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Abstract

This report studies tsunamis caused by asteroids, both those that arise from atmo-
spheric blast waves moving across the water surface from airburst asteroids, and
those that arise when the asteroid reaches the water and forms a crater. We per-
form numerical experiments that compare simulations using depth-averaged models
(shallow water and several forms of Boussinesq) with linearized Euler (acoustics
plus gravity) and ALE hydrocode simulations. We find that neither of the depth-
averaged models do a good job of initiating the tsunami, but in some cases can be
used to propagate a solution generated by a higher-fidelity method. A list of our
conclusions and recommendations for further study is given in Section 5.
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1 Introduction

This report discusses modeling and simulation issues in the generation and propa-
gation of asteroid-generated tsunamis (AGT). We consider both airburst generated
tsunamis and those resulting from water impacts. In both these cases, the result-
ing tsunamis are quite different than earthquake-generated tsunamis (EGT), due
to their much shorter wavelength. For EGT simulation, the shallow water equa-
tions (SWE) are the method of choice, since they are depth-averaged, removing the
vertical direction, and hyperbolic, allowing robust and efficient adaptive solution
techniques.

However, as reviewed below, the shallow water equations are derived from the
incompressible Euler equations using an asymptotic expansion in powers of h/L,
where h is the depth of the ocean, and L is the wavelength of the phenomena.
For earthquakes L can be O(100) km. For airbursts, a typical length scale of a
Friedlander blast profile is O(10) km. For craters caused by an asteroid splashing
into the water, the diameter may be only 1–3 km, calling into question the suitability
of the SWE to model these events.

In this report we compare SWE simulations with both linearized Euler equation
results and with several forms of Boussinesq equation simulations, to determine
numerically how reliable the simulations are. There are several forms of Boussinesq
equations, but roughly speaking they include the next terms in the asymptotic
expansion used to derive the shallow water equations. We use a model problem to
compare all three equation sets to demonstrate their behavior, and when they can be
used reliably. Finally, we also take data from a hydrocode simulation to determine
whether it can be propagated using the Boussinesq equations.

Section 2 briefly introduces the models we compare, with more details about
them given in the Appendix. We also introduce the problems we study and the
computer codes used. Section 3 looks at airburst-generated tsunamis, the simpler
of the two scenarios. Section 4 looks at water impact cases. This is not as far along,
but we present a number of experiments to justify our conclusions and recommen-
dations, found in Section 5. We end with a list of questions not yet answered and
recommendations for further study.

2 Fluid Dynamics Models

2.1 Model equations

In this report we focus on models for the generation and propagation of the tsunami
wave in the water, its interaction with underwater topography (bathymetry) and the
resulting inundation onshore. We do not discuss models for asteroid propagation
through the atmosphere, the energy deposition from an airburst, or the physics of
an asteroid striking the ocean and forming a crater.

Even so, there are many possible tsunami models:

• 3D compressible or incompressible Navier-Stokes equations with a
free surface. This would be the most accurate model but is impractical
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for oceanic scale computations and generally not necessary. Neglecting fluid
viscosity gives the simpler 3D compressible Euler equations but still not prac-
tical. Multi-physics codes might reduce to these equations in the fluid phase,
and be necessary for modeling asteroid impact cratering, but we do not con-
sider these equations for our study of tsunami propagation. A simplification
is a 2D vertical slice in (r, z) with source terms to model radial symmetry.
Simulations with the hydrocode ALE3D [1] that models these equations have
been performed by Darrel Robertson and used to initialize crater-generated
tsunamis in Section 4.

• 3D linearized compressible Euler. When the surface displacement is small
relative to the depth (e.g. for airburst generated tsunamis), the free surface can
be replaced by a boundary condition at the top of the water and the nonlinear
compressible Euler equations linearized about the equilibrium state. This
gives the linear acoustics equations, with the addition of a gravity term and
appropriate boundary conditions at the top surface to model the atmospheric
pressure and water surface displacement. We refer to this set of equations as
3D AG (acoustics plus gravity).

In the depth-averaged shallow water equations, the variables are the depth
h(x, y, t) and two horizontal momenta hu and hv. There is no need for a free
surface or a boundary condition at the top since the depth h directly models
the surface displacement by η(x, y, t) = B(x, y) + h(x, y, t), where B(x, y) is
the bathymetry (relative to mean sea level, say, with B < 0 in the ocean and
h ≥ 0).

