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Abstract: Vertical variability in the raindrop size distribution (RSD) can disrupt the basic assumption
of a constant rain profile that is customarily parameterized in radar-based quantitative precipitation
estimation (QPE) techniques. This study investigates the utility of melting layer (ML) characteristics
to help prescribe the RSD, in particular the mass-weighted mean diameter (Dm), of stratiform rainfall.
We utilize ground-based polarimetric radar to map the ML and compare it with Dm observations from
the ground upwards to the bottom of the ML. The results show definitive proof that a thickening,
and to a lesser extent a lowering, of the ML causes an increase in raindrop diameter below the ML that
extends to the surface. The connection between rainfall at the ground and the overlying microphysics
in the column provide a means for improving radar QPE at far distances from a ground-based radar
or close to the ground where satellite-based radar rainfall retrievals can be ill-defined.
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1. Introduction

Radar-based measurements of rainfall are vital to understanding the distribution of precipitation
over large watersheds. Even though dual-polarimetric radar technology and the associated parameters
measured enable improved rainfall estimation compared to traditional (i.e., single-polarization)
radar [1–3], dual-polarimetric radars still suffer from many of the same sampling uncertainties
associated with accurately estimating rainfall at distant ranges from the radar. For example, regardless
of polarization characteristics, beam broadening causes the spatial resolution of radar measurements
to degrade with increasing range [4], enabling non-uniform beam filling to impact the accuracy
of radar-based estimates of rainfall [5,6]. Ground-based weather radars obtain measurements at
increasingly higher heights as the radar beam travels away from the radar due to Earth curvature and
gradients in the refractive index driven by vertical gradients of atmospheric temperature and humidity.
Thus, radar derived rainfall maps may not be representative of the actual rainfall totals observed at the
ground, especially at great distances from the radar (e.g., during winter a typical 1◦ wide radar beam
scanned at an elevation angle of 0.5◦ may encounter melting precipitation around 100 km from the
radar) and in regions of complex terrain that can inhibit use of measurements obtained at the lowest
elevation angles.

It is customary in radar-based quantitative precipitation estimation (QPE) to assume a constant
rainfall profile below the lowest altitude of a given radar measurement or to apply a correction based
on some model of the vertical profile of reflectivity (VPR), for example, References [7,8], but vertical
variability in the raindrop size distribution (RSD) can disrupt these methods by undermining the basic
assumption of a constant rain profile. Satellite-based retrieval techniques can also be greatly impacted
by RSD variability since due to main beam clutter they must use measurements that are typically no
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lower than 500–1000 m above the ground at nadir points [9]. Moreover, satellite-based radar estimates
of rainfall made at higher microwave frequencies can be greatly affected by attenuation [10,11].
Although numerous other factors contribute to the sampling uncertainties (e.g., instrument calibration,
sampling strategy, etc.), some of which are rather complex [1,5], all else being equal it ultimately
is our ability to fully describe the vertical column of precipitation and its variability using radar
measurements (ground, airborne or space-based) that determines the accuracy of radar QPE.

This study addresses radar-based QPE, and more specifically, the range-dependent errors by
examining the physical origin of the RSD as well as the factors that influence its size evolution.
Raindrops often develop from the melting of precipitation-sized ice hydrometeors [12]. For example,
melting snowflakes are a common source of rainwater in stratiform precipitation. Thus, characteristics
of the melting layer (ML) prescribe the initial state of the RSD, and as such, measurements of the
ML may provide additional information beneficial to radar QPE. Accordingly, we hypothesize that a
relatively thick ML (and/or low ML) produced by stratiform precipitation results in larger raindrops.
Several studies have found that larger raindrops were observed at the ground beneath more intense
radar reflectivity bright bands [13–16]. An example of this existing conceptual model using vertical
profiles of reflectivity is shown in Figure 1. Thicker (or deeper) portions of the bright band in equivalent
radar reflectivity factor are seemingly connected via precipitation fallstreaks to a temperature zone
favorable for dendritic growth [12,17], which is seemingly enhanced in the presence of weak convective
motions. Below these thicker regions of the bright band, enhanced reflectivity (Z) is often present
at low-levels (<1–2 km), indicative of larger raindrops (Z is proportional to sixth power of the
diameter) emanating from a thicker (or deeper) melting layer. However, the reflectivity bright band
is a radar measurement-based manifestation of the ML and can only be used to indirectly describe
rainfall intensity.
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that employ ML characteristics (or its radar manifestations) to improve radar rainfall estimation. In 

Figure 1. A time-series of equivalent radar reflectivity above radar level (ARL) from the University of
Alabama in Huntsville (UAH) X-band vertically pointing radar (XPR) measurements of a stratiform
precipitation event in Huntsville, Alabama. Time is given in Universal Coordinated Time (UTC).

