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I.  ABSTRACT 

 
Modeling dynamic systems by bond graphs has 
become state of the art technology since hundreds of 
researchers around the world have incorporated the 
technology in many fields of engineering and science.  
The legacy of its inventor Prof. Henry Paynter at MIT 
in 1959 is now a fundamental and practical technique 
to understand reality by building computer models.  
This paper addresses a particular aspect of this 
technology when modeling of mechanical systems 
requires relaxation of constraints by means of 
Lagrange principles.   Lagrange’s equations are a 
useful means of describing and solving systems with 
kinematic constraints. Lagrange multipliers are 
variables used in equations to find the extremes of 
multivariate functions.  Here we explore the relation 
of Lagrange multipliers to solve modeling difficulties 
of a space vehicle with equations with dependent 
derivatives. Lagrange multipliers were used in 
conjunction with bond graphs to simulate a system 
where joints of kinematic linkages produce dependent 
derivatives.  NASA’s Morpheus Project lunar lander 
was used as a case study. The Morpheus Project is a 
terrestrial test vehicle designed to fly the terminal 
descent trajectory of a lunar lander to advance the 
Autonomous Landing Hazard Avoidance Technology 
(ALHAT). An objective of this study is to apply the 
modeling approach herein to capture the dynamic 
movement of the lander as the propellant is sloshed 
and consumed.  This paper expands further the 
analysis presented by [1] (Granda, J J. Nguyen, L, 
Carlson, T, Sahragard-Monfared, G., Fornalski, E., 
Brocker 2016).  Using an automated approach bond 
graph models of state space equations were generated 
using the Computer Aided Modeling Program 
(CAMPG).  Integral causality models and derivative  

 

causality models were considered in order to find the 
simpler solution for the mathematical dependencies 
produced in modeling this vehicle. 

 

Author Keywords:  
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II INTRODUCTION 
The basic model to analyze the propellant slosh and 
consumption of the lander vehicle is a double 
pendulum, which represents the lander vehicle (and 
tanks) hanging under tether along with pendulum 
masses for the propellant (fuel and oxidizer).  Fig. 1 
gives us an idea of the Morpheus vehicle.   

 

 

 

 

 

 

 

Fig. 1  Morpheus vehicle. Two methane and two 
oxygen tanks. 
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Systems in which the movement of “particles” is of 
interest can be analyzed with Lagrange equations. 
“Lagrange Multipliers” can be used to describe a 
system of equations with constraints. To get from the 
diagram of the double pendulum integral causality 
bond graph to the equations used for the bond graph in 
this paper, Lagrange multipliers were used. 

Using the software Working Model 2-D, a two 
dimensional kinematic model was developed for the 
lander. A vector model was obtained using a two 
dimensional representation of a double pendulum.  
CAMPG [2] (Cadsim Engineering 2018) was used for 
the bond graph and for generating the equations of 
motion whether in integral or derivative form.  

 
 

Fig. 2 Lander-fuel slosh model two-dimensional 
pendulum model. Working Model 2-D 

III Analysis and Model Development 
A.  Single Pendulum and Proof of Concept 

 
Before we try the double pendulum, let us establish 
and verify the operation using a single pendulum 
model. 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Single pendulum model 
 

            (1) 
 

                                              (2) 
 
A Simulink model may be generated from this 
equation. The following model was constructed by 
taking a summation block with one input and one 
output, two gains, two integral blocks, a sine block, to 
represent the equation in graphical form.  
 
 
 
 
 
 
 
Figure 4. Simulink model of single pendulum system 
After choosing standard values for constants and 
arbitrary values for mass and length, the following 
sinusoidal output is produced: 

Fig. 4 Simulink Block Diagram Model 
 

 
Fig. 5 Simulink model output test 

 
Now let us try for comparison a bond graph model of 
the same system as the one shown in Fig. 6.  The mass 
is an I element, gravity an effort source, and the 
conservative, spring-like “swinging motion” by a 
capacitor element.   
 
