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Abstract 

Our recent tutorial referred to in the title has summarized a general theoretical formalism of 

electromagnetic scattering by an arbitrary finite object in the presence of arbitrarily distributed 

impressed currents. This addendum builds on the tutorial to provide a streamlined discussion of 

specific far-field limits and the corresponding reciprocity relations by introducing appropriate far-field 

operators and linear maps and deriving the reciprocity relations through the pseudo adjoint of these 

maps. We thereby extend the compact operator calculus used previously to consider the fields and 

sources near or inside the scattering object. 

 

Keywords: electromagnetic scattering, impressed sources, impressed fields, volume integral equation, 

transition operator, reciprocity 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3 

 

1 Introduction 

In a recent tutorial [1], we have outlined a general and self-consistent theoretical formalism describing 

frequency-domain electromagnetic scattering by an arbitrary finite object in the presence of arbitrarily 

distributed impressed currents. Sections 9–11 of Ref. [1] dealt with “far-field” limits, i.e., with 

scenarios wherein the source and/or observation points are far from the scatterer. The corresponding 

derivations are straightforward and successful in proving fundamental reciprocity relations. However, 

they are somewhat cumbersome and do not employ the operator calculus invoked in Sections 7, 8, and 

12 to streamline the derivations for fields and sources near or inside the scattering object. The goal of 

this addendum is to remedy these deficiencies by introducing far-field operators and linear maps and 

deriving the reciprocity relations through the pseudo adjoint of these maps. Not being constrained by 

the scope of the original tutorial, we pay more attention to mathematical rigor. 

2 Notation and function spaces 

For the sake of consistency, we keep the notation of the original tutorial [1]. In particular, bold letters 

denote vectors (   ); bold letters with a caret denote unit vectors ( ̂); Italic capital letters with a 

double-headed arrow denote dyadics ( ⃡) or, depending on the context, their matrix representations; 

Italic letters denote various variables or elements of a function space (   ); and Italic capital letters 

with a caret denote linear operators or maps acting between these spaces ( ̂). We reserve the term 

“operator” for maps between a space and itself, and use handwritten capital letters to denote function 

spaces themselves ( ). 

First, let us define the space of (near) fields      (  )  such that each Cartesian component 

of a field is square-integrable. This space was implicitly assumed in Ref. [1] for electric fields and 

sources when the latter have finite support, i.e., are not zero only in a finite volume. Moreover, this 

space naturally corresponds to the finiteness of the energy of the electromagnetic field [2]. Second, we 

define the space of square-integrable transverse far-fields defined on a unit sphere   :    

* |    (  )    ̂      ( ̂)   ̂+. Owing to the orthogonality condition, the fields in    are 

effectively two-dimensional, i.e.,    is isomorphic (equivalent) to       (  ) . The corresponding 

isomorphism  ̂         is local with respect to  ̂, i.e., 

 ( )( ̂)   ⃡( ̂) ( )( ̂)  (1) 

where parenthesized superscripts denote the corresponding dimensionality of the vectors or dyadics (if 

necessary) and  ⃡( ̂) is the 2×3 matrix defining row-wise the orthonormal basis on a sphere (thereby 

stretching the dyadic notation). We do not specify a particular basis (e.g., the standard spherical basis 
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vectors  ̂  and  ̂ ) and only require it to be real, thereby implying that  ⃡ is row-orthogonal, i.e., 

 ⃡( ̂)   ⃡ ( ̂)   ⃡( )  ⃡ ( ̂)   ⃡( ̂)   ⃡   ̂   ̂  (2) 

where   denotes the dyadic product, the superscript “T” denotes the standard transposition of a 

dyadic, and  ⃡ is the identity dyadic. The second equality follows from uniqueness of the projector 

matrix on the one-dimensional subspace parallel to  ̂. Furthermore,  ⃡   ̂   ̂ is equivalent to  ⃡ when 

acting on a transverse field, hence  ⃡ ( ̂) defines the inverse isomorphism  ̂          . In the 

following, we will mostly deal with    to be independent of  ⃡( ̂), but we have to consider     in 

discussing the scattering matrices. 