In general, there is a lack of quantitative evidence more directly relating microphysical properties
of the ML to the RSD and its evolution. Although several studies have noted relatively little variability
in the vertical evolution of the RSD within stratiform precipitation, the reference for comparison is
often to the RSD evolution in convective precipitation, for example, References [18–20]. Very little
has been done to examine differences in vertical RSD evolution within stratiform precipitation for
different ML characteristics. Such an investigation is vital to developing procedures that employ ML
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characteristics (or its radar manifestations) to improve radar rainfall estimation. In this study, we use
high resolution polarimetric radar scanning strategies of the rain column and ML accompanied by
nearby disdrometers at the ground to examine the mass-weighted mean diameter (Dm) response to
changes in the ML geometry (i.e., thickness and height above ground).

The radars and disdrometers used for this study as well as techniques for connecting the ML
to the Dm are described in Section 2. Results of the Dm response at the ground and in the vertical to
changes in the ML are given in Section 3. These findings are discussed in Section 4 as they relate to
those from past ML and microphysical studies. The final section provides a summary of the findings
and proposes avenues to further explore.

2. Datasets and Methods

2.1. Instrumentation and Datasets

Over 90% of the radar data examined in this study were obtained with the Advanced Radar
for Meteorological and Operational Research (ARMOR) located in Huntsville, Alabama and jointly
owned and operated by the University of Alabama in Huntsville (UAH) and WHNT-TV, which is a
local television station in Huntsville. The ARMOR is a polarimetric Doppler radar that operates in the
C-band frequency range [21]. Data collected with NASA’s dual-polarimetric S-band radar (NPOL) [22],
during the NASA Global Precipitation Measurement (GPM) Mission Iowa Flood Studies (IFloodS)
campaign, which took place in eastern Iowa during the spring of 2013 [23], are also used to examine
changes in the ML. Both ARMOR and NPOL transmit using slant ±45◦ linear polarization [24,25].
Descriptions of both radars and their configurations for the datasets used in this study are provided
in Table 1.

Table 1. Characteristics of the Advanced Radar for Meteorological and Operational Research (ARMOR)
and NASA’s dual-polarimetric S-band (NPOL) radars used in this study.

ARMOR Value/Description

Frequency 5625 MHz
Peak transmitted power 350 kW

Pulse duration 0.8 µs
Pulse repetition frequency 1200 Hz

Number of samples per bin 128
Beam width (3 dB) 1.07◦

Antenna 3.7 m diameter; Center Feed Parabolic
Range resolution 125 m

Polarization Simultaneous Transmit/Receive of h and v

NPOL Value/Description

Frequency 2790–2810 MHz
Peak transmitted power 850 kW

Pulse duration 0.8 µs
Pulse repetition frequency 1100 Hz

Number of samples per bin 72
Beam width (3 dB) 0.95◦

Antenna 8.5 m diameter; Center Feed Parabolic
Range resolution 150 m

Polarization Simultaneous Transmit/Receive of h and v

Retrieval of vertical profiles of Dm from ARMOR and NPOL are obtained at distance of 15 km
from range-height indicator (RHI) scans that were repeated at an interval of 1–2 min. These distances
are selected due to the presence of in-situ disdrometer measurement of raindrops at the ground
along those radar azimuths. Each RHI scan consists of 0.1–0.2◦ spacing between elevation angles to
oversample the vertical dimension. This scanning strategy allows the Dm profiles to be obtained with
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a high degree of vertical resolution as well as a relatively high degree of temporal resolution. As a
result, although the beam is around 250 m wide at 15 km range, the elevation sampling resolution
(i.e., effective “vertical” resolution) is roughly 50 m due to the 0.1–0.2◦ spacing employed.

Two-dimensional video disdrometers (2DVD) are used to obtain RSD measurements at the
ground and serve as the basis for the radar scattering simulations we use to retrieve the vertical Dm

profile. The 2DVD is an optical disdrometer that uses two line-scan cameras to provide orthogonal
measurements of raindrop size and shape [26]. The fields of view overlap to form an approximately
10 cm × 10 cm measurement area with a resolution of 0.2 mm. Since the field of view of each camera is
vertically offset by 6–7 mm, which was monitored via routine calibration [26], the raindrop fall velocity
can also be directly measured.

Most of our ground-based RSD measurements were recorded in Huntsville, Alabama and largely
obtained with the low-profile version of the 2DVD owned by Colorado State University (CSU) and
occasionally complemented (intermittent due to field campaign use) with several compact 2DVD
versions owned by the NASA GPM Ground Validation (GV) program. Both versions of the 2DVD are
similar in height and resolution but the compact version is the newer generation that has a slightly
smaller footprint and updated electronics [27]. In Huntsville, the 2DVDs were deployed within
a 10 m × 10 m area at the National Space Science and Technology Center (NSSTC) on the UAH
campus approximately 15 km east-northeast of the ARMOR radar. The remaining 19% of the RSD
measurements we also use are from the six GPM GV compact 2DVDs deployed along a line extending
southeast of NPOL in east-central Iowa during the GPM IFloodS campaign. A summary of these
2DVD measurements is given in Table A1. We used over 134,000 min of rainfall from multiple 2DVDs
to perform the radar scattering simulations discussed in Section 2.3., but to compare the ground-based
raindrop size measurements with the radar-inferred ML characteristics we only use one disdrometer
at each location—in Huntsville we use CSU’s low-profile 2DVD at 15 km east-northeast ARMOR and
in Iowa we use GPM GV’s compact 2DVD (SN35) at 15 km southeast of NPOL. This much smaller
subset, which consists of only 2261 min, is largely a result of the corresponding times that RHI scans
were conducted over the disdrometers during stratiform precipitation and a ML was identified from
the radar measurements.

