
	 1	

Deriving three dimensional reservoir bathymetry from multi-satellite datasets 1	

Augusto Getirana1,2, Hahn Chul Jung1,3, Kuo-Hsin Tseng4,5 2	

1 NASA Goddard Space Flight Center, Greenbelt, MD, USA  3	

2 Earth System Science Interdisciplinary Center, College Park, MD, USA  4	

3 Science Systems and Applications, Inc., Lanham, MD, USA 5	

4 Center for Space and Remote Sensing Research, National Central University, Taoyuan, Taiwan 6	

5 Institute of Hydrological and Oceanic Sciences, National Central University, Taoyuan, Taiwan 7	

 8	

Corresponding author:  9	

Augusto Getirana (augusto.getirana@nasa.gov) 10	

NASA Goddard Space Flight Center  11	

8800 Greenbelt road, Greenbelt, 20771 MD, USA 12	

 13	

Abstract 14	

We evaluate different techniques that rebuild reservoir bathymetry by combining multi-satellite 15	

imagery of surface water elevation and extent. Digital elevation models (DEMs) are processed in 16	

two distinct ways in order to determine 3-D reservoir bathymetry. They are defined as (a) linear 17	

extrapolation and (b) linear interpolation. The first one linearly extrapolates the land slope, 18	

defining the bottom as the intersection of all extrapolated lines. The second linearly interpolates 19	

the uppermost and lowermost pixels of the reservoir’s main river, repeating the process for all 20	

other tributaries. A visible bathymetry, resulting from the combination of radar altimetry and 21	

water extent masks, can be coupled with the DEM, improving the accuracy of techniques (a) and 22	

(b). Envisat- and Altika-based altimetric time series is combined to a Landsat-based water extent 23	

database over the 2002-2016 period in order to generate the visible bathymetry, and topography 24	

is derived from the 3-arcsec HydroSHEDS DEM. Fourteen 3-D bathymetries derived from the 25	

combination of these techniques and datasets, plus the inclusion of upstream and downstream 26	

riverbed elevations, are evaluated over Lake Mead. Accuracy is measured using ground 27	

observations, and show that metrics improve as a function of added data requirement and 28	

processing. Best bathymetry estimates are obtained when the visible bathymetry, linear 29	

extrapolation technique and riverbed elevation are combined. Water storage variability is also 30	

evaluated and shows that best results are derived from the aforementioned combination. This 31	
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study contributes to our understanding and representation of reservoir water impoundment 32	

impacts on the hydrological cycle. 33	

1. Introduction 34	

Today, water security is a major issue in many regions in the world where humans face a 35	

changing climate. Manmade reservoirs and their operation play a key role in water storage and 36	

supply, and have a major impact on the water budget at the regional scale (e.g., Wang et al., 37	

2011; Getirana, 2016). Reservoir operation rules or other related information, such as water 38	

levels and outflows, are not usually available for large scale modeling purposes. In that sense, 39	

numerous studies have proposed different techniques to infer reservoir dynamics worldwide 40	

through remote sensing. Water levels are commonly inferred through laser or radar altimetry 41	

(Birkett et al., 2010; Cretaux et al., 2011; Okeowo et al., 2017), water extent from land cover 42	

imagery, such as Landsat, MODIS and radar images (Messager et al., 2016; Jung et al., 2010; 43	

2011) and storage by combining both of them (Smith & Pavelsky, 2009; Gao et al., 2012; Duan 44	

& Bastiaanssen, 2013; Zhang et al., 2014). Other studies have combined water extent with DEMs 45	

in order to determine the water storage variability in large river basins (e.g Papa et al., 2013; 46	

Cretaux et al., 2015; Salameh et al., 2017).  47	

Hydrological models have been critical in the understanding of the global water availability (e.g., 48	

Getirana et al., 2017), but most of these models neglect anthropogenic impacts. Few exceptions 49	

represent reservoirs as simple “buckets”, where no bathymetric information is required, 50	

simulating water multi-use based on generic empirical equations (e.g., Haddeland et al., 2006; 51	

Doll et al., 2009). Recent progress in surface water dynamic modeling allows us to obtain a more 52	

physically based representation of reservoir operation impacts on the river network system (e.g., 53	

Mateo et al., 2014). However, global DEMs, commonly used to derive model parameters, inform 54	

us with the surface water elevation rather than the bathymetry, which is defined as the 55	

measurement of water body depths. Recent efforts have been put towards the development of 56	

more accurate global DEMs, accounting for different sources of errors and interferences (e.g. 57	

Yamazaki et al., 2017). Although some studies have suggested ways to improve flow directions 58	

in flat DEMs due to floodplains (e.g. Getirana et al., 2009a,b), water bodies are yet to be 59	

accurately accounted for in DEM processing. That imposes a major limitation in determining the 60	

actual reservoir water volume and depth, their variability and impacts on river systems. 61	
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Determining the bathymetry of shallow waters is defined as one of NASA priorities in the 2017-62	