3 Main results 

The main entity in considering far-field quantities is the limiting linear map defined as 

 ̂       ( ̂ )( ̂)     
   

    (     ) ( ⃡   ̂   ̂)   (  ̂)  (3) 

where the limit exists due to square integrability in     while the projector ( ⃡   ̂   ̂) is added for 

convenience to limit the range of the map to   . We neither use nor analyze  ̂ separately. Instead we 

always combine it with a Green’s operator (explicitly or implicitly), in which case the above projector 

becomes redundant. We start with 

 ̂         ̂   ̂ ̂ ( ̂  )( ̂)   ∫      ⃡ ( ̂  )   ( )
  

  (4) 

 ⃡ ( ̂  )  
 

  
   (     ̂   ) ( ⃡   ̂   ̂)  (5) 

where  ̂ is the free-space Green’s operator given by Eq. (18) of Ref. [1] and Eq. (5) is equivalent to 

Eq. (68) of Ref. [1]. Typically – e.g., Eq. (12) of Ref. [1] – the forcing function   has finite support V, 

implying     ( )    . The scattered far-field is expressed as 

  
     ̂      ̂  ̂   ̂  ̂ 

             (6) 

which follows from Eqs. (22), (38), (39), and (69) of Ref. [1]. Here  ,   , and      denote the total, 

incident (due to impressed sources), and scattered fields, respectively. The operator  ̂ defines the 

scatterer and the transition operator  ̂ fully describes its electromagnetic response as defined by 

Eqs. (13), (25), and (35) of Ref. [1]. 

Let us further define the pseudo adjoint [2] (or transpose [3]) of  ̂ , denoted as  ̂ 
       . It 

is done analogously to the Hermitian adjoint, 

〈   ̂ 
  〉

  

 
 〈 ̂    〉

  

 
              (7) 

but using the pseudo inner products 
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〈   〉  

 
 ∫    ̂  ( ̂)   ( ̂)

  
         〈   〉  

 
 ∫      ( )   ( )

  
 (8) 

instead of the standard    inner products, i.e., differing by complex conjugation of the second 

argument. Mathematically, the pseudo inner product is bilinear, i.e., linear in both arguments, while 

the standard inner product is sesquilinear, i.e., linear in the first argument but antilinear (conjugate-

linear) in the second one. There is no clear consensus in the literature on the proper symbol for pseudo 

adjoint, but we use the superscript “t” to distinguish it from the dyadic transpose, although the two 

concepts are closely related. 

The pseudo adjoint was defined (less rigorously) for operators from    to    by Eq. (45) of Ref. 

[1], together with the notion of pseudo self-adjointness, i.e., the operator being equal to its pseudo 

adjoint. In particular, we use in the following the fact that the operators  ̂,  ̂, and  ̂, as well as the 

source Green’s operator  ̂  are pseudo self-adjoint for any reciprocal medium (Eqs. (32), (57), and 

(58) of Ref. [1]). 

Taking pseudo adjoint has many properties of the matrix transposition or taking adjoint [2], most 

importantly 

( ̂ ̂)
 
  ̂  ̂   (9) 

While any isomorphism conserves the inner product, Eq. (2) implies that  ̂ also conserves the pseudo 

inner product, i.e., 

〈 ̂   ̂ 〉   

 
 〈   〉  

 
  (10) 

Thus in Eqs. (7) and (8),    can be effectively replaced by     and 

 ̂   ̂   ( ̂ ̂ )
 
  ̂ 

  ̂    (11) 

Alternatively,  ̂ 
  can be expressed through the integral kernel 

( ̂ 
  )( )  ∫    ̂  ⃡ 

 (   ̂)   ( ̂)
  

  (12) 

which together with Eqs. (4) and (7) implies 

 ⃡ 
 (   ̂)  [ ⃡ ( ̂  )]

 
  (13) 

The dyadic  ⃡ 
  can also be thought of as a free-space field from a distant source: 

 ⃡ 
 (   ̂)     

    
     (     

 )  ⃡ (     ̂)  (14) 

where the last superscript “t” can in principle be omitted owing to the pseudo self-adjointness of  ̂ and 

the invariance of  ⃡ with respect to argument interchange. But the entire analysis is valid for an 

arbitrary background reciprocal medium, e.g., a semi-infinite plane substrate. Then  ̂ is still pseudo 

self-adjoint, but the arguments of  ⃡ can be interchanged only when combined with transposition. 
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The linear map  ̂ 
  constructs the field due to a distribution of distant sources and is related to 

the vector Herglotz wave function (Eq. (6.94) of Ref. [4]). In particular, the incident (source) plane 

wave with an amplitude   
    propagating along  ̂    is given by 

  ( )    
      (    ̂

     )  (15) 

which can be transformed using Eqs. (5) and (13) into 

      ̂ 
  ̂         ( ̂)    