 
 
 
 
 
 
 
 
 
Fig. 6 Bond Graph model of single pendulum model 
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This demonstrates the equivalence of the block 
diagram method compared to a computer-generated 
model from CAMPG/MATLAB using bond graphs. 
The first one required a free body diagram, the second 
did not.  It required only to establish the kind of 
elements the system is composed and how are they 
interconnected.  This demonstrates the equivalence. 
The following graph is the step response, which 
produces the exact same result.    
 

 
 

Fig. 7 Bond graph output 
This output is the same as the Simulink model. This 
verifies the method and proves it reliable.  
 
We may also demonstrate that the two models are 
actually equivalent. If we construct a second block 
diagram based on the bond graph equations generated 
from CAMPG, we can show it to be equivalent to the 
original Simulink model through the following steps. 
 
The Simulink model based on the bond graph 
equations is shown below. “I” element is represented 
by the integrator and the gain at the top. The integrator, 
sine, and gain block to the left and by the constant 
block to the right represent the “C”. The scope is 
placed between the sine block and the integrator to 
obtain the output for the angular displacement. 

 
Fig. 8 Initial state Simulink Model 

Several rearrangements of the block diagram will lead 
us to the equivalence of the two models started with 
different approaches.  The constant is removed and the 
summation block is adjusted.  It has only one input and 
one output (the same as the remaining number of 
branches). The elements on the left side of the 
summation block are dragged around to the right side. 
This is done in order to begin to lay out the model in 
the same orientation as the Simulink model based on 
the second order pendulum equation. 

 
Fig. 9 Simulink model after first rearrangement.  

 
Fig. 10 Simulink model after second rearrangement 
 
Finally, the gain is taken and moved to the left of the 
first integrator without changing its value. 

 
 
Fig. 11 Simulink model after third rearrangement.  
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This is exactly equivalent to the block diagram shown 
in Fig. 4.  
 
Having shown that the model that started with the 
bond graph and the one that started with the block 
diagram approach after derivation of equations using a 
free body diagram produce the same results, the 
conclusion is that the two models are in fact 
equivalent.  Using that principle, a double pendulum 
model is then developed.  
 
 

B. Two degrees of freedom model 
 
Let us examine the model presented in [6] (Yehia A. 
Khulief 1991) and apply our approach.  They solved a 
similar problem using the Lagrange equations used in 
conjunction with bond graphs.  Khulief gives an 
example of a simple spring-mass connected pendulum, 
in addition to giving a detailed step based method for 
using and applying Lagrange equations and Bond 
graphs conjointly. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12 Movable pendulum with spring  
 
Yehia Khulief [6] first define the x and y equations in 
order to find the constraints for the system. 
 
𝑥 = 𝑋 + 𝐿𝑠𝑖𝑛𝜃	𝑎𝑛𝑑	𝑦 = 𝐿𝑐𝑜𝑠𝜃    (3) 
 
Differentiating in order to find the MTF equations: 
 
𝑥̇ = 𝑋̇ + (𝐿𝑐𝑜𝑠𝜃)𝜃	̇ 𝑎𝑛𝑑	𝑦̇ = −(𝐿𝑠𝑖𝑛𝜃)𝜃̇ (4) 
 
The state equations for the two state variables are: 
 
		𝑝̇5 = −𝑝̇6 − 𝑒8    (5) 
 
𝑝̇9 = 𝑚;𝑔𝐿𝑠𝑖𝑛𝜃 − (𝐿𝑐𝑜𝑠𝜃)𝑝̇6 + (𝐿𝑠𝑖𝑛𝜃)𝑝̇= (6) 
 

Another two equations are obtained by taking the flow 
expressions in conjunction with the element relations 
and differentiating: 
 
𝑝̇6 = >?@

A
B 𝑝̇5 + C

?@DEFGH
IJ

K 𝑝̇9 − [
?@DGMNH

IJ
O ]𝑝96 (7) 

 
𝑝̇= = − C?@DGMNH

IJ
K 𝑝̇9 − [

?@DEFGH
IJ
O ]𝑝96    (8) 

 
Equations of motion with constraints from 𝑝̇6 and𝑝̇=. 
 