2027 Decadal Survey for Earth Science and Applications from Space for a more accurate 63	

representation of the Earth topography (National Academies of Sciences, Engineering, and 64	

Medicine, 2017). As a result, accurately representing the impacts of reservoir operation on the 65	

surface water dynamics can be achieved with improved DEMs where the bathymetry is properly 66	

represented.  67	

Although some studies present techniques to estimate reservoir volume and depth through 68	

statistical relationships (e.g., Hollister et al., 2011; Sobek et al., 2011; Heathcote et al., 2015), 69	

remotely inferring 3-D reservoir bathymetry has been underexplored. Tseng et al. (2016) 70	

introduced a novel methodology to estimate water levels combining water extent time series with 71	

a three-dimensional bathymetry obtained through the linear extrapolation of DEMs. The 72	

technique was successfully applied to Lake Mead, and results were compared against ground 73	

observations. DEM extension through a linear extrapolation is a robust solution providing a first 74	

order representation of what the bathymetry could be, and easily transferrable to other reservoirs. 75	

However, unless the DEM was acquired during a low water period (Zhang et al., 2016), the 76	

inaccuracy of the 3-D bathymetry can be high, since the bottom, defined by the intersection of all 77	

extrapolated lines, can be unrealistic. 78	

We address this issue by proposing and comparing different techniques for estimating 3-D 79	

reservoir bathymetry exclusively based on satellite data. They can be combined, increasing the 80	

level of data requirement and processing. Data sources include the Hydrological data and maps 81	

based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS; Lehner et al., 2008), 82	

Envisat and Altika radar altimeters, and Landsat-based water extents. Lake Mead, located in 83	

Nevada, USA, is considered as the study case due to the large ground-based data availability, 84	

including bathymetric measurements, used for evaluation. It is also the largest reservoir in the 85	

U.S., with a maximum water capacity of 32.2km3. More specifically, we focus on the lower 86	

portion of the lake, the Boulder Basin (see Fig. 1 for location), which has a maximum water 87	

capacity of 10.5km3. 88	

2. Datasets 89	

2.1. Water extent 90	
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Water extent time series was derived from Landsat historical datasets (i.e. Landsat 4, 5, and 7 91	

ETM+) for the 1982-2005 period, totaling 585 water extent maps (Tseng et al., 2016). Water 92	

pixels were classified from each of the Landsat datasets based on their green and shortwave 93	

infrared bands, known as the Modified Normalized Difference Water Index (MNDWI; Xu, 94	

2006). For this study, water masks were generated to include all the pixels that have a value 95	

larger than 10% (considered “water”) in this Landsat frequency map. The Landsat series has a 96	

nominal spatial resolution of 1 arcsec using the WGS84 datum.  97	

2.2. Water level 98	

Water level time series were derived from both satellite and ground observations. We obtained 99	

daily historical water elevation from 1983 to 2016 for Lake Mead, at Hoover Dam, from Bureau 100	

of Reclamation Records. The water elevations are referenced to the adjusted United States 101	

Geological Survey (USGS) datum (i.e. locally known as Power House Datum), 0.55 feet lower 102	

than National Geodetic Vertical Datum 1927 (NGVD27) (USDI, 2011).  Satellite-based water 103	

levels were derived from both Envisat and the SARAL/Altika radar altimeters. Envisat was 104	

launched by the European Space Agency (ESA) in 2002 had a cross-track interval ~80km at the 105	

Equator and 35-day revisit period, which shared the same orbital elements with preceding ERS-106	

1/-2 missions. The SARAL/Altika launched in February 2013 that follows Envisat is used to 107	

extend the altimetry time series.  Here, we used the latest version of reprocessed Envisat Sensor 108	

Data Record (SGDR V2.1) provided by the Centre National d’Etudes Spatiales (CNES) 109	

Archiving, Validation, and Interpretation of Satellite Oceanographic data (AVISO) service, 110	

corresponding to cycle 6–93. The pass #406 near the Overton Arm of northern Lake Mead (Fig. 111	

1) is selected to retrieved water elevations of both products. Overlapped range between satellite 112	

ground track and lake surface is around 3.5km, corresponding to ten 18Hz footprints. A 113	

backscattering coefficient threshold is set at 10dB to filter out non-water surfaces with brighter 114	

characteristics in radar domain. For Envisat, the ICE-1 range retracker is used to determine the 115	

leading-edge position in radar waveforms. Several corrections including the geophysical (solid 116	

Earth tide and pole tide), atmospheric (dry/wet troposphere), ionospheric (path delay), and 117	

hardware (Ultra Stable Oscillator) terms are further applied to calculate the WGS84 ellipsoidal 118	

height. 119	
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Envisat time series totals 83 observations, against 24 for SARAL/Altika. Water elevations 120	

derived from both satellites were referenced to WGS84 ellipsoid at the overpass near the Overton 121	