• 2D shallow water equations. These equations are derived from the 3D
incompressible Euler equations by assuming that the wavelength of the surface
disturbance is long compared to the fluid depth. These equations are often
used for modeling earthquake generated tsunamis, for which the wavelength
may be hundreds of kilometers while ocean depth is 4 km on average. The
nonlinear shallow water equations have also been shown to be a good model
for inundation in many cases.

• 2D Boussinesq equations. The shallow water equations are non-dispersive;
a small amplitude wave propagates at the gravity wave speed

√
gh regardless of

its wavelength. This is roughly correct for wavelengths that are large relative
to the fluid depth, but for wavelengths less than say 20 times the fluid depth,
the propagation speed predicted from the linear Euler equation theory begins
to depend strongly on wavelength, with shorter wavelengths traveling more
slowly. Asteroid-generated tsunamis have wavelengths that are much smaller
than those generated by major earthquakes, and so the shallow water equations
are generally inadequate to model their propagation.

The dispersive effect can be modeled with depth-averaged equations if ad-
ditional terms are kept when deriving these from the Euler equations. This
introduces higher-order derivatives in the equations, making them more expen-
sive to solve numerically, but still much cheaper than solving full 3D equations.
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There are many such Boussinesq equations depending on how the expansion
is done and/or how the higher order terms are modified to better match the
dispersion relation of the Euler equations. We use a form described in Sec-
tion A.4. These equations match the dispersion relation well down to wave-
lengths of about 2 times the fluid depth, see Figure A1.

• Plane-wave or radial versions: All the models above can be simplified
when modeling a radially symmetric wave by incorporating appropriate geo-
metric source terms in the equations. The 3D versions of AG reduce to 2D
computational work, and the 2D versions reduce to 1D, allowing for compu-
tationally efficient parameters studies, for example.

2.2 Computer codes

Simulations using these models were performed using a variety of codes. All AG
simulations used Clawpack with adaptive mesh refinement in the x-z plane where z
is depth, or in the r-z plane with the inclusion of geometric source terms to model
radial symmetry, so that the horizontal direction is radius from the impact location.

The 2D shallow water simulations were performed using GeoClaw, for both flat
bottom experiments and real topography [2]. One-dimensional shallow water equa-
tions (with or without radial source terms) were also performed using a newly-
developed 1D extension of GeoClaw.

We tested several different Boussinesq codes that use different formulations of
the equations, mentioned in the text in the relevant places. In particular BoussClaw
refers to an extension of GeoClaw initially developed by Jihwan Kim that implements
the equations studied by Madsen and Sorensen [3]. This formulation has a parameter
B that can be set to B = 0 to solve the Peregrine equations [4], an early version
of Boussinesq equations that is generally too dispersive. The choice B = 1/15 is
recommended as giving the best agreement with the dispersion relation expected
from the Euler equations, and we have also found that this works very well. Details
can be found in Section A.4.2 and in the papers [3, 5–7].

The other computer code used for some Boussinesq simulations is Basilisk (cour-
tesy of Stephane Popinet), which solves the Serre-Green-Naghdi equations (SGN) [8].
The Basilisk code is parallelized. It is also adaptive, but not flexible or robust enough
to handle the cases we consider, so adaptivity is not used in the results below. The
SGN implementation in Basilisk was found to agree fairly well with BoussClaw with
B = 1/15. Both Boussinesq codes are used in the experiments below to help confirm
the numerical results.

The ALE simulations performed by Darrel Robertson were done using the hy-
drocode ALE3D [1]. This is a multi-physics arbitrary Lagrangian-Eulerian code that
includes heat transfer, multiphase flow, fracture and fragmentation models, radia-
tion, etc. It is very computationally expensive, providing motivation to investigate
whether depth-averaged codes can propagate asteroid-generated tsunamis and if so,
how early in the process can this be done.
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2.3 Initial conditions

As inputs to generate a tsunami we consider the following possibilities:

• An airburst results in a pressure pulse that hits the water surface and spreads
out, moving over the surface at roughly the speed of sound in air. This pres-
sure pulse typically has the form of a shock wave (with an overpressure that
depends on the size and material properties of the asteroid) that decays with
distance from the initial impact, followed by a rarefaction wave that reduces
the pressure below atmospheric pressure before returning to equilibrium. The
idealized Friedlander profile is shown in Figure 1. This modified atmospheric
pressure acts as a forcing term on the water surface, deforming the surface
and creating a tsunami.

Figure 1. Friedlander profile: the atmospheric pressure pulse from an airburst blast
wave.