(𝑀 +𝑚;)𝑋̈ + 𝐾𝑋 + (𝑚;𝐿𝑐𝑜𝑠𝜃)𝜃̈ − (𝑚;𝐿𝑠𝑖𝑛𝜃)𝜃̇6

= 0 
(𝐼V +𝑚;𝐿6)𝜃̈ + (𝑚;𝐿𝑐𝑜𝑠𝜃)𝑋̈ +𝑚;𝑔𝐿𝑠𝑖𝑛𝜃 = 0   (9) 
 
The bond graph for the system is:  
 
 
 
 
 
 
 
 
Figure 9. CAMPG Bond graph for pendulum  
  
 
Fig. 13 Mobile pendulum bond graph 
 
The potential energy equation: 
 
𝑇 = 5

6
(𝑀 +𝑚;)𝑋̇6 +

5
6
(𝐼V + 𝑚;𝐿6)𝜃̇6 +

								(𝑚;𝐿𝑐𝑜𝑠𝜃)𝜃̇𝑋																																																							̇ (10) 
  
The forces are then: 
 
𝑄H = −𝑚;𝑔𝐿𝑠𝑖𝑛𝜃, 𝑎𝑛𝑑	𝑄Z = −𝐾𝑋           (11) 
  
The Lagrangian forms are then finally: 
   

𝑑
𝑑𝑡
\
𝜕𝑇
𝜕𝑋̇
^ − \

𝜕𝑇
𝜕𝑋
^ − 𝑄Z = 0 

   
𝑑
𝑑𝑡
\
𝜕𝑇
𝜕𝜃̇
^ − \

𝜕𝑇
𝜕𝜃
^ − 𝑄H = 0 

 
 
Using these derivations of the Lagrange equations 
helps us establish the relations that we can use to relate 
them to bond graph modeling. Therefore, bond graphs 
models and Lagrange equations can be used to 
complete the necessary modeling and subsequent 
simulations. 
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C. Block Diagram Double Pendulum Models 
 
A double pendulum can be described by two second 
order, coupled differential equations using free body 
diagram as presented in [9]  (Seto W., 1964). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14 Double pendulum model 
 

𝑚6 ∗ 𝑟66 ∗ 𝜃̈6 = −𝑚6 ∗ 𝑔 ∗ 𝑟6 ∗ sin 𝜃6 

																													−𝑚6 ∗ 𝑟5 ∗ 𝑟6 ∗ 𝜃̈5			            (14) 

𝑚5 ∗ 𝑟56 ∗ 𝜃̈5 = −𝑚5 ∗ 𝑔 ∗ 𝑟5 ∗ 𝜃5 −𝑚6 ∗ 𝑔 ∗ 𝑟5 ∗ 𝜃5 

											.															−𝑚6e𝑟5 ∗ 𝜃5̈ + 𝑟6 ∗ 𝜃̈6f𝑟5		  (15) 

A Simulink model was developed with these two 
equations. Taking a summation block with two inputs 
and one output, two gain blocks, two integrator blocks, 
a sine block and a scope the first “loop” (the basis of 
the first equation) can be constructed.  
 
The second equation is constructed taking a 
summation block with four inputs and one output, four 
gain blocks, two integrator blocks, and a scope. The 
block diagram is completed by taking a branch from 
between the gain and the first integrator block on the 
first loop and connecting it to a gain block and to the 
summation block in the second loop.  A connection is 
necessary from between the first gain and the first 
integrator block on the second loop and connecting it 
through a gain block to the summation block in the 
first loop. These last two steps are to account for the 

 term in the second equation and the term in the 
first equation. 
 
