33] and Dávila et al. [34]. These approaches have proven very reliable for solid

laminates. However, it has recently been shown by Höwer et al. [51, 52] that

the delamination between CFRP facesheet and honeycomb core can be cap-

tured more accurately in terms of the load-displacement curve and local strain120

distribution by a two component cohesive law in which a conventional cohesive

law (e.g. exponential softening) represents the initial debonding and a newly

developed bridging component captures the cohesive behavior at higher sepa-
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rations. This modeling approach proved to have a number of advantages: it

reduced the relative error in the region between the onset of damage - i.e. the125

first non-linearity of the global load-displacement curve - and the peak load by

up to 50 percentage points compared to the best fit with some standard co-

hesive formulations. Furthermore, the newly proposed formulation was highly

computationally efficient, as shown by a wall-clock time reduction of more than

50% compared to the Abaqus COH3D8 elements, and local strain patterns seen130

in experiments were captured much more accurately.

As a 2D model was previously used, the influence of 3D effects as well as the

effects of the topology of the honeycomb core were not included so far. Further-

more, the suitability of plane stress or plane strain assumptions for the SCB

specimen needs to be clarified and the parameter transferability from 2D to135

3D (high and low fidelity) has to be shown, which is another aim of this paper.

Höwer et al. used the plane stress assumption to model the SCB sandwich panel

in previous work [51]. However, in the literature the DCB specimen for instance

is modeled using plane strain [53, 54] as well as plane stress assumptions [55, 56],

which suggests that the issue must be addressed for the SCB as well.140

2. Single Cantilever Beam (SCB) specimen

2.1. Experimental setup

As previously described in [51], a 609.6 mm by 609.6 mm honeycomb sand-

wich panel was manufactured from IM7/8552-1 prepreg tape and 49.66 kg/m3

Hexcel 5052 aluminum honeycomb core with a 0.0178 mm foil gauge, 3.175 mm145

cell size, and a 25.4 mm height. The facesheets were comprised of eight plies

each, which were hand-laid with a [45◦/90◦/− 45◦/0◦]s stacking sequence. The

facesheet/core adhesion was achieved through FM-300K film adhesive between

the constituents. To form the initial disbond between the core and the upper

facesheet, a 101.6 mm wide Teflon strip was placed between the facesheet and150

the film adhesive at the middle of the panel along the entire 609.6 mm length in

one direction. The panel was subsequently bagged and co-cured in an autoclave
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following a standard pressure/temperature profile.

The SCB testing was performed on a load frame under quasi-static displacement

control at a rate of 0.42 mm/s up to 44.48 N and after this at a decreased rate of155

0.021 mm/s. Samples were subjected to a single precracking load/unload cycle

to ensure a sharp crack tip for the subsequent loading.

Crack length identification and data reduction was done in accordance with

ASTM D 5528 [14]. A schematic of the setup is provided in Figure 1 and an

actually tested specimen is shown in Figure 2.160

Figure 1: Schematic of the 2D finite element model. The cohesive layer is shown in red.

Except for the thickness of the cohesive layer the drawing is true to scale.

Figure 2: Photograph of a SCB specimen after testing.

2.2. SCB finite element model representations

Primarily, four distinct finite element models are considered: (i) The 2D

model (Figures 1 and 3) subjected to plane stress boundary conditions; (ii) The
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2D model (Figure 1 and 3) subjected to plane strain boundary conditions; (iii)165

the 3D low fidelity (LoF) model (Figure 4); (iv) the 3D high fidelity (HiF) model

(Figure 5). Further variations of these four baseline models were investigated

Figure 3: Schematic of the 2D finite element model including boundary conditions.

to determine the mesh convergence, insert length sensitivity, element formula-

tion validity, etc. The schematic of the 2D model, which shows the loading and

boundary conditions that are imposed on the 2D finite element model of the170

SCB specimen, is shown in Figure 3, and the corresponding nominal dimensions

are summarized in Table 1. Only the lower half of the load introduction fixture

Table 1: Nominal dimensions in mm.

specimen length specimen width 1 width HiF, b 2

200.53 25.4 23.915

facesheet thickness, tFS insert length insert thickness

1.25 52.95 0.0001

core thickness, tHC core wall thickness core repeating unit cell width

25.4 0.0178 4.783

1This width is assumed in the 2D and 3D LoF models.
2As outlined in this section, the model width in the HiF model has to be a multiple of the

core repeating unit cell width. Thus, the HiF width varies slightly from the specimen width.

A 3D LoF model with this width is also considered for the comparison of 3D HiF and 3D LoF
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(see Figures 1-3) has to be modeled since the aluminum block is very rigid and

the force is introduced at its center. Since there is currently no shear compo-

nent in the cohesive law, a support on the right side is introduced. While shear175

stresses should was shown to be negligible at the interface of this mode I de-

lamination test [51], the support is still necessary in order to prevent horizontal

rigid body translations of the top facesheet.

The 3D LoF model varies from its 2D counterpart only in that it is extruded in

the width direction, see Figure 4. The edges are free in the experiment as well180

as in the FE model, except for the bottom facesheet, which is clamped.