• An idealized crater can be used directly as initial data for a tsunami model
(e.g. the parabolic crater shown in Figure 2 with zero initial fluid velocity, dis-
cussed in several papers [9,10]). Although a crude model of reality, a tsunami
model with this initial data is much cheaper to run than the multi-physics
code, and so it is useful to investigate whether such simulations can be used as
a reasonable estimate of tsunami magnitude provided they are properly cal-
ibrated. It also simplifies comparisons of propagation using hydrocodes and
tsunami codes without the additional complicating physics.

• An asteroid that reaches the water surface forms a crater that may be quite
deep, or even reach to the sea floor. Properly modeling the crater formation
(including drastic temperature changes and vaporization of some of the water,
vertical acceleration of the fluid, transfer of momentum from the asteroid to the
fluid, etc.) requires multi-fluid and multi-physics codes and the initial phases
of crater generation and evolution cannot be well modeled by a tsunami code
alone. (For now we are ignoring the air blast that accompanies the cavity
since it moves on a faster time scale). But output from an impact code at
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a later time, after the initial tsunami generation, can potentially be used as
initial conditions for a tsunami model to accurately model the long-distance
propagation and onshore inundation of the wave.

Figure 2. Parabolic crater, with and without lip. The surface elevation is nonzero
only for r < RD, where η(r) = −DC(1 − (r/RC)2). Here the depth of the crater is
DC = 1000, the radius is RC = 1500 and RD is either RD =

√
2RC for the lip case

or RD = RC for no lip.

3 Airburst-generated tsunamis

The pressure pulse arising from an airburst hits the water and then moves across
it, causing two distinct waves: The response wave, a disturbance of the sea surface
that is directly coupled to the moving pressure pulse and that propagates at the
same speed (roughly the speed of sound in air, sa ≈ 391.5 m/sec), and a gravity
wave that is generated from the pressure growing at the initial point of impact and
that moves at slower speeds bounded above by sg =

√
gh (slower for higher wave

numbers when dispersion is included). Here h is the undisturbed depth which we
assume is constant for this initial discussion. If h = 4000 m then sg ≈ 200 m/sec,
and for all oceans on earth we have sg < sa.

In this section we discuss the ability of the three broad classes of models (SWE,
SGN/BoussClaw and AG) both to generate and to propagate across long distances
the response wave and the gravity wave. We note that even for Boussinesq equations,
shoreline inundation is often modeled by switching to the shallow water model. In
very shallow water the wavelengths become more appropriate for this model and
eventually the waves break, which is modeled better by the shocks that form in the
nonlinear shallow water equations than by the Boussinesq equations. In addition,
the larger stencils of Boussinesq models are much more difficult to use at the wet/dry
interface and the higher-order derivatives arising in this model are not well defined
or justified.

The air blast model used in this study was provided by Michael Aftosmis. It
simulates the pressure disturbance at sea level resulting from a 250MT airburst at
10 km. altitude. For details of how the airburst was computed see [11].
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3.1 Response wave

The overpressure of the blast wave pressing down on the sea surface might be ex-
pected to cause a depression, and this would be the form of the response wave if
sa < sg. But since the pressure pulse moves faster than the gravity wave speed,
it turns out that the response wave has positive amplitude where the overpressure
is positive. This is seen in all three models as well as in simulations using several
hydrocodes.

For a traveling plane wave solution of the linearized shallow water equations it
can be shown (see [12]) that a propagating atmospheric pressure pulse patm(x, t)
induces a response wave that has the same shape, with an amplitude (sea surface
deformation) given by:

η(x, t) =
h0 patm(x, t)

ρw(s2a − s2g)
. (1)

Here h0 is the undisturbed ocean depth, and ρw = 1025 kg/m3 is the density of sea
water. The same holds true approximately for a radially expanding pressure pulse
patm for large r.

Note that the amplitude (1) varies approximately linearly with ocean depth (not
exactly since s2g = gh0). For AG, we do not have a simple formula, but the response
is very similar but with smaller amplitude. The difference is smaller when the water
is more shallow, since then SWE are a better model of the AG behavior. The sharp
discontinuity seen in the Friedlander profile patm(r, t) of Figure 1 also smoothes out
when the dispersive AG equations are used, as can be observed in Figures 4 and 5.