Arm of northern Lake Mead, covering about ten 18Hz footprints or 3.5km water crossover along 122	

track. The root mean square error (RMSE) of bias-corrected Envisat and SARAL/Altika time 123	

series is 0.13m and 0.48m, respectively. Combining both time series results in an RMSE of 124	

0.20m.  Mean absolute errors (MAE) are 0.18m, 0.51 and 0.29m, respectively. 125	

2.3. Topography and bathymetry 126	

Topography and flow directions were derived from the void-filled HydroSHEDS DEM at 127	

3arcsec, derived from the Shuttle Radar Topography Mission (SRTM; Farr et al. 2007) mission. 128	

At the Boulder Basin, a 3arcsec pixel sizes 6940m2. HydroSHEDS is referenced to both the 129	

World Geodetic System 1984 (WGS84) and the Earth Gravitational Model 1996 (EGM96) geoid 130	

for horizontal and vertical datum, respectively.  131	

Ground-based bathymetric observations at 1arcsec in the North America Datum 1983 (NAD83) 132	

were obtained with USGS. This dataset was acquired in 1999 with a side scan-sonar and chirp 133	

seismic reflection survey (USGS, 2003). All generated bathymetric estimates are downscaled at 134	

1arcsec and evaluated against observations. All datasets used in this study (water level time 135	

series, topography, and bathymetry) have been corrected to WGS84, before being processed.  136	

3. Methodology 137	

We propose and evaluate 14 experiments resulting from the combination of three bathymetry 138	

generation techniques. The techniques are: (i) DEM extrapolation; (ii) DEM interpolation; and 139	

(iii) visible bathymetry reconstruction. For both (i) and (ii), DEM is defined as the elevation 140	

map, where pixels with constant water surface elevation are masked out. The final bathymetry 141	

derived from each procedure replaces the water mask. They are described in the following 142	

sections.  143	

3.1. DEM extrapolation 144	

This technique, first proposed in Tseng et al. (2016), defines a conic bathymetry based on the 145	

linear extrapolation of the innermost topographic boundary. The window size used to define the 146	

slope extrapolation was fixed as 3 pixels, as suggested in Tseng et al. (2016). This procedure can 147	
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be applied without additional datasets, only using a DEM, but the bottom of the reservoir can be 148	

unrealistic since it is reached when extrapolated lines converge. 149	

3.2. DEM interpolation 150	

This technique requires a hydrologically conditioned DEM and considers that a pixel flows 151	

preferentially to one of its eight direct neighbors. As a result, maps of flow directions and 152	

drainage area, derived from the DEM, are also needed in order to define the river network. A 9-153	

pixel buffer region is defined along the DEM boundary, guaranteeing a proper selection of 154	

elevations upstream the reservoir and downstream the dam. Using the pixels within the buffer, a 155	

linear interpolation links the uppermost and lowermost pixels along the main stream of the 156	

reservoir, considering the flow directions and upstream drainage. Similar process is repeated for 157	

all other tributary streams, and the remaining pixels are filled with interpolated elevations of 158	

these rivers. After interpolating all streams crossing the buffer, unfilled pixels within the mask 159	

over the reservoir are filled using a moving average window. Based on a sensitivity analysis, we 160	

found that the optimal window size for the Boulder Basin is 3 pixels (see Fig. 4). It is important 161	

to note that this window size is optimal for this particular case, and may not be ideal for other 162	

applications. 163	

In addition to the DEM elevation, in order to further improve the bottom of the reservoir, we also 164	

used upstream and downstream riverbed elevation. This information was derived from the 165	

ground-based bathymetry. This choice was made because the Boulder Basin’s upstream 166	

conditions are highly dependent on the operation of the whole Lake Mead system, rather than the 167	

naturalized river dynamics. For other cases, more generic solutions could be adopted, such as the 168	

use of large-scale empirical equations for the determination of river geometry (e.g. Decharme et 169	

al., 2012; Getirana & Paiva, 2013). The use of such equations could facilitate the automation of 170	

bathymetry estimation at the global scale, in particular, where observed riverbed elevations are 171	

unavailable. 172	

3.3. Visible Bathymetry 173	

An algorithm was developed in order to derive reservoir and lake bathymetry by combining 174	

surface water extent and water level time series. The elevation range of the resulting bathymetry 175	

will depend on satellite data availability and whether those data were acquired during extreme 176	
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wet and dry conditions. Also, accuracy and amount of satellite data will dictate the quality and 177	

details provided in the final product. This bathymetry, observable through satellite data, is 178	

hereafter called visible bathymetry, or simply VB. The VB algorithm is composed of four sub-179	

steps and a schematic is provided in Fig. 2:  180	

a. Water level and mask time series are combined. Envisat data is linearly interpolated in 181	

order to obtain an estimated water level at a given time where Landsat-based water extent 182	