In contrast to the LoF model, the HiF model takes the topology of the hon-

Figure 4: Schematic of the 3D low fidelity (LoF) finite element model (true to scale).

eycomb core into account. A schematic is shown in Figure 5. The nominal

dimensions of the model vary slightly from the experimental dimensions in this

case, as the model width currently must be a multiple of the core repeating185

unit cell (RUC), e.g. 5 · 4.783mm = 23.915mm, compare Table 1. The nominal

dimensions are provided in Table 1, along with the nominal dimensions of the

other models.

results.
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Figure 5: Schematic of the 3D high fidelity (HiF) finite element model (true to scale). Core

magnification 250x.

3. Cohesive law accounting for fiber bridging

In recent work, a novel cohesive law, which accounts for fiber bridging

through an initial disbond-related cohesive traction Tm and a bridging-related

traction Tb, has been proposed by Höwer et al. [51, 52]. The decomposition

into two distinctive cohesive mechanisms was motivated by the observation, that

there are two distinct zones of high interfacial traction present in SCB exper-

iments of CFRP facesheet / aluminum honeycomb core sandwich panels. The

initial disbond-related cohesive traction Tm is observed close to the crack tip,

i.e. the traction is transferred at relatively small separations. At moderate sep-

arations (e.g. 1mm) the cohesive traction value is already considerably lower

than the corresponding crack tip value, see Figure 6. As the separation increases

in the wake of the crack tip, the traction increases again and reaches a peak

value. It can be seen clearly that the traction at high separations is transmitted

through bridging fibers. At around 4-5mm, the bridging fibers break and no

separation is transferred at greater separations. A cohesive law shape, which

represents these observations is shown in Figure 7. The inital component is

shown in red (dash-dotted line), the bridging component in green (solid line)

and the resulting component in blue (dotted line).

It has been shown, that the newly proposed law provides much closer agreement
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Figure 6: DIC principal strain plot with characteristic separations, cf. [51].

Figure 7: Traction-separation contributions of the individual cohesive components.

between predicted and measured load-displacement curves, compared to estab-

lished formulations [51]. Furthermore, the newly proposed formulation is able

to predict the two distinct zones of high interfacial traction, unlike previously

established cohesive zone formulations. The total traction was introduced as

Tc(δn) = Tm(δn) + Tb(δn) (1)
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Due to the additive split of the tractions, the total critical energy release rate

(CERR) can be computed by the sum of the contributions of the two components

as

GIc =

∫ δf

0

T (δn) dδn =

∫ δf

0

(Tm(δn) + Tb(δn)) dδn (2)

=

∫ δf

0

Tm(δn) dδn︸ ︷︷ ︸
GIc,m

+

∫ δf

0

Tb(δn) dδn︸ ︷︷ ︸
GIc,b

The total CERR is thus

GIc = GIc,m +GIc,b (3)

The initial part of the cohesive law is chosen in a conventional way and expo-

nential softening behavior is assumed.

Tm(δn) =


Tmaxm

δn
δ0m

for δn < δ0
m

Tmaxm e−α
(
δn/δ

0
m − 1

)
for δ0

m ≤ δn ≤ δf

0 for δn > δf

(4)

where

α =
1

GIc,m
Tmaxm δ0

m

− 2

3

(5)

holds. In Eq. (4) Tmaxm is the maximum normal matrix/interface traction, δ0
m

is the separation at which damage initiates.

For the bridging part, a polynomial law of the form

Tb(δn) =



0, for δn < 0

Cb

[(
δn
δpb

+
δ0
b

δpb

)q
−
(
δn
δpb

)q+r
−
(
δ0
b

δpb

)q]
, for 0 ≤ δn ≤ δf

0, for δn > δf

(6)

was proposed. In Eq. (6) q and r are positive numbers, δn is the separation,

and Cb, δ
0
b and δpb are model parameters. δf is the separation at total failure

and is not an independent parameter itself, but can be calculated from δ0
b and
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δpb . As previously, q = 3 and r = 1 were found to provide close agreement

with experimental observations, and all numerical results are therefore based

on this choice for the exponents. It is of note that all cohesive parameters are

understood as the parameters for an element of unity width.

As the cohesive law is comprised of two superimposed cohesive components, a

polynomial and an exponential one, it is denoted as Cohesive Superimposed-

Polynomial-Exponential-Law (C-SPEL).

Alternatively, a simplified version of the cohesive law has also been derived in

[51]. The quantities related to this formlation are denoted by hats over the

respective symbols (̂.).

T̂b(δn) =



0, for δn < 0

Ĉb

(δn
δ̂fb

)q̂
−

(
δn

δ̂fb

)q̂+r̂ , for 0 ≤ δn ≤ δ̂fb

0, for δ̂fb < δn

(7)

The initial stiffness of the alternative bridging component T̂b is 0. Through the190

choice of appropriate cohesive parameters, the alternative formulation can be

chosen very similar to Tb, except at very low separations. The latter restriction

is of little importance if a pronounced Tm is present, as shown in [51]. If T̂b

is used δfb = δf holds. Thus, for T̂b the failure separation is a direct model

parameter. In order to avoid redundancy, the parameter transferability is shown195

for both formulations, but all numerical examples are based on Eq. (6). The

traction-separation curves for specific parameter choices are shown in Section

6. As discussed by Höwer et al. [51, 52], it is possible to provide a physical

interpretation of the model parameters by connecting the characteristic values

of the cohesive law (failure separation, separation at the traction maximum, etc.)200

to the separation values observed in Figure 6. Some of the related analytical

expressions for the characteristic values of e.g. T̂b are given in Table 2.