Figure 3 shows the amplitude of the shallow water response wave as a function of
ocean depth when patm = 1 atmosphere. The amplitude varies roughly linearly with
depth of the ocean, going up to about 3.5 m at 4000 m depth. (Initially, around the
peak of the airburst in Fig. 1, which has an overpressure of 4.5 atm, the response
wave amplitude is over 17 m.) If patm is reduced, then this plot scales linearly. At
the pressure 0.273 atm at which 50% fatality is expected from the blast itself, the
amplitude of the response wave would be roughly 1 m at 4000 m depth.

Figure 3. Response wave amplitude ∆η when patm = 1 atm overpressure, as a function
of ocean depth, using the shallow water equations.
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As the atmospheric pressure disturbance propagates into shallower water the
amplitude of the response wave decreases and vanishes at the shoreline. However,
some of the energy of the response wave is converted into a gravity wave as the blast
wave propagates over varying topography and so there is some inundation expected
from the response wave itself, but in numerical experiments this has always been very
small. This is seen for example at time t = 240 seconds in the surface displacement
plots at a distance of around 78 km in Figure 8 below. There is a gravity wave
generated as the response wave hits the shelf, but it is also quite small compared to
the main gravity wave. In the horizontal velocity plots, the response wave is visible
at about x = 93 km, but is barely visible in the surface displacement.

For these reasons we believe the response wave itself will not cause any dangerous
flooding provided the blast is sufficiently far offshore that people near the shore
survive the blast wave itself.

3.2 Gravity wave

The initial impact of the blast wave and its outward spread does cause a depression
on the ocean surface that gives rise to a more slowly moving gravity wave. We now
consider the possibility that this tsunami wave can cause dangerous flooding.

In order to properly model the initial generation of the gravity wave, we have
found it necessary to use the acoustics+gravity (AG) equations in order to capture
the vertical variations within the ocean depth during this initial generation phase.
Figures 4 and 5 show some frames from a simulation over the first 100 seconds of a
simulation using the AG equations with a flat 4000 m deep ocean floor. The 250 MT
Friedlander blast wave from Figure 1 is used as a forcing term at the top surface.

Note the following in Figures 4 and 5:

• The surface pressure plots (left side, top plots) show the pressure at the top
surface in the water. curve. The black dashed curve shows the Friedlander
profile, the imposed atmospheric pressure, and the red curve is the water
surface pressure including the ρwgη term.

• Lower left plots show the r-z computational plane where r is radial distance
and z is the depth of the ocean. The pressure is shown as a Schlieren plot
over the depth of the ocean, in which gradients of pressure are plotted on
a logarithmic scale. This clearly shows very small amplitude pressure waves
propagating at the speed of sound in water that would not show up in a
pseudocolor plot.

• The speed of sound in water is set to 1500 m/sec. Note that it takes nearly 3
seconds for the pressure pulse to reach the sea floor.

• The horizontal velocity is plotted in the r-z plane and shows that initially this
is far from constant through the depth, while at later times it becomes more
so, e.g. by time 30 seconds in Figure 5, at least for the longer wavelength
waves.
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Figure 4. Initial generation of airburst tsunami using AG model with radial symmetry.
Selected frames over first 7 seconds, over a radial distance of 10 km. In top plots,
red curves are surface traces of solution, black dashed line is atmospheric pressure
(Friedlander profile).
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Figure 5. Initial generation of airburst tsunami using AG model with radial symmetry.
Selected frames over first 100 seconds, over a radial distance of 40 km. In top plots,
red curves are surface traces of solution, black dashed line is atmospheric pressure
(Friedlander profile).
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3.2.1 Depth-averaged simulations: ab initio tests

We experimented extensively using the depth-averaged shallow water equations with
the inclusion of a source term modeling the atmospheric pressure of the blast wave.
We found that these equations could model the propagation of the response wave
that is coupled to the blast quite well, and indeed it can be shown analytically that
there are traveling wave solutions to the linearized SWE that match the nonlinear
response wave (1) quite well. However, the gravity wave generated using this ap-
proach is only reasonable if the water depth is small. Since the positive pressure
pulse is only about 10 km long (see Figure 1), in deep water we expect the genera-
tion of dispersive waves, as seen in the AG simulations, and these are absent when
SWE are used.

We also tested using the same source term from SWE in the Boussinesq equa-
tions, but did not get good agreement with the AG results. It was suggested to
us1 that we modify the pressure forcing to incorporate more terms using the same
asymptotic expansion used to derive the Boussinesq equations themselves, but we
have not yet had time to incorporate this. Finally, the r-z plane plots in Figures
4 and 5 show that in the initial phase of tsunami generation there are significant
vertical variations that probably cannot be captured with depth-averaged equations.