is available. At the end of this step, there will be n matches of water levels and masks; 183	

b. Water masks are stacked as a function of the elevation. In this sense, water masks are 184	

reorganized from the lowest to the highest elevation. Ideally, the water mask at the lowest 185	

elevation should also have the smallest extent; 186	

c. Water masks are then corrected based on a consistency test using an occurrence 187	

coefficient (co): at a given lower water mask layer, the consistency of a xy pixel classified 188	

as “water” will be verified by counting the number of pixels in higher elevation layers 189	

that are also “water”. If that number exceeds the co threshold, then all tested pixels are 190	

classified as “water”, otherwise they are all classified as “land”. co is given as a fraction 191	

of xy pixels from that layer to the top layer that is classified as “water”, varying from 0 to 192	

1.  193	

d. The bathymetry is then generated by attributing elevations to boundary pixels of all mask 194	

layers and using linear interpolation to fill empty spaces between the innermost and 195	

outermost boundaries. 196	

3.4. Experimental design 197	

In order to evaluate the accuracy of techniques as a function of their added data requirement and 198	

processing, 14 experiments, composed of single procedures or the combination of two or more of 199	

them, are evaluated. Processing techniques and datasets composing each experiment are 200	

described below and summarized in Table 1: 201	

1. (HS) Bathymetry is simply considered as elevation provided in HydroSHEDS;  202	
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2.  (I1) Linear interpolation is applied using HydroSHEDS and its corresponding flow 203	

direction map; 204	

3. (I2) Linear interpolation is applied using HydroSHEDS and its corresponding flow 205	

direction map; upstream riverbed elevation is used for the correction of the uppermost 206	

pixel of the main stream to the reservoir in HydroSHEDS; 207	

4. (I3) Linear interpolation is applied using HydroSHEDS and its corresponding flow 208	

direction map; upstream and downstream riverbed elevation are used to correct the main 209	

stream DEM pixels in HydroSHEDS; 210	

5. (E1) Linear extrapolation is applied using a 3-pixel buffer DEM derived from 211	

HydroSHEDS over land; 212	

6. (E2) As E1, but the bottom of the reservoir is constrained by a flat horizontal elevation 213	

derived from the downstream riverbed elevation; 214	

7. (E3) As E1, but the bottom of the reservoir is constrained by a surface composed of the 215	

linear interpolation between the upstream and downstream riverbed elevations; 216	

8-14.  (VHS), (VI1), (VI2), (VI3), (VE1), (VE2) and (VE3) Experiments 1-7 are repeated using 217	

HydroSHEDS corrected with visible bathymetry derived from Landsat water extents and 218	

Envisat/Altika water level time series. 219	

3.5. Evaluation procedure 220	

The evaluation has been designed to independently test the sensitivity of visible bathymetry 221	

parameters, and the fourteen experiments described above. The sensitivity analysis of co was 222	

performed in order to determine the best visible bathymetry for the Boulder Basin. In this sense, 223	

co varied from 0 to 1 at incremental steps of 0.1, totaling 11 realizations. The most appropriate co 224	

value is determined using a tradeoff relationship between accuracy and number of remaining 225	

valid pixels composing the visible bathymetry. This tradeoff relationship was chosen rather than 226	

an optimization procedure minimizing errors because, as shown in the following section, high co 227	

values drastically reduce the amount of data used to build the bathymetry.  228	
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The bathymetric estimates are evaluated in terms of maximum water storage capacity, V [km3], 229	

average and maximum depths, hAVG and hMAX [m], and relative water storage variability, dV 230	

[km3]. V, hAVG and hMAX were computed using the maximum reported water elevation of 375m 231	

for Lake Mead, and dV was derived from ground and satellite water level observations combined 232	

with the bathymetries. Bathymetric estimates are also compared against the reference using 233	

RMSE, MAE and relative error (RE), and water storage variability with the standard deviation 234	

ratio (Stdev ratio). MAE and Stdev ratio are defined as follows: 235	

RMSE = x! − y! !
!"
!!! 𝑛𝑝  (1) 236	

MAE = !!!!!
!"

!"
!!!     (2) 237	

RE = !!! !!
!"
!!!

!"
!!!

!!
!"
!!!

    (3) 238	

Stdev ratio = !!
!!