13



Table 2: Material parameters of the SCB.

T̂b analytical numerical

failure separation δfb = δ̂fb 4.67 mm

separation at highest traction δ̂fb

(
q̂

q̂ + r̂

)1/r̂

3.4 mm

fracture toughness GIc,b
Ĉbδ̂

f
b r̂

(q̂ + 1)(q̂ + r̂ + 1)
836 kJ/mm2

highest traction value Ĉb

((
q̂

q̂ + ˆ̂r

)q̂/r̂

−
(

q̂

q̂ + r̂

)(q̂+r̂)/r̂
)

0.364 MPa

4. Finite element implementation

The cohesive law described in Section 3 has recently been implemented in a

2D, zero thickness, traction-separation-based Abaqus user element formulation.

In this work, the formulation is extended to 3D, which is straightforward in

terms of the finite element implementation.

The governing weak form is given as∫
Ω

δε : σ dV +

∫
Γc

δδ · Tc dS =

∫
Γ

δu · Text dS (8)

where Ω refers to the volume of the domain, Γc denotes the potential (initially

internal) fracture surface and Γ denotes the external domain boundary. The

strain is defined as ε = ∇symu. By using the elasticity tensor C, the stress σ

is obtained through σ = C : ε and Text is the external traction.

Using the differential operator B, which links global displacements to local

separations, the internal cohesive force vector fcoh is given by

fcoh =

∫
Γc

BTTcdS (9)

which then gives rise to the element stiffness matrix

Kcoh =
∂fcoh
∂u

=

∫
Γc

BT ∂Tc

∂δ
B dS (10)

In Eq. (10) δ is a vector of the form δ = (δn, δs)
T consisting of the normal

component, δn,and the effective shear (tangential) component, δt. However, in205
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the present investigation, which focuses on mode I delamination, only the nor-

mal component, δn, is used for the calculation of cohesive tractions which leads

to, Tc = (Tn, Ts) = (Tc, 0) in 2D and Tc = (Tn, Ts,1, Ts,2) = (Tc, 0, 0) in 3D.

While δs does not enter the traction calculation, it is still used as a parameter

to determine the upper bound of mode-mixity and ensure that the pure mode I210

assumption is justified, as shown in [51]. Since only monotonic loading is con-

sidered, no unloading condition has yet been defined.

5. Parameter transferability 2D to 3D

While the extension of the finite element implementation is very straightfor-215

ward, the parameter transferability from 2D to 3D must be carefully considered.

Since the 2D calculations take a fraction of the time of the 3D calculations, i.e.

O(1min) 2D vs. O(8hrs) in the 3D LoF case at identical increment size and

mesh density (and even much longer in the high fidelity case), it is highly de-

sirable to establish a procedure which allows a material characterization in the220

2D model and a subsequent transfer of the cohesive parameter set from the 2D

model to the 3D model.

Several assumptions about the cohesive parameters have been made:

1. As the separation values of final failure and peak traction were derived

from experimental DIC data, these values should remain the same in the225

cohesive laws of all models (2D and 3D low/high fidelity).

2. The total released energy per unit specimen width should be the same in

all cases.

3. The maximum traction value of the traction-separation law should in-

crease as the cross-sectional area of the sandwich core perpendicular to230

the loading direction decreases.

As a consequence of item 1 it is clear that the separation-related parameters δ0
b

and δpb should be the same in all cases. This leaves only Cb as a free parameter

of Tb. As outlined in Section 2.2, two different 3D FE models are considered:
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One low fidelity (LoF) model in which the core is modeled with a block-like

topology and effective orthotropic material properties, see Figure 4, and one

high fidelity (HiF) model, in which the core is modeled as an isotropic material

with honeycomb topology, see Figure 5. In the 2D model, a computational

thickness of unity is assumed. Thus, the parameters for the 2D calculation

and the 3D low fidelity model should be identical, as this choice satisfies items

2 and 3. For clarity, the expression C2D
b = C3D,LoF

b is introduced. The Tm-

related cohesive parameters also do not change.

In order to ensure items 2 and 3 are also satisfied for the high fidelity case, a

scaling factor λ is proposed which scales the traction separation law such that

the maximum traction and CERR increase proportionally without changing

the characteristic values. This can be accomplished by simply multiplying the

cohesive traction with λ, i.e.