This block diagram represent two-second order 
differential equations and thus there are four 
integrators.  When block diagrams are built from the 
bond graph, single integrators are used for each 
derivative.    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14 Simulink model of a double pendulum 
 
The angular position of both “bobs” may be observed 
as output from the scopes. This yields the following 
sinusoidal output (for the first and second bob 
respectively): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15 (a) Bob displacement 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15 (b) Second bob displacement. 
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D. Working Model 2-D  Double Pendulum 
Models 
 
The double pendulum concept was verified using yet 
another multibody approach, the software Working 
Model 2-D.  This verified the free body diagram 
models with those developed with bond graphs.  The 
software Working Model 2-D allows the simulation by 
computing the equations numerically using a 
multibody approach.  The two bob pendulum model 
was developed in order to establish the fundamental 
geometry of the vehicle and the fuel inside, which is 
the basis for the model presented for the Morpheus 
Project presented in Fig. 1. Working Model 2-D 
allows the display of the positions, velocity and 
accelerations of each bob.   
 

 
 
Fig. 16 Working Model 2-D double pendulum model. 
 
The results shown were compared to the output of the 
block diagram approach and the bond graph approach 
obtaining similar results.  
 
IV.  THREE DIMENSIONAL BOND GRAPH 

MODELS USING LAGRANGE 
MULTIPLIERS 

 
A 3-D, untethered model was created using the same 
process as the 2-D. the following steps shown 
previously.  Using the principles presented in [3] 
(Karnopp, Margolis, Rosenberg, 2012), a three-
dimensional model was developed. We used the 
artificial infinitesimal displacements δ's and λ's to 
relax the constraints and allow the use of Lagrange 
multipliers to solve derivative causality. 
 

This diagram shown in Fig. 17 illustrated the three-
dimensional set up. We considered the pendulum 
lengths, masses and angles with the nomenclature of 
Fig. 14, but with the additional angles and 
displacements 𝜆′𝑠 and 𝛿j𝑠 to account for six degrees 
of freedom. A difference from the 2-D, this now  
includes a third “λ”  and “δ” at each of the connection 
points, as well as four “𝜑” angles as illustrated in Fig. 
18. This gives us six 𝜆′𝑠 and six	𝛿j𝑠 and four"𝜑"′𝑠. In 
addition, the model is untethered, allowing forces in 
the x, y, and z direction to act at the origin. The next 
step is to generate equations describing the system in 
terms of the deltas, in the same manner it was done 
with the 2-D model.  
 

 
   
 

Fig. 17  Three-dimensional model. 
 

 
 
Fig. 18 3-D double pendulum diagram with relaxed 
constraints to allow the use of Lagrange multipliers. 
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Fig. 19 Kinematic relations for development of the three dimensional model 

 
 

 
 

Fig. 20 Force-Torque relations 
 

 
 
The new relaxed constraints yield the following six 𝜆′𝑠 
equations (17) to (21). Their derivatives are 
summarized in matrix form.  
 

    (16) 
 

   (17) 
 

   (18) 
 

  (19) 
 

  (20) 
 

     (21) 
 

The derivatives of these six equations are taken to give 
the six 𝛿̇’s, which will become the six left-side 
derivatives represented in the bond graph. The 

equations are then expressed in matrix and shown on 
Fig. 19.  If we look at these transformation that relates 
linear velocities for the Lagrange relaxation variables 
to linear and angular velocities of interest in the double 
pendulum in three dimensions we realize these 
correspond to the MTF elements (Multiport 
Transformers). 
 
The matrix transformation relates the x, y, z,	𝜑5 , and 
𝜑6  motion to the 𝛿̇’s.  This includes ,Y, and  forces 
at the origin and in the joints.  
 
Knowing that multiport transformers, MTF’s carry the 
inherent advantage to yield the set of equations for the 
forces and the torques, then it follows that using the 
matrix equations we obtain those that relate the Forces 
and the Torques to the Lagrange lambda variables as 
shown in the matrix transformation of Fig. 20. 
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Fig. 21   CAMPG, three dimensional pendulum bond graph 

 
The multiport transformers relate the forces and 
torques to the six 𝜆′𝑠 forces. The next step is to 
generate the bond graph based on these transformation 
equations. There are six branches on the left side with 
six “1” junctions, six capacitive elements, and six 
resistive elements. There are two transformers, one for 
each of the two “bobs.” As can be seen from the 
matrices, there will now be thirteen inertial elements 
on the right side. Those which represent inertia in the 
“y” direction are assigned effort sources at their “1” 
junctions because of gravity. Then, judging by the 
dynamic equations (not pictured) it can be determined 
that the “X” branch should be connected to only the 
first transformer element,  the “X1” branch should be 
connected to the first and second transformer 
elements, the “y” branch should only be connected to 
the first transformer element, and so on. Effort sources 
(or SE’s) are attached to the inertial elements, which 
correspond to motion in the y direction. Following 
these steps, the bond graph is obtained as shown in Fig. 
21. 
 