2.2. Radar Identification of the Melting Layer

A primary objective of this study is to define the characteristics and evolution of the raindrop size
below the ML and as a function ML properties and therefore we must first locate the ML boundaries
in a given radar volume. It is not the purpose of this study to introduce a new ML detection algorithm
for radar. Many other studies have already devised ML detection algorithms using dual-polarimetric
radar measurements [28–32]. Accordingly, we follow these previous studies and identify the ML by
considering the dual-polarimetric measurement of co-polar correlation coefficient (ρhv), which for
rain and dry snow is typically very near unity but decreases to values below 0.98 within mixed-phase
precipitation [33,34].

To map out the ML we searched for layers of ρhv < 0.98 situated near the 0 ◦C level as estimated
from nearby Rapid Update Cycle model analysis [35] and within 500 m of the reflectivity bright band
maximum. These latter two constraints help mitigate false ML detections in regions of clutter or low
signal to noise ratio where ρhv can be significantly reduced. The top and bottom of the ρhv < 0.98 layer
are then defined as the ML top and ML bottom, respectively. When using the ARMOR radar data,
we further refine the height of the ML bottom by raising it to account for the possibility of ρhv ≤ 0.94
at C-band radar frequencies due to large raindrops [36,37], which can be present immediately below
the ML. The ML bottom is also used to consider impacts of ML proximity to ground on the RSD.

Although algorithm development for ML identification is not the focus of this study, selection of
the ML boundaries does play a key role and thus it is necessary to determine the uncertainty in the
estimates of ML bottom and thickness (or depth) since beam broadening and non-uniform beam filling
can falsely enhance the ML depth estimated at 15 km from the radar [4]. We compare the ML from
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ARMOR RHI scans with UAH X-band Profiling Doppler radar (XPR) measurements during twelve
precipitation events over the NSSTC. The XPR is located 15 km from ARMOR and also co-located with
some of the disdrometers used in this study. The vertical-pointing measurements collected by the
XPR during these twelve events provide an excellent signature of hydrometeor melting at a vertical
resolution of 50 m. Following the approach of [38], we define the boundaries of the XPR-detected ML
using the curvature of the Doppler velocity measured above and below the peak of the radar bright
band. The statistics of the ML comparison for the twelve events are given in Table 2. The ARMOR
estimated ML top is an average of 221 m higher than from the XPR and the ARMOR estimated ML
bottom is an average of 241 m lower than the XPR estimate. These statistics are consistent with the
performance of other dual-polarimetric ML identification algorithms [29,31,39]. Assuming that the
XPR Doppler velocity profiles represent “truth”, we adjusted the ML boundaries estimated from
dual-polarimetric RHI scans at 15 km range for their respective biases and then use the bias-corrected
data in subsequent comparisons for examining RSD characteristics.

Table 2. Performance of melting layer (ML) identification from ARMOR range-height indicator (RHI)
scans relative to the University of Alabama in Huntsville X-band Doppler Profiling Radar (XPR)
estimates of the ML.

Statistic ML Top ML Bottom

Number of days 12 12
Bias (m) 221 −241

Root Mean Square Error (m) 282 319
Standard deviation (m) 166 208

Pearson correlation coefficient 0.98 0.98

Also, when estimating the ML characteristics from each RHI scan, we account for precipitation
trails, or fall streaks, present below the radar bright band that can have adverse impact on the
microphysical interpretation of radar data [40–43]. We manually follow the precipitation trails
upward from the location of the disdrometer to its source region above the ML. This enables the
RSD measurements at the ground and those retrieved from the radar RHI scans to be physically
connected to where they originated near the ML.

2.3. Retrieval of the Raindrop Size Distribution

The 2DVD measurements are filtered using environmental temperature, particle fall speed and
shape to mitigate contamination of the one minute (1-min) RSD spectra by non-rain particles (e.g., hail,
snow, calibration spheres) following the technique of [44]. The resultant 1-min RSD spectra are
described using a normalized gamma RSD model [45,46],

N(D) = Nw Fµ(D/Dm), (1)

which consists of three parameters—Nw, the normalized intercept parameter, Dm, the mass-weighted
mean diameter, and µ, a shape parameter that is contained within the probability density function
(PDF) given by Fµ(D/Dm) following the nomenclature used by Reference [45]. We follow the approach
used by Reference [47] to compute Dm and Nw from the measured 1-min RSD spectra and minimize
the difference between the measured N(D) and that given by the gamma RSD in (1) to find the optimal
value of µ. Since we are interested in the evolution of the raindrop size, we focus on Dm, which is
defined as the ratio of the fourth and third moments of the measured N(D), in our analysis of the RSD.