THiFc = λTLoFc ⇒ GI,c = λGI,c (11)

where it is proposed to choose λ as

λ =
A3D,LoF

A3D,HiF
(12)

and where A3D,LoF and A3D,HiF are the cross-sectional areas perpendicular to

the loading direction of the low fidelity and high fidelity models respectively,

see Figure 8. In the current case, the ratio is A3D,LoF /A3D,HiF = 58.306. This

increases the maximum value of Tm, Tb, GI,b, and GI,b linearly. For the bridging

component, where the maximum traction as well as the CERR GI,b is linear in

Cb (Table 2), it is sufficient to scale C3D,HiF
b by a factor of λ

C3D,HiF
b = λC3D,LoF

b =
A3D,LoF

A3D,HiF
C3D,LoF
b (13)

In the case of the Tm-component, both the maximum traction parameter (Tmaxm )

and the CERR parameter GI,m have to be scaled, i.e.

T 3D,HiF
m = λT 3D,LoF

m G3D,HiF
I,m = λG3D,LoF

I,m (14)

in order to preserve the characteristic values of the cohesive law.

The three assumptions are considered valid if the load-displacement curves of the
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Figure 8: The effective cross-section of the low fidelity RUC (left) and the high fidelity RUC

(right).

2D model under plane stress or plane strain boundary conditions are identical

to the load-displacement curves of the 3D models.

The parameter transfer of the simplified model in [51] works analogously with

δ̂f,3D,LoF = δ̂f,3D,HiF , q̂3D,LoF = q̂3D,HiF , r̂3D,LoF = r̂3D,HiF and

Ĉ3D,HiF
b = λĈ3D,LoF

b (15)

An example for the scaling with a factor of λ = 3 is shown in Figure 9.
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Figure 9: Example of the scaling procedure with a scaling factor of λ = 3. The characteristic

values if the cohesive law remain unaffected. The delta-values are chosen in accordance with

Figure 6, i.e. delta 1: lowest traction, delta 2: traction peak, delta 4: failed interface.

6. Finite element model parameters

Considerable attention has been given to the idealization of the core in or-

der to ensure core compliance conformity between the low fidelity and high235

fidelity 3D models. At least in the thickness direction, which can be considered

to be most crucial to the current application [22], this aim has been achieved.

Thus, the shown models represent converged and robust discretizations, ele-

ment formulation, and material parameter characterization. The 2D model is

nearly identical to the model presented in [51]. The material parameters of the240

facesheets and core are given in Table 3, while the the three sets of cohesive

parameters are given in Table 4. The resulting traction-separation behavior

predicted by C-SPEL for the parameter sets P1 and P2 in Table 4 is shown in

Figure 10.

3Taken from [57].
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Table 3: Material parameters of the SCB.

facesheet (isotropic) core (high fidelity) load introduction block

[MPa] [−] [MPa] [−] [MPa] [−]

E = 86, 593.9 ν = 0.311 EHC,HiF = 27, 550.0 ν = 0.32 E = 72, 000 ν = 0.3

facesheet (orthotropic)

[MPa] [MPa] [−] [−] [MPa] [MPa]

E‖ = 86, 593.9 E⊥ = 10, 000.0 ν⊥‖ = 0.3219 ν⊥ = 0.024 G⊥‖ = 32, 753.5 G⊥ = 16, 379.5

core (low fidelity)

[MPa] [MPa] [−] [−] [MPa] [MPa]

E‖ = 517.13 E⊥ = 0.1467 ν⊥‖ = 0.33 ν⊥ = 0.0001 G⊥‖ = 151.683 G⊥ = 0.03669

Table 4: Cohesive parameter sets.

cohesive parameter set P1 (LoF, plane stress fit)

initial/matrix component bridging component

[MPa] K[J/m2] [mm] [MPa] [mm] [mm]

Tmax
m = 0.15 GIc = 0.2 δ0m = 0.005 Cb = 0.94 δ0b = 0.4 δpb = 3.65

cohesive parameter set P2 (LoF, plane strain fit)

initial/matrix component bridging component

[MPa] [KJ/m2] [mm] [MPa] [mm] [mm]

Tmax
m = 0.12 GIc = 0.2 δ0m = 0.005 Cb = 0.95 δ0b = 0.385 δpb = 4.1

cohesive parameter set HiF based on parameter set P1

initial/matrix component bridging component

[MPa] [KJ/m2] [mm] [MPa] [mm] [mm]

Tmax
m = 8.746 GIc = 11.66 δ0m = 0.005 Cb = 54.8 δ0b = 0.4 δpb = 3.65
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Figure 10: Traction-separation plots resulting from the cohesive parameters in Table 4.
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The quasi-isotropic composite laminate facesheet has been modeled as isotropic245

as well as out-of-plane anisotropic/in-plane isotropic. In the isotropic case, the

material parameters were chosen such that they provide the correct lever compli-

ance. In the anisotropic case, the out-of-plane parameters were estimated based

on [58, 59] and basic classical lamination theory calculations [60]. In previous

investigations, the lever was considered to be isotropic and the assumption was250

found to have no influence in the 2D case. Both cases were considered separately,

in order to investigate if there is an influence in the 3D case. In accordance with

the corresponding literature [16–18], no influence of the out-of-plane thickness

on the load-displacement or R-curves was found. Thus, the current results are

comparable to previous results, cf. [51, 52]. The LoF core was modeled as255

anisotropic due to the great disparity in Young’s moduli in through-thickness

and in-plane directions. The HiF core material is modeled as isotropic, as ex-

periments on the foil material showed that the axial and transverse Young’s

moduli varied by only 0.24% with a standard deviation of 2.18% of the meas-

sured value. A knockdown factor is applied to the meassured Young’s model260

such that the behavior of a unit cell, as shown in Figure 8, corresponds to the

meassured value in flatwise tension. The knockdown factor includes the effects

of e.g. geometrical imperfections. For the facesheets, core, and load introduc-

tion block Abaqus reduced integration standard elements were used, see Table

5. The cohesive layer was modeled with cohesive user elements. A mesh refine-265

ment study was conducted in longitudinal direction to ensure sufficiently refined

crack propagation results.
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Table 5: Discretization and element formulation details for the models.