    ( ̂   ̂   )  (16) 

where  ( ̂) is the solid-angle delta function, while the linear operator  ̂       inverts the direction 

of  ̂ and can be represented as an integral operator with the kernel 

 ⃡( ̂  ̂ )   ⃡  ( ̂   ̂ )  (17) 

Obviously,  ̂   ̂    ̂. Eq. (16) can also be obtained by explicitly moving the source to infinity 

(with a linear scaling of its amplitude) according to Eq. (14), as was done in Ref. [1]. Strictly speaking, 

neither      nor    in Eq. (16) are square-integrable due to the delta function, i.e.,         and 

     . However, they can be defined as the limits of sequences from these spaces (i.e., as 

generalized functions), and the central Eq. (7) remains valid since both pseudo inner products are well 

defined, albeit potentially unbounded if at least one of the arguments is square-integrable. 

The far-field scattering linear operator  ̂       with the dyadic kernel  ⃡( ̂     ̂   ) is 

defined by Eq. (69) of Ref. [1] or, equivalently, as 

 ̂       
    (18) 

(cf. Eq. (6.98) of Ref. [4]), which together with Eqs. (6) and (16) implies 

 ̂     ̂  ̂ ̂ 
  ̂   ̂   ̂ ̂ ̂  (19) 

since  ̂ is pseudo self-adjoint. The last part of Eq. (19) is exactly the far-field reciprocity relation: 

 ⃡( ̂     ̂   )  [ ⃡(  ̂      ̂   )]
 
  (20) 

The widely used amplitude scattering matrix [5] is the following 2×2 dyadic  ⃡( ) 

corresponding to the operator  ̂( )        : 

 ⃡( )    ⃡( ̂   ) ⃡( ̂     ̂   ) ⃡ ( ̂   )  (21) 

Substituting Eq. (21) into Eq. (20) we obtain the modified reciprocity relation 

 ⃡( )( ̂
     ̂   )  [ ⃡( ̂   ) ⃡( )(  ̂      ̂   ) ⃡ ( ̂   )]

 
  (22) 

where we used Eq. (2) and 

 ⃡( ̂     ̂   )   ̂     ̂     ⃡( ̂     ̂   )    (23) 

(by definition of   ). The 2×2 dyadic 

 ⃡( ̂)   ⃡( ̂) ⃡ (  ̂) (24) 
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takes a simple form in many natural bases. In particular, for a standard spherical basis  ⃡ is a diagonal 

matrix with elements    and   , then its effect in Eq. (22) amounts to inverting the sign of the off-

diagonal elements (cf. Eq. (5.31) of Ref. [5]). 

Analogously, the generalized scattering linear map  ̂       with the kernel  ⃡(   ̂) is given 

by 

 ̂           ̂   ̂ ̂  (25) 

cf. Eq. (73) of Ref. [1]. Combining this definition with Eq. (18), we obtain 

 ̂     ̂ ̂ ̂ 
  ̂  ( ̂ ̂)

 
    ̂  ̂ ̂    ( ̂    ̂ )  (26) 

 ̂    ̂ ̂   ̂   ̂  ̂ ̂  (27) 

Eq. (26) is the mixed (far-near-field) reciprocity relation, when expressed in terms of kernels: 

[ ⃡(    ̂)]
 
   [ ⃡  ( ̂  )   ⃡ ( ̂  )] 

      
    

     (     
 )  ⃡ ( 

  ̂  )     (     ̂   ) ( ⃡   ̂   ̂)  
(28) 

Finally, one may also express  ̂ as 

 ̂    ( ̂  
   ̂ 

 ) ̂  (29) 

The mixed reciprocity relations can also be proven directly from the underlying scattering problem, 

see Theorem 6.31 of Ref. [4] 

4 Conclusion 

The theme of this addendum is aligned with that of the original tutorial [1]. Most importantly, we 

provided a streamlined derivation of the far-field and mixed reciprocity relations (Eqs. (20), (22) and 

(28)) through the analysis of the pseudo adjoints of the corresponding linear maps. More generally, the 

whole operator calculus described in a concise manner can be useful for theoretical analyses of 

scattering problems for complex scenarios, such as a semi-infinite plane substrate [6], whose effect can 

be accounted for by a proper modification of the environment operator  ̂. 
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