The next step is to export the bond graph model 
equations to MATLAB.  CAMPG does this by 
producing .m files that contain the parameters of the 
system, the simulation time, the desired output 
variable and the differential equations of the system in 
explicit form.  The solution presented here using the 
Lagrange multipliers produces a model with integral 
causality and therefore an explicitly set of equations. 
The transformer values are calculated as trigonometric 

expressions. Then  𝜆̇ ′𝑠 the 𝛿j𝑠̇  are calculated solving 
the system of differential equations and forces and 
torques are calculated by their respective e’s outputs. 
For example, 𝐹Z is e19 and 𝜆5 is e3. The transformer 
expressions are described the output displacement and 
forces specified.  Once all the known physical 
parameter values are entered, the time or frequency 
domain simulation can take place.  Fig. 22 is an 
example. 
 

 
 
Fig. 22 Output displacements of the bobs from the 3-
D double pendulum bond graph. 
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V.  THE DERIVATIVE CAUSALITY CASE 
 
If no relaxation of the constraints is present the model 
is a 3-D model with derivative causality and therefore 
with a set of implicit equations.  That alternative and 
its proposed solution is presented here.  
 
The derivative causality model has six angles and six 
velocity components. This leads to the derivation of 
six equations. [9] (Fitzpatrick, 2011) presents a single 
bob spherical pendulum. Here a double spherical 
pendulum and its bond graph are developed based on 
the kinematic relations.   
 

 
 

Fig. 23 Derivative causality model. 
 

𝑉o = 0             (22) 
𝑉p = 𝑉o + 𝜔op𝑥𝑟p/o         (23) 

 
𝑟p/o = (𝑙5𝑠𝑖𝑛𝜃5𝑐𝑜𝑠𝜑5)𝑖 
					−(𝑙5𝑠𝑖𝑛𝜃5𝑠𝑖𝑛𝜑5)𝑗 + (𝑙5𝑠𝑖𝑛𝜃5)𝑘        (24) 
 
𝜔op = 𝜔6𝑠𝑖𝑛𝜑5𝑖 − 𝜔6𝑐𝑜𝑠𝜑5𝑗 + 𝜔5𝑘 

 
𝜔op𝑥𝑟p/o

= v
𝑖 𝑗 𝑘

𝜔6𝑠𝑖𝑛𝜑5 𝜔6𝑐𝑜𝑠𝜑5 𝜔5
𝑙5𝑠𝑖𝑛𝜃5𝑐𝑜𝑠𝜑5 𝑙5𝑠𝑖𝑛𝜃5𝑠𝑖𝑛𝜑5 𝑙5𝑠𝑖𝑛𝜃5

v 

 
 = e−e𝜔6𝑐𝑜𝑠𝜑5𝑖(𝑙5𝑠𝑖𝑛𝜃5)f −
e𝜔5(𝑙5𝑠𝑖𝑛𝜃5𝑠𝑖𝑛𝜑5)f𝑖 − e𝜔6𝑠𝑖𝑛𝜑5(𝑙5𝑠𝑖𝑛𝜃5)f −
𝜔5𝑙5𝑠𝑖𝑛𝜃5𝑐𝑜𝑠𝜑5f + ((𝜔6𝑠𝑖𝑛𝜑5(𝑙5𝑠𝑖𝑛𝜃5𝑠𝑖𝑛𝜑5) −
𝜔6𝑐𝑜𝑠𝜑5𝑙5𝑠𝑖𝑛𝜃5𝑐𝑜𝑠𝜑5)𝑘           (25) 
 