model
solid total total

element type # elements # nodes

2D plane strain CPE4R 7,294 7,596

2D plane stress CPS4R 7,294 7,596

3D plane stress/strain CPS4R 7,294 15,192

3D low fidelity (width=25.4 mm) C3D8R 176,300 191,621

3D low fidelity (width=23.915 mm) C3D8R 167,568 182,451

3D high fidelity C3D8R 2,499,660 3,394,961

7. Results and discussion

The results and discussion section is split into four main parts: 1.) load-

displacement results and discussion for various models, 2.) curvature of the270

delamination front 3.) presentation of R-curve results, comparison, and discus-

sion, and 4.) mode partitioning and concluding remarks.

7.1. Comparison of load-displacement curves

7.1.1. Comparison of 2D plane stress to 3D low fidelity load-displacement curves

After verifying that the 3D element formulation gives the same answer for the275

same boundary value problem (plane stress), it is investigated if the cohesive

parameters, which were obtained by fitting the 2D plane stress model to the

experimental results, can be transferred to the full 3D low fidelity prediction

with the same paramter set P1 (C-SPEL full 3D LoF P1). As shown in Figure

11, nearly exact agreement between the 2D plane stress and the full 3D LoF280

model is achieved and no refitting of model parameters is necessary. Thus,

the plane stress boundary condition provides a suitable approximation of the

coupon level experiment.
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Figure 11: Comparison of the 2D plane plane stress prediction to the equivalent 3D boundary

condition prediction and the full 3D prediction.

7.1.2. Comparison of 2D plane strain to 3D low fidelity load-displacement curves

As shown in Figure 12, when cohesive parameter set P1, which provided285

a good fit to experimental data for 2D plane stress and conditions, is used in

the plane strain case, the predicted load-displacement curve deviates from ex-

perimental results, as expected. The peak load difference is 4.87%. Therefore,

the parameters are re-fit for the plane strain case, leading to cohesive param-

eter set P2, shown in Table 4. Cohesive parameter set P2 provides a good fit290

to experimental data under plane strain assumptions, see Figure 12. However,

when cohesive parameter set P2 is used in the 3D low fidelity model, there is

disagreement between the 2D plane strain and 3D predictions and consequently

with experimental results, see Figure 12. The peak load difference is 3.77% in

this case. Thus, in the case of the mode I disbonding of a CFRP facesheet from295

an aluminum honeycomb core sandwich the plane stress assumption seems to

be valid. The debate on the appropriateness of plane strain and plane stress as-

sumptions in monolithic laminates [16–18] and the common application of both
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Figure 12: Comparison of the 2D plane strain predictions to equivalent 3D boundary condi-

tions.

plane strain [53, 54] as well as plane stress assumptions [55, 56] may indicate

that other geomtries or core materials could potentially affect the validity of the300

in-plane assumptions.

7.1.3. Comparison of 3D low fidelity to 3D high fidelity load-displacement curves

In Section 7.1.1 it was shown that the 2D plane stress and 3D LoF predictions

are in excellent agreement with the experimental results when the specimen305

width and the model width is identical. Unfortunately, the direct comparison of

the HiF computation to experiments is not currently feasible, as the developed

honeycomb geometry generation algorithm requires the specimen width to be

multiples of one honeycomb unit cell width as outlined in Section 2.2. Thus, the

exact test specimen width cannot be matched in the HiF case. Therefore, the310

HiF predictions have been compared to LoF predictions of identical specimen

width in this section. As the LoF model was already shown to be in excellent

agreement with experiments, this procedure should be valid.
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Figure 13 shows that the 3D LoF and 3D HiF predictions are all in excellent

agreement. This therefore validates the proposed parameter transfer procedure.315

A parameter study in which the in-plane Young’s modulus of the homogenized

Figure 13: Comparison of 3D LoF to 3D HiF load-displacement results.

core material is varied confirms that the load-displacement curve is insensitive

with respect to the in-plane Young’s modulus of the homogenized core material.