    (4) 239	

where x and y stand for estimated and observed bathymetric elevations, np is the total amount of 240	

pixels composing the bathymetry. σ! and σ! represent the standard deviation of estimated and 241	

observed water volume time series, respectively.  242	

 243	

Water storage is derived from the combination of water level observations with bathymetry 244	

estimates. First, the daily ground-based water level time series, assumed as the truth, is combined 245	

with bathymetries in order to isolate the impact of water level changes on the water storage. The 246	

water storage derived from the reference bathymetry is used as the truth. Then, a fully satellite-247	

based water storage is derived by repeating the same procedure, but using radar altimetry time 248	

series. 249	

4. Results and discussion 250	

4.1. Visible bathymetry generation 251	
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The experiment using Envisat+Altika data resulted in 253 matches between water level and 252	

extent during the 2002-2015 period, with an elevation range of 23.9m, from 329.9m to 353.8m. 253	

The longer data availability using gauge-based water levels, from 1983 to 2016, resulted in 584 254	

matches with a wider elevation range, 42.3m from 328.2m to 370.5m.    255	

Results from the sensitivity analysis show that the number of pixels composing VB varies 256	

significantly with different co values. The least restrictive realization (co=0) includes any “water” 257	

pixels in all layers, resulting in VBs composed of 50,000 and 112,000 pixels for the 258	

Envisat+Altika and gauge-based experiments, respectively. These VBs have large errors, as 259	

indicated by the comparison against observations (Biases are -69.2m and -201.3m, and RMSEs 260	

are 175.3m and 363m). The performance increases when more restrictive values are used. For 261	

example, biases are 3.3m and 1.2m, and RMSEs are 12.1m and 10.7m when co=1. The gain in 262	

accuracy is counterbalanced by a significant loss of information, with VBs being composed of 263	

only 5200 and 4100 pixels, respectively. Fig. 3 shows the relationship between the number of 264	

pixels used in VBs and accuracy, as a function of co values, for both experiments. It is possible to 265	

identify a break in all curves, where the number of pixels significantly drops with low change in 266	

accuracy. That break has been identified as co=0.5 (marked with circles), where biases are -0.3m 267	

and -1.3m, and RMSEs are 10.8m and 11m for the Envisat+Altika and gauge-based experiments, 268	

respectively.  269	

4.2. 3-D bathymetry evaluation 270	

Estimates of Boulder Basin bathymetry vary significantly among experiments. As shown in Fig. 271	

5, HydroSHEDS bathymetry (HS) highly underestimates the water storage capacity, as well as 272	

average and maximum depths (0.5km3, 66m and 4m, respectively), when compared to the 273	

reference (10.5km3, 159m and 95m). This result is expected since the bottom of the reservoir is 274	

defined in this experiment as the water surface observed by SRTM. This is an indication that 275	

using raw DEMs (i.e. no data pre-processing to represent bathymetry over reservoirs) should be 276	

avoided. Better bathymetry estimates are obtained with the experiments based on the linear 277	

interpolation technique. Fig. 6 shows the differences between estimates and the reference 278	

bathymetry, including RMSE and MAE values. When metrics of experiments with and without 279	

VB are averaged in different groups, we observe that experiments using the linear interpolation 280	

technique (i.e. average of experiments I1, I2, I3, VI1, VI2 and VI3) considerably improves the 281	
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accuracy of bathymetry estimates, reducing RMSE and MAE, on average, 40% and 47%, 282	

respectively. Among these experiments, if we focus on experiments considering riverbed 283	

elevation (i.e. I2, I3, VI2 and VI3), improvements are slightly higher (43% and 50%). The 284	

underestimated depths observed upstream the reservoir (upper right corner) in experiments I1 285	

and VI1 are corrected when the linear interpolation is performed using riverbed elevation. 286	

Among all experiments using linear interpolation, VI3, considering visible bathymetry and 287	

riverbed elevation, resulted in the most accurate volume estimate (V=7.5km3) and average depth 288	

(hAVG=68m), with RMSE and MAE of 52.3m and 40.5m, respectively. Even though the linear 289	

interpolation technique significantly improves the determination of the bottom of the reservoir, a 290	

few features are still missing, such as the depressions in the lower left and upper center sides of 291	

the reservoir and the elevation in the right side, as shown in Fig. 6. This is likely due to the fact 292	

that after interpolating all tributary pixels, the remaining reservoir pixels are not sufficiently 293	

explained using a 3x3 moving average with the surrounding interpolated elevations.  294	

The 3-pixel buffer topography applied to HydroSHEDS in the linear extrapolation technique 295	

(experiment E1) resulted in a deep reservoir bottom, where all extrapolated lines intersect, highly 296	

overestimating V, hAVG and hMAX values (25.8km3, 795m and 234m), and the highest RMSE 297	

(208.1m) and MAE (150.5m) values. An enhancement is observed with the inclusion of VB 298	

(experiment VE1), with metric values of 170.1m and 112.6m, respectively. However, a 299	

significant improvement is noticed when the bathymetry derived from the linear extrapolation 300	

technique has its bottom constrained with flat surfaces defined by riverbed elevation. Using the 301	

downstream riverbed elevation to derive a flat horizontal reservoir bottom (experiments E2 and 302	

VE2) enhances both V and hAVG, and average RMSE and MAE are improved, on average, by 303	

71% and 67%. Using the flat surface defined by the main stream interpolation to constrain the 304	

reservoir bottom (experiments E3 and VE3) adds up, improving RMSE and MAE in 69% and 305	