𝑉pZ = (𝜔6(𝑙5𝑐𝑜𝑠𝜃5)𝑐𝑜𝑠𝜑5) + 𝑙5𝜔5𝑠𝑖𝑛𝜃5𝑠𝑖𝑛𝜑5)) 
𝑉pw = (𝜔6(𝑙5𝑐𝑜𝑠𝜃5)𝑠𝑖𝑛𝜑5) − 𝜔5(𝑙5𝑠𝑖𝑛𝜃5𝑐𝑜𝑠𝜑5 
𝑉px = (−𝑙5𝜔6𝑠𝑖𝑛𝜃5(𝑠𝑖𝑛𝜑5)6 
																		+𝑙5𝜔6𝑠𝑖𝑛𝜃5)(𝑐𝑜𝑠𝜑5)6)        (26) 

𝑉y = 𝑉p +𝜔py𝑥𝑟y/p       (27) 
𝑟y/p = (𝑙6𝑠𝑖𝑛𝜃6𝑐𝑜𝑠𝜑6)𝑖 − (𝑙6𝑠𝑖𝑛𝜃6𝑠𝑖𝑛𝜑6)𝑗 +
															(𝑙6𝑠𝑖𝑛𝜃6)𝑘             (28) 
𝜔py = 𝜔6𝑠𝑖𝑛𝜑5𝑖 − 𝜔6𝑐𝑜𝑠𝜑5𝑗 + 𝜔5𝑘                 (29) 
𝜔py𝑥𝑟y/p =

v
𝑖 𝑗 𝑘

𝜔9𝑠𝑖𝑛𝜑= 𝜔9𝑐𝑜𝑠𝜑= 𝜔=
𝑙6𝑠𝑖𝑛𝜃=𝑐𝑜𝑠𝜑= 𝑙6𝑠𝑖𝑛𝜃=𝑠𝑖𝑛𝜑= 𝑙6𝑠𝑖𝑛𝜃=

v        (30) 

 
= e𝜔=(𝑙6𝑐𝑜𝑠𝜃=)f𝑖 − e𝜔9(𝑙6𝑠𝑖𝑛𝜃9) −
								𝜔=(𝑙6𝑠𝑖𝑛𝜑=)f𝑗 − e𝜔9(𝑙6𝑐𝑜𝑠𝜃=)f𝑘		             (31) 
 
𝑉yZ = (𝜔9(𝑙6𝑐𝑜𝑠𝜃6)𝑐𝑜𝑠𝜑6) + 𝑙6𝜔=𝑠𝑖𝑛𝜃6𝑠𝑖𝑛𝜑6)) 
𝑉yw = (𝜔9(𝑙6𝑐𝑜𝑠𝜃6)𝑐𝑜𝑠𝜑6) − 𝜔=(𝑙6𝑠𝑖𝑛𝜃6𝑠𝑖𝑛𝜑6)) 
𝑉yx = (−𝑙6𝜔9𝑠𝑖𝑛𝜃6(𝑠𝑖𝑛𝜑6)6 −
												(𝑙6𝜔9𝑠𝑖𝑛𝜃6)(𝑐𝑜𝑠𝜑6)6)            (32) 
 
These six equations allow us to generate a matrix of 
the kinematic relations between each of the six 
directional velocities to the four-theta angles, shown 
in Fig. 23.  In Bond graph notation, this concept yields 
the use of multiport MTF elements, which relate 
velocities and angular velocities, or forces to torques.  
These matrix transformations are shown in the set of 
matrices relating the above equations and are shown in 
Fig. 24. A bond graph was generated using this matrix 
consisting of four “I” elements on the left, rotational 
inertias (for the four angles), and six “I” elements on 
the right (for the six directional positions).  Such bond 
graph is show in Fig. 25.  What the reader can clearly 
see is that we have a complicated system with four I 
elements in integral causality on the left (rotational) 
and six I elements in derivative causality on the right 
(translational velocities).  What to do now? 
 
In [10] (Granda 2003) presents an automated solution 
for systems with derivative causality.  The Granda 
method is found also in [1] uses matrix operation in 
symbolic form. It consists of a new set of state space 
symbolic matrices, which effectively combine the 
elements in derivative causality symbolically and 
produce a new set of state space matrices free of 
derivatives on the right hand side.  
  