Figure 6 shows snapshots of the all the models we considered with the same
airburst pressure forcing, in a 4 km deep ocean. This includes the shallow water
equations (in 2D), the SGN equations (in 2D), BoussClaw (using the 1D radial
version), and the AG solution (again using the 1D radial code). The response
waves match well, though they have different amplitudes, but the gravity waves are
completely different, both quantitatively and qualitatively. Note that:

• The shallow water model generates a deep depression with almost no waves
with positive amplitude.

• The AG and the Boussinesq models agree quite well, after 200 seconds, in
tracking the first wave, and by 400 seconds in several of the leading waves.

• The Boussinesq codes generate larger gravity waves than the AG simulations.
The largest of them are not the leading waves, and are not present in the AG
simulation.

• All codes have much closer agreement with the forced response wave then they
do with the gravity waves that are generated.

For comparison purposes in Figure 7 we also include here some snapshots of the
same codes but in a 1 km deep ocean. The waves move more slowly in the shallower
water, so the snapshots are every 100 seconds for 400 seconds. In shallower water
we expect a closer match between the models. The Boussinesq codes start agreeing
with the AG simulation at an earlier time than in the deeper ocean. Note that the
scale on the axes is not the same as in the previous figure; the wave amplitude is
smaller than in the 4 km deep ocean.

1Thanks to Jonathan Goodman for this suggestion. He has derived the next terms in a modified
pressure forcing in one space dimension.
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Figure 6. Comparison of initial generation of airburst tsunami using all 4 models in
a 4 km deep ocean. Selected frames every 50 seconds. After 300 seconds, SGN and
BoussClaw match AG in the leading gravity wave, but not (yet) the rest. The SWE
model does not generate gravity waves that match AG at any of the times.

We have shown here that the depth-averaged models do not generate a realistic
gravity wave from the pressure forcing. Once the gravity wave is established however,
there is a better chance of accurately modeling its propagation using depth-averaged
equations. In Section 3.2.3 we turn to experiments that show that using a suitable
Boussinesq equation with initial conditions coming from the AG simulation can be
successful.
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Figure 7. Comparison of airburst generated tsunamis using all 4 models in a 1 km
deep ocean. Selected frames every 100 seconds. After about 200 seconds, SGN and
BoussClaw match AG in the leading gravity wave, and by 400 seconds, the next few
waves are very similar, though the amplitude is not quite right. The shallow water model
still has very different waves.

3.2.2 AG simulation with continental shelf

In this section we explore what happens when the ocean waves hit a continental
shelf. The above experiments showed the initial phase of tsunami generation on
a flat ocean bottom at 4 km depth. When the response wave encounters variable
topography, new gravity waves can be generated.

The left column of Figure 8 shows later times from a radially symmetric AG sim-
ulation where waves move up a slope onto a continental shelf with a water depth of
200 m. (The right column shows a comparison with a Boussinesq solution, discussed
below in Section 3.2.3.)

Note the following:

• At time 180 seconds, the atmospheric blast wave has propagated to 70.47 km
and is starting to move up the shelf slope. The dispersive gravity wave is
moving much more slowly.

• At time 240 seconds, the atmospheric blast wave has propagated to 93.96 km
and is visible in the horizontal velocity plot, but barely visible in the surface
displacement. Recall that the amplitude of the response wave given by (1) is
smaller in shallow water, since it is proportional to the depth.

• At time 240 seconds one can see an additional surface displacement at roughly
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75 km, the start of the continental shelf. This is a gravity wave that is gener-
ated by the interaction of the response wave with the varying topography.

• At time 500 seconds, the waves on the shelf arose from the response wave
interacting with the shelf slope. The first big wave from the gravity wave
train is moving up the slope at this time.

• At time 900 seconds, the first 4 waves from the dispersive wave train have
moved onto the shelf, where they are compressed and move more slowly. Note
from the plot of horizontal velocity that the velocity is amplified more strongly.
The shoaling of these waves appears to be very well modeled with the Boussi-
nesq equations used here, as discussed further in Section A.4.2.

3.2.3 Depth-averaged simulations: Initialized from AG

The right column of Figure 8 shows results obtained using the Boussinesq equations
with parameter B = 1/15. This simulation was initialized with data coming from
the AG simulation discussed above at time 180 seconds. This was chosen to be
large enough that the response wave is well separated from the gravity wave. The
response wave was then zeroed out by smoothing the surface η to zero to the right
of 40 km. The horizontal velocity from the AG simulation was depth-averaged to
provide initial data for the velocity in the Boussclaw simulation.