In order to retrieve Dm from the radar RHI scans, we use the 1-min gamma RSD
characteristics—Nw, Dm and µ—obtained from the 2DVDs and nearby temperature measurements
(10 m away from the 2DVDs in Huntsville and about 20-km from 2DVDs in Iowa) to perform numerical
scattering simulations via the commonly used T-matrix/Mueller matrix methodology [48–51] based



Atmosphere 2018, 9, 319 6 of 18

on the extended boundary condition method [52,53]. Although [54,55] already found empirical
relationships for Dm at C-band using about 7500 min of the Huntsville, Alabama dataset, they fit the
data to the median volume diameter (D0), which is slightly different from Dm. Furthermore, we use a
much larger dataset in this study (Table A1). Details on our radar scattering simulations and derivation
of the empirically determined equations for retrieving Dm from the radar are given in the Appendix A.
The overall uncertainties (mean standard error) in the ARMOR and NPOL estimates of Dm are 8%
and 12%, respectively, and are greatest for Dm < 1 mm and less than 6–8% for 1.2 mm < Dm < 2.4 mm
consistent with other radar retrievals of RSD at S-band and C-band [55–58].

Radar measurements collected during RHI scans over the disdrometers are used with
Equations (A1) and (A2) to retrieve the Dm profile (i.e., from the ground to the bottom of the
ML). Next the radar samples obtained at each height are averaged over a 3 km horizontal distance
centered on the slanted precipitation trail to reduce large gate-gate (i.e., small-scale) fluctuations in the
measured ZDR, which can be noisy at C-band [58–60]. Here we implicitly assume that the precipitation
characteristics are homogenous over a 3 km distance, which is a reasonable assumption for stratiform
rainfall, especially for radar retrievals of the characteristic raindrop diameter that can exhibit a spatial
correlation exceeding 0.8 at distances of 3- to 30-km [61,62].

3. Results

Over 2200 min of radar RHI scans and 2DVD measurements are examined to estimate the ML
and RSD characteristics during 36 days of stratiform precipitation observed in Huntsville, Alabama
and the IFloodS ground site (2DVD SN35) that was 15 km southeast of NPOL in east-central Iowa.
These cases consist of widespread stratiform events produced by mesoscale convective complexes
(MCCs), synoptic scale lift (e.g., warm front) and two tropical systems. About 81% of the MLs
diagnosed using the RHI scans are 100 m to 600 m thick (Figure 2a). The wide and multi-modal
distribution of ML heights found in Figure 2b reflects changes in the seasonal temperature profile and
meteorological regime. Nearly 75% of ML bottoms are 1000 m to 2800 m above ground level (AGL)
and roughly 20% were obtained during the remnants of two tropical cyclones that had ML bottoms
between 3500 m and 4000 m AGL. The mean ML thickness estimated from polarimetric RHI scans and
adjusted for biases (Table 2) is 352 m with a standard deviation of 196 m, which is comparable to that
inferred from aircraft-based particle images through the ML [63,64]. The equivalent radar reflectivity
bright band is also mapped [65] to examine its ability to represent the ML boundaries relative to the
dual-polarimetric approach. The top of the bright band in these stratiform events is an average of
100 m higher than that of the ρhv-based estimate of ML top and the bottom of the bright band is
80 m lower than that of the ρhv-based estimate of ML bottom. The average bright band thickness was
around 500–550 m, similar to that found by Reference [65].