A) Derivative Causality State Space Form 

Solution 

The normal explicitly set of differential equations in 
State Space Form has the following matrix form: 

  (33) 

  (34) 

}]{[}]{[}{ uBxAx +=!

}]{[}]{[}{ uDxCy +=

z 

Vex 



 

⎣
⎢
⎢
⎢
⎢
⎡
𝑥̇5
𝑦̇5
𝑧5̇
𝑥̇6
𝑦̇6
𝑧6̇⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑙5 sin 𝜃5 sin𝜑5
(𝑙5 sin 𝜃5 cos 𝜑5)

0
𝑙5𝜔5 sin 𝜃5 sin𝜑5

𝑙5 sin 𝜃5
0

e(𝑙5 cos𝜃5) cos𝜑5f
(𝑙5 cos 𝜃5 sin𝜑5)

(−𝑙5𝜔6 sin 𝜃5 (sin𝜑5)6 − (𝑙5𝜔6 sin 𝜃5)(cos𝜑5)6)
e(𝑙5 cos𝜃5) cos𝜑5f
(𝑙5 cos 𝜃5 sin𝜑5)

(−𝑙5𝜔6 sin 𝜃5 (sin𝜑5)6 − (𝑙5𝜔6 sin 𝜃5)(cos𝜑5)6)

0
0
0

𝑙6 sin 𝜃6 sin𝜑6
(𝑙6 sin 𝜃6 cos 𝜑6)

0

0
0
0

e(𝑙6 cos 𝜃6) cos𝜑6f
(𝑙6 cos𝜃6 sin𝜑6)

(−𝑙6𝜔9 sin 𝜃6 (sin 𝜑6)6 − (𝑙6𝜔9 sin 𝜃6)(𝐜𝐨𝐬𝝋𝟐)𝟐)⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡𝜃̇5
𝜃̇6
𝜃̇=
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⎥
⎥
⎥
⎤
 

 
Fig. 24 Velocities relation to the rotational angles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig .25  3-D double pendulum in derivative causality form 
 
 
The matrices A, B, C, D are the system matrices, {x} 
is the state variables vector, {y} is the vector of outputs 
and {u} that of the inputs.  The equations that come 
from the bond graph presented in Fig. 25 do not have 
the form of equations (33) and (34) exactly.  The right 
hand side contains derivatives.  In this particular case 
six derivatives of the momentums of the I elements of 
bonds 1, 2, 3, 4, 5, and 28.  

The method proposed first in [10] (Granda 2003) and 
in  [1] (Granda JJ,  Nguyen L, Carlson T, Brocker S, 
Sahragard-Monfared G,  Fornalski E, 2016) is now 
expanded and applied to the subject space vehicle.  It 
has the objective to transform the system of equations 
in implicit form to the state space form of equations 
(33) and (34), thus eliminating the need to solve an 
implicit set of equations. If we process the bond graph 
of Fig. 25, we will obtain a system of equations in the 
following form. 

        (35)  

          (36) 

Where the matrix [E] is the corresponding matrix of 
dependent derivatives and   is a vector of 
dependent derivatives.  {F} is a matrix, which 
establishes a static algebraic dependent relationship 
between the dependent variable derivatives and the 
derivatives of the states .  These relations are the 
ones that CAMPG produces automatically and thus 
also its correspondent derivatives relation.  Therefore, 
the system with derivative causality can be expressed 
as: 
 

        (37) 

        (38) 

}]{[}]{[}]{[}{ dxEuBxAx !! ++=

}]{[}{ xFxd !! =

}{ dx!

}{ dx!

Thus
xFEuBxAx }]{[*][}]{[}]{[}{ !! ++=

}]{[}]{[}]{[*][}]{[ uBxAxFExI +=- !!

: : .: :2~ 
. I . fi.. .•. 

: : •. I· 27 · · ( 
... I. •~ : : : : . 