73%, respectively, compared to experiments E1 and VE1.  306	

Adding VB improved bathymetry estimates of all experiments, with RMSE and MAE increasing, 307	

on average, 14% and 18%, respectively. The best overall results were obtained from experiments 308	

combining VB, linear extrapolation and riverbed elevation. In particular, experiment VI3, using 309	

upstream and downstream riverbed elevations, resulted in the most accurate metrics of all 310	
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experiments, with absolute water volume and average depth of 13.2km3 and 119.5m, and RMSE 311	

and MAE of 44.4m and 32.9m, respectively.  312	

4.3. Water storage variability 313	

If, on one hand, the maximum water storage capacity is highly dependent on the bottom of the 314	

reservoir, as discussed above, water storage change reflects how accurate the bathymetry is in the 315	

top layer, where water levels vary. Fig. 7a shows bias-removed water volume variability time 316	

series, dV, derived from the combination of ground-based water level observations and 317	

bathymetry estimates, for the 1983-2016 period. Bias was removed from time series for 318	

visualization purposes only, and values are provided for each experiment in the figure. 319	

Experiment I1, using the linear interpolation technique, did not perform as well, with higher 320	

RMSE (0.6km3) and lower Stdev ratio (0.59). Both metrics improve with experiments I2 and I3, 321	

when riverbed elevation is used, reaching 5.38×10-4 km3 and 0.68, respectively (see Fig. 7 for 322	

time series and Table 2 for respective metrics). Although experiments E1 overestimates the 323	

maximum water capacity, as described in the previous session, once their biases of 10km3 are 324	

removed, one can notice a high agreement between reference and estimated dV time series, with 325	

RMSE values of nearly zero, and Stdev ratio of 1. An overall improvement of all metrics is 326	

noticed when VB is considered, with a general improvement of bias, RMSE and Stdev ratio of 327	

25%, 119% and 7%, respectively. VB improved Stdev ratio of linear interpolation experiments, 328	

but added a minimum deterioration in linear extrapolation experiments. Although adding 329	

riverbed elevation to the linear interpolation technique had some improvement on RMSE and 330	

Stdev ratio, combining that information with the linear extrapolation technique has not changed 331	

these metrics. On the other hand, riverbed elevation significantly impacted biases, with an 332	

overall improvement of 51%. 333	

Fig. 7b shows bias-removed dV derived from radar altimetry time series combined with 334	

bathymetry estimates. Full satellite-based dV is available from 2002 to 2016 at a 35-day 335	

repeating cycle, except years 2011 and 2012, corresponding to a gap between Envisat and Altika 336	

missions. Results follow the patterns observed when ground-based observations are used. 337	

However, the reduced frequency, shorter time series, and error related to the altimeter and 338	

algorithms used to derive the water level resulted in a slight difference between metrics derived 339	

from each data source. For both ground-based and satellite-based time series, the most accurate 340	
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water volume variability time series were obtained with experiment VE3, combining linear 341	

extrapolation, riverbed elevation and visible bathymetry, with bias=2.7km3, RMSE=0 and Stdev 342	

ratio=1 for both time series.  343	

5. Summary 344	

This paper presents and compares techniques used to generate 3-D reservoir bathymetry based 345	

on remote sensing data. They are composed of three categories that can be coupled, hence 346	

increasing levels of data and processing requirements, combining digital elevation models, radar 347	

altimetry and land cover maps. DEMs are processed in two distinct ways in order to determine 348	

the bathymetry and bottom of the reservoir. They are the (a) linear extrapolation and (b) 349	

interpolation. The first one linearly extrapolates land slopes surrounding the reservoir, defining 350	

the bottom as the intersection of all extrapolated lines. The second one linearly interpolates 351	

pixels beyond the uppermost and lowermost points of the main river of the reservoir, repeating 352	

the process for all other tributaries, and filling the remaining pixels with interpolated elevations 353	

of these rivers. A partial 3-D bathymetry, called here visible bathymetry, resulting from the 354	

combination of radar altimetry and water extent masks, can be coupled to the DEM, improving 355	

reservoir bathymetry estimates from (a) and (b). The technique is tested over the Boulder Basin, 356	

the lower part of Lake Mead, where ground-based observations are largely available for 357	

evaluation. Fourteen experiments with increasing amount of inputs and data processing are 358	

evaluated against bathymetric measurements.  359	

In order to determine VB, a parameter called occurrence coefficient c0 needs to be calibrated. In 360	

this sense, a sensitivity analysis is performed and a trade-off approach is used in order to 361	

determine the optimal value. c0 is determined as a function of both RMSE and gain of 362	

information in terms of number of pixels used in the generation of the bathymetry map. The 363	

optimal value is found somewhere between 0.4 and 0.5, but fixed as 0.5 in this study. It is worth 364	

noting that this value is independent of the water level dataset, but it is related to the quality of 365	

the water extent maps (e.g. cloud contamination, speckle noise, among other source or errors) 366	

and should be carefully reapplied to other cases. At the end of this process, it is assumed that 367	

uncertainties intrinsic to the water mask misclassification are minimized, but still present. Errors 368	

related to radar altimetry data are also a source of inaccuracy in the proposed algorithm. The 369	

average mean absolute error found for the bias-corrected radar altimetry time series is 0.29m, 370	
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which is one order of magnitude lower than SRTM errors (Farr et al., 2007). Another source of 371	

error in this technique is the linear interpolation used to fill the gaps between water boundaries at 372	

different elevations. However, that source of error can be minimized, as more data is available. 373	