3.1. Raindrop Sizes at the Ground

The raindrop sizes measured at the ground with 2DVDs located about 15 km away from the
radars are also plotted in Figure 2. Figure 2c suggests an increasing trend in Dm (i.e., raindrop size) at
the ground with increasing ML thickness, especially for the more frequently observed ML thicknesses
(150–750 m). We find a decreasing trend of Dm with ML bottom, but the Dm trend does not exhibit
an overall decrease across the entire range of estimated ML bottom heights (Figure 2d). For example,
those ML bottoms at altitudes exceeding 3500 m AGL are associated with greater Dm than the ML
bottoms below 1500 m AGL. However, the multi-modal distribution of the ML heights somewhat
masks the decrease of Dm with increasing ML height. Considering only the Dm measured at the ground
when ML heights exhibit a more normal distribution (e.g., the group of bins between 3000 and 4200 m
highlighted in Figure 2b), as the height of the ML bottom ascended 1000 m, the mean Dm generally
decreased from 1.7 mm to 1.2 mm (Figure 2b,c). Similar, but less pronounced, trends occurred beneath
other subsets of MLs at lower heights (e.g., ML bottoms between 2000 and 2400 m AGL in Figure 2d).
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Although Figure 2c clearly indicates Dm increases with increasing ML thickness, we perform an
analysis of variance (ANOVA) to test the null hypothesis—Dm does not vary with ML thickness—and
find that it can be rejected with a 99% confidence level. Hence Dm varies with ML thickness. We find a
strong linear relationship exists between ML thickness and Dm (Pearson correlation coefficient, r, is
0.95). Nearly 90% of the variance in Dm can be predicted from ML thickness. Similarly, we examine
the relationship between ML bottom height and Dm but only consider the heights between 3000 and
4200 m and corresponding Dm that are highlighted in Figure 2b,d in order to simplify the comparison
by ignoring the complex seasonality-induced multi-modal distribution. The ANOVA test indicates that
the null hypothesis that Dm does not vary with the height of the ML bottom can be rejected also with a
99% confidence level. We find a robust inverse linear relationship exists between ML bottom height
and Dm (r = −0.94) and 89% of the variance in Dm can be predicted from ML bottom. Similar behavior
occurs for the maximum raindrop size (Dmax) measured in each 1-min RSD. However, Dmax exhibits
a weaker linear correlation (r = −0.67) with ML height, albeit this is not surprising since it is highly
unlikely that the largest raindrop present in a radar volume can be found with a 1-min disdrometer
sample [66].
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Figure 2. Polarimetric radar-based melting layer (ML) characteristics and two-dimensional video
disdrometers (2DVD) measured Dm from the Huntsville, Alabama and IFloodS stratiform rainfall
cases. Relative frequency distribution of (a) ML thickness and (b) ML bottom, respectively, and the
solid curve represents the cumulative frequency distribution; (c,d) are box and whiskers plots of Dm

corresponding to the ML thickness and ML bottom, respectively, where each box is bounded by the 25th
and 75th quartiles and the mean value in each Dm bin is represented by an “X.” The whiskers indicate
extremes and extend to 1.5 times the interquartile range. Outliers (i.e., values exceeding 1.5 times the
interquartile range) are represented by circles. The dashed line in (c) represents the best fit line from
linear least squares regression where Dm is the dependent variable and the ML thickness (∆H in km) is
the independent variable.
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We also examine the combined effects of a lowering and thickening ML on raindrop size measured
at the ground. Figure 3 confirms that the lowest and, especially, thickest MLs are associated with the
largest raindrops in stratiform precipitation. The Dm measurements are partitioned into quadrants
based on mean ML characteristics and student’s t-tests of the drop size characteristics in each quadrant
are conducted to determine whether the RSDs in each quadrant were sampled from the same drop
population. The results suggest a statistically significant (probability >0.95) difference between the
drop size characteristics (i.e., Dm and Dmax) of the RSDs observed while the ML is thicker than 315 m
compared to those observed when the ML is thinner than 315 m. However, disdrometer observations
collected when the ML bottom was lower or higher than the median height of 2310 m AGL is very
similar between the two sets of Dm samples. In contrast, the Dmax sample observed during low MLs
(i.e., <2310 m AGL) are larger than the Dmax sampled during high MLs. We attribute this to the
different types of stratiform precipitation events observed (i.e., MCCs versus tropical cyclone versus
mid-latitude cyclone). Furthermore, Dmax exhibits a larger relative increase than Dm as the ML lowers
and thickens.
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Figure 3. The (a) mean Dm and (b) maximum Dmax at the ground from 2DVD measurements of rainfall
as a function of the overlying melting layer thickness and its height above ground (i.e., ML bottom).
The mean values of Dm and Dmax (mm) inside each quadrant of the ML thickness and ML bottom
space are given. The mean (median) of the ML measurements are indicated by the solid (dashed) lines.

3.2. Evolution of the Raindrop Size Distribution in the Vertical Column

Vertical profiles of Dm below the ML bottom are retrieved above the aforementioned 2DVDs
at 15 km range from 2492 min of ARMOR RHI scans and 402 min of NPOL RHI scans during
40 stratiform rainfall events. Increasing Dm trends in the profiles are observed to occur with a lowering
and thickening of the ML, similar to that observed in the ground-based measurements (c.f., Figure 2).
A 27% increase in the profile-averaged Dm occurs as the ML thickens from 50 m to 750 m (Table 3).
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Table 3. Overview of Dm retrievals from radar RHI scans during periods of varying ML thickness.
The angle brackets represent the arithmetic mean of the retrieved profile and σ is its standard deviation.

ML Thickness (m) Number of RHI Profiles <Dm> ± σ(Dm) (mm)

50 ≤ MLthick < 150 m 384 1.40 ± 0.34
150 ≤ MLthick < 250 m 665 1.47 ± 0.31
250 ≤ MLthick < 350 m 697 1.49 ± 0.30
350 ≤ MLthick < 450 m 601 1.57 ± 0.32
450 ≤ MLthick < 550 m 423 1.62 ± 0.32
550 ≤ MLthick < 650 m 295 1.71 ± 0.30
650 ≤ MLthick < 750 m 172 1.78 ± 0.28