7.1.4. Load-displacement curves - conclusion

Sections 7.1.1-7.1.3 clearly demonstrate that, for a characterization of the320

material interface, only 2D plane stress calculations have to be performed. This

is a great benefit, since it is possible to carry out several hundred 2D calcu-

lations on a personal computer in less than an hour, which is unrealistic even

for the LoF 3D calculations not to mention the 3D HiF calculation. This is a

very important factor, since the simulation must be run multiple times in the325

parameter fitting stage, but only once on the structural level (without paral-

lelization, 2D: O(1min), 3D LoF: O(8hrs), 3D HiF: O(3weeks)). The in-plane

constrained modulus of the core was found to have negligible effect, as well as

the out-of-plane anisotropy of the facesheet.
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7.2. Curvature of the delamination front330

The curvature of the delamination front is a well-known aspect of DCB

and SCB tests which is caused by anticlastic bending [16, 18]. The shape of

the delamination front is often described as “thumbnail-shaped” [15, 17]. The

thumbnail-shaped curvature of the crack front was also present in the current

3D simulation results. The contour of the crack front predicted by the currently

used crack length criterion ([52], Section 7.3) is shown in Figure 14. A relative

Figure 14: Fully developed crack front contours of the LoF (left) and HiF (right) models

(width of 23.915 mm). The element edge length is approximately 1 mm in the LoF model.

metric for the severity of the crack front curvature can be defined as

∆âcurv =
∆a|y=0 −∆a|y=±b/2

b
(16)

i.e. the difference in crack length at the centerline and the crack length at

the edge normalized over the specimen width. The quantities for the LoF and

HiF case with a width of 23.915 mm are plotted in Figure 15. The difference

between the crack propagation on the surface and at the centerline increases ini-

tially until a saturation value is reached after 15-20 mm of crack propagation.335

This corresponds to the peak load which coincides with the full formation of

the fracture zone / bridging mechanism. The difference in crack length is about

1.3 mm, i.e. 5-6% of the width, and there is no pronounced difference between

the LoF and HiF case, see Figure 15. The read-off accurracy was 0.1mm, which

explains some of the existing scatter.340
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It is of note that, the locus of the highest normal stress points close to the

Figure 15: Comparison between the HiF and LoF model in terms of crack curvature, defined

as the variation between the centerline crack growth and the surface crack growth. Both

ordinates are valid for all points.

crack front has a more pronounced curvature than the curvature of the crack

front under the currently used crack criterion, see Figure 16. The model pre-

dicts a pronounced thumbnail shape of the apparent crack front (Figure 14) as

well as for the locus of highest thickness-direction normal stress S33 (Figure345

16) points, which is associated with the Tm-related crack front. However, the

bridging-related (Tb) locus of the highest S33 values is essentially a straight

line, see Figure 22. The reason for this curvature difference between the stress

fronts is that the curvature is driven by anticlastic bending. The anticlastic

bending-induced variation in vertical displacement across the width at a given350

longitudinal position is very small, i.e. only a fraction of a millimeter. However,

the Tm-component of the present cohesive formulation is very sensitive with

respect to these minor variations in displacement at low separation values. At

larger separations, i.e. in the bridging-dominated (Tb) domain of the cohesive

law, the slope of the traction-separation law is comparatively low and minor355
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Figure 16: Comparison between the HiF (left) and LoF (right) model the thickness direction

normal stresses in the facesheet above the cohesive layer (S33). The two contour plots have

been plotted with approximately scaled stress ranges for emphasis.

displacement variations due to anticlastic bending do not manifest in notice-

able changes in cohesive traction or core strain. Thus, the minor saddle-shaped

deflection shape, which is also present in the wake of the crack tip, causes a

considerably lower curvature of the S33 peak locus in the bridging-dominated

domain.360

7.3. Comparison of R-curves

Another important meassure of the accuracy of the numerical predictions,

besides the comparison of measured and predicted load-displacement curves, are

the measured and predicted R-curves.

To this end, a dissipation, threshold-based, engineering estimate for the compar-

ison of FE-predicted R-curves and experimental R-curves has been proposed and

verified in [52]. The method assumes that a crack is visible in the experiment

once a certain dissipated energy level θIc,m of the matrix-related component has

been reached. This fraction θIc,m is defined as

θIc,m =
GI,crack tip

GIc,m
(17)

Thus, it is assumed that θIc,m is the fraction of the matrix-related CERR which

needs to be dissipated before a visible crack propagation can occur. From the

dissipated energy level, θIc,m, a corresponding opening, δθ, is calculated from

GI,crack tip = θIc,mGIc,m =

∫ δθ

0

Tm(δn) dδn (18)
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During postprocessing, the longitudinal position at which the specific opening

value δθ is met is extracted from the FE output, and the apparent CERR,

according to Eq. (19), is calculated using the associated load and displacement

values. For the 3D predictions, this process is carried out at the centerline

(“mid”) as well as on the surface (“ext”) of the specimen. Once the load point

displacement u, load P , and crack length ∆a is known, the apparent fracture

toughness, according to ASTM D 5528, can be estimated as

GIc,ASTM =
3Pu

2b(a0 + ∆a)
(19)

The resulting R-curves for the 2D plane stress and 3D LoF cases are shown in

Figure 17. It can be seen, that the 2D plane stress curve is between the cen-

Figure 17: Comparison 2D and 3D low fidelity (LoF) R-curve predictions to experimental

results. θIc,m = 0.7 in all computations.

terline curve (mid) and the surface (ext) curve. The best agreement between

experiments and numerical predictions is observed for the surface (ext) curve,

which is desirable as this is the quantity that was measured in the experiment.