As demonstrated in the sensitivity analysis, errors are still present when using the optimal co 374	

value.  375	

Both interpolation and extrapolation techniques require the definition of window sizes. Here, 376	

sizes were defined based on either previous experience, as described in the literature, or on 377	

sensitivity tests. Although they were satisfactorily used in both techniques over the Boulder 378	

Basin, alternative dimensions might be more appropriate when these techniques are applied to 379	

other reservoirs or datasets.  380	

The 3-D bathymetry estimates are evaluated in terms of maximum water storage capacity V, 381	

average hAVG and maximum hMAX depths, and water storage variability dV. We also use metrics 382	

such as bias, RMSE, mean absolute error and standard deviation ratio to determine the accuracy 383	

of both bathymetry and dV. Results show that bathymetry estimates combining the linear 384	

extrapolation technique, visible bathymetry and riverbed elevation achieved the best accuracy for 385	

all selected metrics. Improvements observed using VB with the linear extrapolation technique is 386	

likely due to HydroSHEDS’s limitations inherited from SRTM DEM errors, which could have a 387	

negative impact on slopes. These errors are a function of terrain and land cover characteristics, 388	

among others. Additionally, vertical errors can further biased when the DEM is upscaled, and 389	

slopes tend to flatten. As a result, it is safe to assume that, in this particular case, VB provides a 390	

better estimate of elevations, as opposed to HydroSHEDS. 391	

We acknowledge the existence of two limitations in our evaluation. They are: (i) limited number 392	

of techniques to generate 3-D bathymetry; and (ii) limited number of evaluation sites. Applying 393	

and combining additional extrapolation and interpolation techniques (i.e. polynomial, 394	

logarithmic, exponential, among others) to a wider range of reservoirs can result in a more 395	

refined evaluation, and metrics could be related to hydrogeological features (e.g. shape, depth, 396	

etc.), in order to determine the most appropriate techniques to be used. Unfortunately, access to 397	

ground-based bathymetric observations is still limited, restricting a broader evaluation.  398	
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The proposed technique is easily transferrable to other reservoirs with the required data 399	

availability. In terms of water extent, MODIS-based (Carroll et al., 2017) and Landsat-based 400	

(Feng et al., 2016; Pekel et al., 2016) products are readily available globally for a wide timespan. 401	

Satellite-based water levels are currently available through the G-REALM 402	

(https://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) and Hydroweb 403	

(http://hydroweb.theia-land.fr/) databases at more than 300 lakes and reservoirs globally, and 404	

recent developments of automated techniques for time series extraction (e.g. Okeowo et al., 405	

2017) could significantly increase radar altimetry data availability for reservoir monitoring. 406	

Radar altimetry data availability is limited to water bodies intersecting satellite tracks and water 407	

extent time series acquisition requires extensive data processing, imposing restrictions to a 408	

globally automated application of the technique. On the other hand, the linear interpolation 409	

combined to riverbed elevation estimates provided competitive results, and could be easily 410	

applied globally. Launching in 2021, the future Surface Water and Ocean Topography (SWOT) 411	

satellite mission will provide unprecedented information on surface water dynamics, including 412	

two-dimensional water level and extent time series. SWOT will considerably improve reservoir 413	

monitoring and could be combined with existing datasets towards more accurate bathymetry 414	

estimates.  415	

Next steps of this effort include the application of similar procedures to major reservoirs in 416	

Africa, such as Lakes Volta, in Ghana, and Nasser, in Egypt, and evaluate their impacts on a 417	

hydrological modeling framework. Indeed, refining hydrological model parameters with 418	

bathymetry information, as described in this study, will significantly improve the representation 419	

and monitoring of anthropogenic impacts on the water cycle at different scales. Ultimately, 420	

generating 3-D bathymetry at the global scale will largely benefit the scientific community and 421	

refine global databases such as HydroLAKES (Messager et al., 2016).   422	
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 546	

Fig. 1: Geographical information of Lake Mead in the USA and the Boulder Basin aimed in this 547	
study. This figure is derived from a Landsat-8 OLI image taken on August 14, 2017.  548	
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 549	

 550	

Fig. 2: Example of multi-temporal pixel-based water extent correction as a function of the 551	

occurrence coefficient (co). In both cases, the occurrence is 0.50.  552	
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 553	