Figure 4 shows the column vertical evolution of Dm for the range of ML thicknesses given in
Table 3. A minimum of 100 Dm retrievals were required in each 250 m layer to construct the profiles
in Figure 4 and all points in the profile are at least 250 m below the polarimetric radar-identified ML
bottom. Although there is relatively little variation in the mean Dm from the ML bottom to the ground,
especially below 1250 m AGL, the entire Dm profile shifts from 1.3 to 1.4 mm for 50–250 m thick MLs to
1.7–1.8 mm for 650–750 m thick MLs (Figure 4a). Most of the vertical change in the Dm occurred within
the first 1000–1500 m below the ML. A slight decrease of Dm occurred near the very top of the profiles.Atmosphere 2018, 9, x FOR PEER REVIEW  9 of 17 
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Figure 4. Vertical profile of (a) mean Dm and (b) standard deviation of Dm retrieved from
dual-polarimetric radar measurements for the ML thicknesses listed in Table 3. The legend in the
lower-left corners gives the radar-based ML thickness corresponding to each Dm profile.

The peak in mean Dm aloft is 7–12% greater than that at 250 m AGL and becomes less pronounced
but spans a greater vertical distance (i.e., larger raindrops are present throughout a greater depth of
the rain layer) as the ML thickens. However, for Dm around 1.3–2.0 mm, the radar retrieval is only
accurate to within 8%, and thus it is difficult to say with a high degree of certainty that the Dm peak
aloft depicts an actual microphysical process. Since this peak in Dm aloft occurs across the entire range
of ML thicknesses as well as the lower and upper quartiles of Dm, we do not believe that the behavior
can be attributed entirely to error in the retrieval (i.e., some portion of the signal is likely physical in
nature). This will be further addressed in the discussion section below.

The thicker MLs tend to exhibit less Dm variability in the column below the ML. The standard
deviation of the Dm profile beneath the 650–750 m thick ML is less than that of the thinnest ML at all
heights and by as much as 30% above 2000 m AGL (Figure 4b). The standard deviation of the Dm
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profiles increases toward the ground, perhaps indicative of the Dm being further shaped as a result of
collisions as well as evaporative effects.

The Dm profile just above the surface is slightly larger than that recorded by the 2DVD under
similar ML characteristics. This somewhat decreasing Dm trend in the lowest 250–500 m AGL
is indicated by Figure 4a. This difference could also be that the radar, which has a much larger
sampling volume than the 2DVD, is detecting more numerous large drops than the 2DVD. Regardless,
the radar-retrieved Dm trends with varying ML thickness are similar to the Dm behavior we find at the
ground with the 2DVDs.

4. Discussion

The results provide very strong evidence that the size of raindrops reaching the ground tends to
increase as the ML becomes thicker and closer to the ground. Supporting this conclusion, more than
2200 min of polarimetric radar RHI scans were conducted over 2DVDs and used to investigate the
response of the raindrop sizes to changes in the thickness and height of the ML. We conducted
this study to explicitly test the hypothesis that a thicker and lower ML produces larger raindrops
at the ground, which has implications for radar rainfall estimation [14,16]. Although numerous
observational studies suggest such a hypothesis is valid [14,65,67–69], most of the aforementioned
studies used a reflectivity-based bright band to infer ML characteristics and very few had access to
high quality disdrometer measurements. The dual-polarimetric methods used herein for identifying
the ML boundaries yielded results that are consistent with particle images obtained through the
ML [63,70–73]. Conversely, the bright band is thicker than the dual-polarimetric ML signatures by
nearly 200 m. This reflectivity-associated bias in ML thickness relative to the polarimetric methodology
likely reflects the strong dependence of reflectivity on hydrometeor size. Aircraft observations indicate
that the radar bright band signature can include very large aggregates present just above the 0 ◦C
level and very large raindrops just below the ML [63,71,73]. Those observations are also consistent
with a reflectivity-based ML estimate (i.e., bright band) being thicker than the ML estimated from the
dual-polarimetric measurements.

Our results show that the mass-weighted mean raindrop diameter increases as the ML thickens
(i.e., increase of distance it takes for snow particles to fully melt), which can be tied to an increase
in the overall size of snowflake aggregates above the ML. This is because the rate of snowflake
melting is dependent upon its initial size, with larger aggregates having to traverse a further distance
before fully melting [70,71,74]. So a thickening of the ML can indicate enhanced aggregation above
or near the top of the ML [63]. This is also suggested by the vertically pointing radar observations
shown in Figure 1 in which enhanced low-level reflectivity during times of thicker bright bands are
seemingly connected to a less, but locally enhanced, layer of reflectivity above the ML that occurs in a
temperature zone that favors growth of dendrites whose fall speed and geometry are very conducive to
aggregation [12]. Furthermore, large aggregates can contain more liquid water than smaller, individual
ice crystals and upon melting result in a larger raindrop. Thus larger raindrops are expected to occur
beneath thicker regions of the ML, suggesting that raindrop size is tied to the efficiency of snowflake
aggregation [42,63].