In the literature, it is observed that the laminate layup has an influence on
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the curvature of the delamination front and thus on the apparent R-curve

[15, 16, 18]. In the current investigation no difference is observed between

the orthotropic and the isotropic case. While unintuitive, this observation is

in agreement with the refrences mentioned above, as the currently investigated

specimen is in-plane isotropic, and the literature suggests that the R-curve de-

pendence is mostly driven by

Dc =
D2

12

D11D22
(20)

where D12, D11, and D22 are the flexural rigidities [15, 16, 18]. This means that

the out-of-plane modulus should not affect the results. Indeed, the out-of-plane

orthotropy is confirmed to have negligible influence on the R-curve by using

isotropic and out-of-plane anisotropic material parameters according to Table365

3.

A comparison between the 3D LoF and 3D HiF R-curve predictions is shown in

Figure 18. While Figure 15 indicates that the difference between centerline and

Figure 18: Comparison 3D low fidelity (LoF) and 3D high fidelity (HiF) R-curve predictions

to experimental results. θIc,m = 0.7 in all computations.

surface crack length remains constant after a saturation value has been reached,
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the centerline and surface R-curves converge to the same value, which is easily370

explained through Eq. (19). While the absolute difference ∆a remains constant,

the relative difference decreases and thus the R-curves converge at higher crack

lengths values.

In conclusion, the numerical R-curve predictions and the experimentally mea-

sured R-curves are in close agreement. The numerical model predicts different375

R-curves for the centerline of the specimen and the edge of the specimen, due

to the curvature of the delamination front. As expected, the R-curve which

is predicted at the edge of the specimen shows the closest agreement with the

experimental results. The R-curve predictions of the LoF and HiF model at a

given specimen width are in very close agreement. Thus the crack growth and380

energy dissipation is well-captured by the proposed model.

7.4. Mixed mode partitioning and concluding remarks

The predictions of the load-displacement curves and R-curves between for

the HiF and LoF models match almost surprisingly well. Furthermore, it seems

almost unintuitive that the SCB sandwich panel is in a state of almost pure mode

I delamination [51], when the SCB test for monolithic laminates is often reported

to have a mode mixity of approximately GI/G ≈ 63% [61]. The reason for both

observations is likely the orthotropy, and especially the low in-plane stiffness,

of the honeycomb core. The in-plane Young’s modulus of the honeycomb core

is EHC⊥ = 0.1467 MPa while the in-plane Young’s modulus of the facesheet

EFS‖ = 86, 593, 9 MPa is about five orders of magnitude higher. Note that EFS‖

denotes the in-plane modulus of the in-plane isotropic laminate, i.e. there is no

preferred fiber direction in-plane and there is no distinction between individual

layers. The high difference in stiffness leads to a significant difference in the

magnitude of the in-plane normal stresses in the facesheet and the core, namely

five orders of magnitude, see Figure 19. Since the in-plane normal stresses in the

core are approximately 0 and there is negligible honeycomb core curvature,dφHC

dx

, it can be assumed that the transferred moment in the core, MHC , where

MHC = EHCIHC
dφHC

dx
≈ 0 (21)
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(a) Longitudinal normal stress contour plot

ranging from -0.005 MPa to 0.005 MPa (nor-

mal stress level in the core).

(b) Longitudinal normal stress contour plot

ranging from -350 MPa to 350 MPa (normal

stress level in the facesheet).

Figure 19: Longitudinal normal stresses close to the crack tip.

is also approximately zero. In Eq. (21) IHC denotes the second moment of area

defined through

IHC =
btHC

3

12
(22)

where b and tHC are given in Table 1. A schematic adopted from Williams

[61] and modified for the current purpose is shown in Figure 20. The clamped

bottom facesheet is treated as a solid foundation.

Starting from the basic definition of the energy release rate G

Figure 20: Schematic of the forces and moments close to the crack tip prior to crack propa-

gation.
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G =
1

b

(
dUe
da
− dUs

da

)
(23)

where Ue the external work performed and Us is the strain energy an estimate

for the mode-mixity (mode partitioning) is derived.

In the current case it is quickly shown that the moments initially cause no net

external or net internal work when, besides MHC ≈ 0 (Eq. (21)), it is assumed

that the bending stiffness of the honeycomb KHC is approximately 0 and thus

KHC = EHCIHC ≈ 0 and K0 ≈ KFS (24)

where K0 denotes the bending stiffness of the bonded core and top facesheet.