                      (39) 

 
            (40) 

It is obvious that after these matrix operations, a new 
state space form emerges which is now in explicit form 
but with new matrices.  The new explicit state space 
is: 

        (41) 

                       (42) 

Where: 

        

(43) 

This approach generates new A and B matrices for the 
state-space equations of the system, which can then be 
used to calculate the derivatives as a normal explicit 
State Space model in MATLAB.  It is obvious that the 
[10] (Granda J, 2003) approach allows calculating all 
the state variables.  

Respect to the C and D matrices, it depends whether 
the outputs {y} may have derivatives on the right hand 
side.  In this case, the method follows the same logic 
as shown above for the A and B matrices.  So now the 
equations for the outputs with dependent derivatives 
on the right hand side are: 

{𝑦} = [𝐶]{𝑥} + [𝐷]{𝑢} + [𝐺]{𝑥�}̇           (44) 

{𝑥�}̇ = [𝐻]{𝑥̇}            (45) 

  𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 

{𝑦} = [𝐶]{𝑥} + [𝐷]{𝑢} + [𝐺][𝐻]{𝑥̇}	            (46) 

  

{𝑦} = [𝐶]{𝑥} + [𝐷]{𝑢}
+ [𝐺 ∗ 𝐻][𝐼 − 𝐸 ∗ 𝐹]�5[𝐴]{𝑥} 

+[𝐺 ∗ 𝐻][𝐼 − 𝐸 ∗ 𝐹]�5[𝐵]{𝑢}  (47) 

{𝑦} = [𝐶]{𝑥} + [𝐺 ∗ 𝐻][𝐼 − 𝐸 ∗ 𝐹]�5[𝐴]{𝑥} 

+[𝐷]{𝑢} + [𝐺 ∗ 𝐻][𝐼 − 𝐸 ∗ 𝐹]�5[𝐵]{𝑢} (48) 

{𝑦} = ([𝐶] + [𝐺 ∗ 𝐻][𝐼 − 𝐸 ∗ 𝐹]�5[𝐴]){𝑥} 

					+([𝐷] + [𝐺 ∗ 𝐻][𝐼 − 𝐸 ∗ 𝐹]�5[𝐵]){𝑢}            (49) 

Therefore 

[𝐶N��] = ([𝐶] + [𝐺 ∗ 𝐻][𝐼 − 𝐸 ∗ 𝐹]�5[𝐴]) and 

[𝐷N��] = ([𝐷] + [𝐺 ∗ 𝐻][𝐼 − 𝐸 ∗ 𝐹]�5[𝐴])         (50) 

The A new and B new matrices also provide the 
appropriate new combined kinematic relations that 
yield the new time dependent coefficients of the MTF 
elements which change at each time step. The 
𝐶N��	and the	𝐷N�� new matrices complete this new set 
of explicit symbolic equations which resolves the 
derivative causality problem. 

 

	{𝑦} = [𝐶N��]{𝑥} + [𝐷N��]{𝑢}       (51) 

Using the new A, B, C, D matrices the simulation in 
MATLAB is that of a normal explicit state space form 
set of first order differential equations and that for the 
outputs without dependent derivatives. 

 
VI. CONCLUSIONS 

 
The main emphasis of the paper is to present the use 
of relaxed constraints on a kinematic link set in order 
to produce an explicit set of differential equations.  In 
order to achieve this the relaxed constraints are shown 
and their relation to Lagrange multipliers.  It has been 
established the fundamental principles upon which the 
two and three-dimensional models of the Morpheus 
vehicle slosh study can be represented by two and 
three dimensional pendulum models. The use of 
Lagrange multipliers increased the number of degrees 
of freedom but produced a set of explicit algebraic and 
differential equations. 
 
If the problem is to be addressed keeping the 
dependencies and producing an implicit set of 
equations in derivative causality, the Granda method 
using matrix operations can be used to produce 
automatically a set of explicit equations by producing 
a new set of state space matrices.  Bond Graph models 
used in conjunction with Lagrange’s equations 
provide a powerful and useful means of simulating 
complex dynamic systems. The Morpheus project 
provided a good opportunity to demonstrate this. 
Simulation data depicting the movements of the 
Lander were obtained. 
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