Numerous studies have shown that processes such as breakup and aggregation within the ML are
also responsible for shaping the RSD [63,69,71–73,75]. Although no in-situ observations within the ML
were available for the cases examined in this study, the UAH XPR measurements during our stratiform
precipitation events are used to infer the dominance of aggregation or breakup within the ML by
examining the ratio of the particle flux above and below the ML, where particle flux is estimated by
the product of equivalent reflectivity and vertical velocity [75]. Aggregation dominates over breakup
within the ML if this ratio is less than 0.23 [75]. Figure 5 reveals that the ML thickens as the particle
flux ratio decreases (i.e., aggregation becomes more dominant) within the ML, which is consistent with
the bright band observations by Reference [69]. Thus an increase in the mean raindrop size is not only
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associated with enhanced aggregation above the ML but also enhanced aggregation within the ML
consistent with the in situ observations through the ML by Reference [73].
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Figure 5. Box and whisker type plot with statistics represented similar to Figure 2 but showing particle
flux across the ML as a function of ML thickness estimated from the XPR measurements in Huntsville,
Alabama. The dashed line delineates MLs dominated by aggregation or breakup. The relative frequency
of profiles in each ML thickness bin is indicated by the percentages.

We find that the largest raindrops exist primarily beneath thick MLs and/or those MLs occurring
closest to the ground. For the MLs close to the ground, the shorter fall distance reduces (1) the chance
for breakup and (2) the total amount of liquid water that is evaporated. The increase of mean raindrop
size as the ML lowers is consistent with the observations made by Reference [69] during descending
bright band periods of a landfalling tropical storm rain band.

Relatively little variation of the Dm with height is found in stratiform precipitation events, which is
consistent with previous findings [76,77]. Within a given stratiform event, a thickening and lowering
of the ML shifts and compresses the vertical profile of Dm but does not significantly alter its basic
shape. The mean raindrop size at the ground is similar to that just below the ML and Dm changes no
more than 12% (i.e., <0.2 mm) throughout the vertical profile. The largest values of Dm are found about
1000 m below each ML regardless of its thickness (i.e., it cannot be accounted for by changes within the
ML). This is also around the height where a maximum D0 was observed in a widespread stratiform
rain case over southeast India [77] and in a stratiform event over eastern China [78]. The enhanced
Dm aloft is believed to be due to a physical process that occurs in stratiform rainfall and not just radar
retrieval error. The Dm peak may be an indicator of a region of drier air aloft (e.g., the “onion” shaped
soundings measured by Reference [79] and hence evaporation in the trailing stratiform region of
squall lines), which has implications for dual-polarimetric radar rainfall estimation [80]. The datasets
gathered for this study do not provide the necessary information to assess if this is indeed the case.
The enhanced Dm aloft may be an additional source of error in radar rainfall estimates, similar to the
bright band but likely not as significant, except perhaps for very light rainfall rates where the bright
band is not as strong.

The trends in Dmax compared to those we found for Dm suggest that the tail of the RSD is much
more affected by changes in the ML characteristics. Consequently, radar rainfall estimators based
on reflectivity (i.e., highly sensitive to the tail of the RSD) should be correspondingly more variable
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with changes in ML thickness and height compared to those estimators that utilize specific differential
phase (KDP) and differential reflectivity (ZDR) that are less sensitive to Dmax.

5. Summary and Conclusions

The motivation for this study is to improve radar-based QPE by considering the vertical variability
of precipitation that complicates accurate retrieval of rainfall near the surface, especially at relatively
far distances from the radar. We considered how precipitation ML characteristics impact the physics
of rainfall development in the vertical column. Our focus on the melting layer is due to the fact that
it is usually a rather prominent feature of stratiform precipitation and can be readily mapped with
radar (ground-, aircraft-, or space-based). To do this we examined the evolution of the RSD under
different melting layers and found that variations in Dm of stratiform precipitation tended to follow
variations in the ML thickness. A hypothesis is that thicker and lower MLs are associated with larger
raindrops at the ground. Instead of relying solely on the radar reflectivity bright band, which is a
radar manifestation of the melting layer and is thicker than the true melting layer, to quantify this
relationship as was done in past studies [14,69], we used high-resolution polarimetric radar scans to
identify ML boundaries, focusing in particular on ρhv measurements, which provide a rather accurate
depiction of melting hydrometeors [29,33,38,39].

We found a direct linear relationship (correlation of 0.94) between the thickness of the ML and
the size of raindrops measured at the ground with 2DVDs. Variations in ML thickness were found to
describe nearly 90% of the variability in raindrop size. For two tropical rainfall events, we found a
strong inverse relationship exists between the raindrop size and height of the ML. Such similarity is
not very surprising since the ML thickness is governed by the distance it takes a snowflake to melt.
This in turn can cause the bottom of the ML to descend while its top remains around the same altitude
(i.e., ML thickens).