While the argument for neglecting the bending moment in the core was based

on a difference of five orders of magnitude for the relevant longitudinal stresses,

the difference in bending stiffness between the core and the facesheet is, due to

the much hicher core thickness only

KFS

KHC
= 70.35 (25)

The difference is considered to be sufficiently high to be neglected . It then

follows that

dφFS

da
=

MFS

EFSIFS
and

dφ0

da
=
MFS +MHC

E0I0
≈ MFS

EFSIFS
(26)

Using this approximation, the external work is clearly zero since

δUe = MFS

dφHC

da
− dφ0

da︸ ︷︷ ︸
≈0

 δa+MHC︸ ︷︷ ︸
≈0

(
dφHC

da
− dφ0

da

)
δa ≈ 0 (27)

Similarly, the net strain energy contribution of the moments is zero under the

described approximations

δUs =
MFS2

2EFSIFS
+

MHC2

2EHCIHC
−
(
MHC +MFS

)2
2E0I0

≈ MFS2

2EFSIFS
− MFS2

2EFSIFS
= 0 (28)

Thus, only the contribution of the shear forces QFS and QHC remains. From

the free body diagram QHC is clearly 0 at the onset of crack propagation, as
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there are no tractions across the insert. As shown by Williams [61] the shear

forces only contribute towards mode I delamination and the contribution can

be calculated as

τ =
3

2

(
QFS

btFS

)(
1− z2

(tFS/2)
2

)
(29)

where τ is the shear stress in the facesheet. The facesheet is considered isotropic

and possible shear variations across the thickness due to the layup are neglected.

Using Eq. (29), and exploiting that∫ tFS/2

0

(
1− z2

(tFS/2)2

)2

dz =
4tFS

15
(30)

the shear force contribution towards the strain energy can be expressed as

dUs
da

= 2B

∫ tFS/2

0

1 + νFS⊥
EFS

τ2 dz =
6

5

1 + νFS⊥
EFS

QFS
2

btFS
(31)

which leads to

GI =
3

5

1 + νFS⊥
EFS

QFS
2

btFS
and GII = 0 (32)

The validity of the assumptions is checked by computing the R-curve from Eq.

(32). The results is shown in Figure 21 and very close agreement between the

analytical prediction and e.g. the centerline R-curve of the 3D model is observed385

up to approximately 16 mm crack length. The deviation becomes noticeable at

approximately Stage III of crack formation as identified by Höwer et al. [51],

i.e. the stage at which the the fiber bridging becomes clearly noticeable. In

the free body diagram shown in Figure 20, on which the derivation is based, a

traction-free surface in the wake of the crack tip, and more specifically across390

the Teflon insert, is assumed. The assumption of a traction free-surface is cler-

aly violated when the length of the process zone is ca. 20 mm and the insert

length a0 = 52.95 mm is less then 3 times the process zone length, especially

when the highest tractions occur far in the wake of the crack, as is the case

in the proposed model. Thus, the traction in the wake of the crack tip would395

have to be included in the calculation of G if the prediction is to be valid for

propagating crack. However, the presence of cohesive normal tractions will not
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Figure 21: Comparison of the analytical R-curve prediction based on Eq. (32) the apparent

R-curve extracted from FE predictions. The FE R-curve identical to the curve shown in

Figure 17.

lead to any mode II contribution. Thus, the crack propagation was shown to

be clearly mode I dominated and the made assumptions seem to be justified in

this case. Naturally, the estimate is very crude and could be refined in many400

regards [62–66].

The high in-plane compliance of the core, compared to the out of plane com-

pliance, in the LoF as well as the HiF models, also ensures that there are only

negligible in-plane normal stresses (S11, S22) and that the gradient of the out

of plane normal stress (S33) is very small in both cases, see Figure 22. This405

separation of the in-plane and out of plane stresses probably contributes sig-

nificantly to the very close agreement between LoF and HiF load-displacement

curves despite the vastly different core topologies and and cohesive strength

values.

Lastly, it should be mentioned that there were noticeable shear stresses several410

mm beneath the interface in the HiF model, even when there was no tangential

traction at the interface. These shear stresses were not present in the LoF model
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(a) Normal stress in thickness direction of the

3D LoF model width=(23.915 mm) at ∆a ≈

20mm.

(b) Normal stress in thickness direction of the

3D HiF model (width=23.915 mm) at ∆a ≈

20mm.

Figure 22: Thickness direction normal stress (S33) contour plots of the HiF and LoF predic-

tions.

and are thus likely caused by the honeycomb topology of the core. While these

stresses were shown to have no influence on the global load-displacement curves,

the observed shear stresses may facilitate the crack propagation into the core.415

8. Conclusion

A recently proposed cohesive zone formulation, which accounts for fiber

bridging in a novel way, has been extended from 2D to 3D. The SCB speci-

men was shown to be closer to a state of plane stress, as there was excellent420

agreement between 2D plane stress and 3D models of high and low fidelity, but

not between 2D plane strain and 3D models of identical material and cohe-

sive parameters. This comparison also showed that 3D effects had negligible

influence on the load-displacement curves. Thus, the characterization of the

cohesive interface parameters can be accomplished with very efficient 2D plane425

stress simulations, which require less than a minute of calculation time each.

This is a great benefit, as the 2D model may have to be run multiple times for

fitting purposes, but the 3D structural calculation only has to be run once. The

3D low fidelity and 3D high fidelity models showed excellent agreement in terms

of the load-displacement curves and R-curves. Therefore, it is recommended to430

use a low fidelity 3D model for structural applications, as the computational
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time is significantly lower, while the same accuracy is achieved in terms of the

facesheet to core delamination, when the newly proposed cohesive formulation

is used. Lastly, an estimate of the mode mixity of the SCB is provided.

435
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