Fig. 3: Bias, RE and RMSE derived from the occurrence coefficient (co) sensitivity analysis as a 554	

function of the number of pixels used to build satellite-based visible bathymetry. Scatter plots 555	

show results from co varying from 0.1 to 1 at 0.1 incrementing steps. Circles point to the selected 556	

value (co=0.5). co values increase from the top to the bottom on the vertical axis.  557	
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 558	

Fig. 4: Sensitivity analysis of moving average window size. The evaluation is shown for six 559	
experiments considering the linear interpolation technique.  560	
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 561	

Fig. 5: Bathymetry derived from fourteen methods with increasing data requirement and 562	

processing, as listed in Table 1. The observed bathymetry (REF) is also shown for comparison 563	

purposes. Volume V is in km3 and depths hMAX and hAVG are in meters. 564	

 565	
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 566	

Fig. 6: Difference between bathymetries derived from fourteen methods and the reference (i.e. 567	

positive values represent overestimated depths), as listed in Table 1. RMSE and MAE values are 568	

in meters, and RE is unitless. 569	

570	
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 571	

Fig. 7: Water volume variability in Boulder Basin resulting from satellite-based bathymetries 572	
combined with (a) ground-based water level observations and (b) radar altimetry data. Ground-573	
based water volume variability is also shown for comparison. Bias [km3], RMSE [km3] and 574	
standard deviation ratio (Stdev ratio) [-] are provided in Table 2.  575	
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Table 1: Summary of experiments for bathymetry generation. 576	

Experiment Procedure (data processing) Data requirement 
1 (HS) - DEM 
2 (I1) Linear interpolation  DEM 
3 (I2) Linear interpolation (using upstream riverbed elevation and 

downstream DEM elevation) 
DEM;  
Riverbed elevation 

4 (I3) Linear interpolation (using upstream and downstream riverbed 
elevations) 

DEM;  
River bed elevation 

5 (E1) Linear extrapolation DEM 
6 (E2) Linear extrapolation;  

Flat horizontal bottom using downstream riverbed elevation 
DEM; 
River bed elevation 

7 (E3) Linear extrapolation;  
Bottom constrained with flat surface using interpolation of 
upstream and downstream riverbed elevation 

DEM; 
River bed elevation 

8 (VHS) Visible bathymetry DEM;  
Water level and extent time series 

9 (VI1) Linear interpolation;  
Visible bathymetry 

DEM;  
Water level and extent time series 

10 (VI2) Linear interpolation (using upstream riverbed elevation and 
downstream DEM elevation);  
Visible bathymetry 

DEM;  
Riverbed elevation;  
Water level and extent time series 

11 (VI3) Linear interpolation (using upstream and downstream riverbed 
elevations);  
Visible bathymetry 

DEM;  
Riverbed elevation;  
Water level and extent time series 

12 (VE1) Linear extrapolation;  
Visible bathymetry 

DEM;  
Water level and extent time series 

13 (VE2) Linear extrapolation Bottom constrained with flat horizontal 
surface using downstream riverbed elevation;  
Visible bathymetry 

DEM;  
Riverbed elevation;  
Water level and extent time series 

14 (VE3) Linear extrapolation (bottom constrained with flat surface using 
interpolation of upstream and downstream riverbed elevation);  
Visible bathymetry 

DEM;  
Riverbed elevation;  
Water level and extent time series 

 577	

  578	
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Table 2: Bias [km3], RMSE [km3] and standard deviation ratio (Stdev ratio) [-] of water volume 579	
variability derived from ground-based and satellite-based water levels combined with 14 580	
bathymetric estimates. 581	

  

Ground-based volume change Satellite-based volume change 

Bias RMSE 
Stdev 
ratio 

Bias RMSE 
Stdev 
ratio 

HS -8.24 1.44 0.02 -6.73 0.70 0.00 

I1 -5.60 0.61 0.59 -4.97 0.36 0.48 

I2 -3.51 0.48 0.68 -3.02 0.28 0.60 

I3 -3.42 0.47 0.68 -2.93 0.28 0.60 

E1 10.00 0.00 1.00 10.00 0.03 0.99 

E2 4.12 0.00 1.00 4.13 0.03 0.99 

E3 3.51 0.00 1.00 3.51 0.03 0.99 

VHS -8.04 1.31 0.10 -6.67 0.65 0.07 

VI1 -5.15 0.21 0.87 -4.98 0.21 0.72 

VI2 -3.47 0.16 0.91 -3.35 0.16 0.79 

VI3 -3.40 0.15 0.91 -3.27 0.16 0.79 

VE1 10.00 0.01 1.01 10.00 0.03 1.00 

VE2 3.21 0.01 1.01 3.21 0.03 1.00 

VE3 2.68 0.01 1.01 2.67 0.03 1.00 
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