One caveat that might impact this strong ML-RSD relationship we find is that our Dm may be
an overestimate since the 2DVD has been reported to underestimate the number of small (equivalent
spherical diameter < 0.7 mm) drops [81]. However, this reported Dm bias is most pronounced only
in light rainfall events when a relatively thick bright band is not present [81]. Hence, we anticipate a
good correlation to exist between Dm and ML thickness for stratiform precipitation but are somewhat
uncertain about the strength of that relationship for very light stratiform rainfall (R < 0.5 mm/h) when
smaller drops are often present.

We also examined the variability of Dm up the column with respect to changes in the ML. We found
that on average larger raindrops through the depth of the column occur with thicker MLs. Moreover,
the shape of the Dm profile was fairly uniform, exhibiting only minor variations in the vertical such that
Dm near the ground was similar to that below the melting layer. It is still unclear whether increased
aggregation aloft and/or within the ML ultimately leads to the thicker ML and larger raindrops- more
study on coordinated airborne and multi-parameter radar observations are required. Additionally,
the ML effects on other RSD parameters, such as Nw, are also needed to assist with interpretation
of the microphysical effects that shape the RSD. However, there is typically less confidence in the
radar-retrieved value of Nw compared with Dm. High resolution, vertically pointing Doppler radars,
such as the Micro Rain Radar [82], would be a good tool to use for further investigating the ML
effects on the RSD since they are capable of retrieving both the profiles of Dm and Nw as well as the
ML characteristics.

The connection between rainfall at the ground and the overlying microphysics in the column
provide a means for improving radar QPE at far distances from a given radar. These results have shown
definitive proof that a thickening, and to a lesser extent a lowering, of the ML causes an increase in raindrop
diameter below the ML that extends to the surface. Thus, information about the thickness and height
of the ML may be useful to constrain RSD retrievals and thereby ultimately improve radar rainfall
estimation to the extent a rainfall estimation algorithm accounts for potential profile changes in the
RSD. For example, space-based radar algorithms developed for use with the Global Precipitation
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Measurement (GPM) Mission [83,84] could use the Dm profile trends we find for stratiform precipitation
as an additional guide and means to verify, and adjust if necessary, retrieved RSD characteristics in the
vertical column.
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Appendix A

The CANTMAT Version 1.2 software program, which is a Meuller-matrix based approach [1]
adopted for calculating radar parameters using the T-matrix method formulation by Reference [52]
and was developed at CSU by C. Tang and V.N. Bring, is used for our radar scattering simulations.
This scattering simulation tool has been used in numerous polarimetric radar studies, for example,
References [48,49,51]. We use the following assumptions in the radar scattering simulations:
(1) raindrop shapes from the 80 m bridge experiment [85]; (2) raindrops have a Gaussian canting angle
distribution with a mean and standard deviation of 0◦ and 8◦, respectively [86]; (3) The maximum
diameter, Dmax = 3Dm to be representative of most DSDs, especially those containing large raindrops
in light rainfall [44,55,87]; (4) raindrop temperature is represented by the mean hourly temperature
near (within 10 m for Huntsville and roughly 10–30 km for Iowa) the location of each 2DVD; and (5) a
radar antenna elevation angle of 0◦. Only 1-min spectra containing at least 150 raindrops are used for
the scattering simulations to reduce variability in the simulated radar parameters. We add Gaussian
noise to the simulated radar parameters for each radar configuration (Table 1) following the methods
outlined in chapter 6 of [1].

The simulated radar parameters are compared with the 1-min RSD spectra from the 2DVD
raindrop measurements to create empirical fits that facilitate retrieving Dm from the radar
measurements. In determining the equation for the radar retrieval of the RSD, we randomly select
70% (94,409 min) of the RSD spectra listed in Table A1 to compute Dm fits for each radar and location.
The remaining 30% (40,460 min) are for assessing the uncertainty of the parameterization. We find the
following equations provide a good fit for using the differential reflectivity, ZDR, to parameterize Dm:

• Alabama (ARMOR):

Dm = 0.5969 + 1.7953ZDR − 1.1111ZDR
2 + 0.5171ZDR

3 − 0.1360ZDR
4 + 0.0142ZDR

5, −0.2 ≤ ZDR ≤ 4.7 dB (A1)

• Iowa (NPOL):

Dm = 0.5953 + 1.6092ZDR − 1.0567ZDR
2 + 0.5762ZDR

3 − 0.1696ZDR
4 + 0.0219ZDR

5, −0.3 < ZDR ≤ 3.7 dB (A2)
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Table A1. Overview of 2DVD rainfall measurements collected at Huntsville and IFloodS. This summary
includes measurements from multiple 2DVDs when present at the same location.

Location Observation Period
(YYYY-MM-DD)

Number of
Raindrops(n)
(in Millions)

Total 1-min
RSD Spectra

(n ≥ 100)

Rainfall Rates
(mm/h)

Total Rainfall
(mm)

Huntsville, AL
(number. of 2DVDs: 4)

2007-07-07 to
2013-12-09 75.3 109,969 0.006–157.4 5903

Eastern Iowa (IFloodS)
(number of 2DVDs: 6)

2013-04-09 to
2013-06-16 16.3 24,900 0.006–121.2 970.5
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