Note the following:

• The blue curves in the right column of Figure 8 show the Boussinesq solution,
the red curves are from the original AG simulation (and depth averaged for
the velocity component). At t = 180 seconds they agree exactly to the left of
40 km, to the right the response wave has been suppressed.

• At later times the response wave generates a gravity wave when it interacts
with the shelf that is not captured by the Boussinesq solution, but the grav-
ity wave originally generated at the origin is well modeled, both during its
propagation on the flat bottom and as it transitions onto the shelf.

• There are other forms of the Boussinesq equation that we have tried and that
do not work as well. The left column of Figure 9 shows the comparison to AG
when the Peregrine model (see Section A.4.1) is used for the same experiment.
The non-dispersive shallow water equations also do not work well for this
problem, as seen in the right column of Figure 9.

We conclude that even as the waves shoal on the continental shelf, the Boussinesq
model can be used for propagation, as long as they are initialized with an appropriate
transfer of data from a model that is better at generating the waves from an airburst.
This is consistent with the fact that the airburst-generated tsunami has a wavelength
of around 10 km, a factor of 2.5 greater than the ocean depth, and the Boussinesq
equations with B = 1/15 do a good job of modeling the dispersion and shoaling
properties down to a wavelength/depth ratio of around this magnitude, as seen in
the plots of Figure A1. The SWE equations, on the other hand, only agree well for
much larger ratios as can also be seen from these plots.
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Figure 8. The left column shows selected frames of the AG simulation of an airburst
tsunami generated in 4000 m ocean and moving onto a continental shelf of depth 200
m. The right column shows the AG results in red and simulations obtained with the
Boussinesq depth-averaged equations in blue, when initialized with the AG gravity wave
at 180 seconds (suppressing the response wave).
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Figure 9. The left column shows in blue the solution to the Boussinesq equations with
parameter B = 0, the Peregrine model. This is too dispersive relative to the AG solution
(red curve). The right column shows in blue the solution to the non-dispersive shallow
water equations with the same initial data, compared to the AG solution (red).
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3.3 Depth-averaged simulations and parameter study

Since the acoustics plus gravity model is much more computationally intensive than
depth-averaged models, one would hope to use the latter in a parameter study with
varying shelf length and slope, distance from blast, and ocean depth. Here we show
some initial results from the start of this effort. This study uses the 1D version
of the models with radial source terms, so both the bathymetry and the airburst
forcing is radially symmetric.

The parameters that we can vary are the length of the deep ocean, the length of
the continental slope, the depth and length of the continental shelf, and the slope
of the beach. The parameters are illustrated in Figure 10.

Figure 10. Illustration of idealized radial bathymetry used for the parameter study with
the indicated variables.

We initialize either SWE and BoussClaw with data taken from an AG simula-
tion at 180 seconds. The experiments shown in the previous section illustrate that
starting with this data and propagating further with the Boussinesq equations gives
good agreement with the AG results at later times. Propagating further with SWE
did not agree well, but since SWE is much cheaper to solve in 2D than Boussi-
nesq, we are interested in seeing how SWE results compare to the more correct
Boussinesq results. The surface displacement is transferred from the AG run to the
depth-averaged equations, and the velocity is initialized so that it corresponds to an
outward propagating wave.

Figure 11 shows the initial data used for the parameter study on the left, for one
particular choice of topography. The plot on the right shows the solution at a later
time using the Boussinesq equations. At this time the dispersive wave generated in
the deep ocean is shoaling and the portion that has passed onto the shelf already
has increased amplitude. The red curve shows the maximum gravity wave height
that was calculated at each point over the entire computation. From this you can
see that the amplitude decays as the wave propagates over the deep ocean (partly
because of radial spreading, and partly because the main peak loses amplitude as
dispersive waves fall behind).

In Figure 12(a), we show results from the parameter study, in the form of a plot
of the maximum runup observed on a beach as a function of the total distance from
the initial airburst to the shore. The ‘×’ symbols show results computed using SWE
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Figure 11. Left: Initial data at time t = 180 used for all cases in the parameter study.
Right: Solution to the Boussinesq equations at a later time as the wave is shoaling. The
red curves shows the maximum amplitude of the wave over all time.

and the ‘•’ are from BoussClaw. All simulations use a 4 km deep ocean and a 150 m
deep shelf. The length of the continental slope is 40 km, and the beach slope is 0.02,
near the lower lower limit for broad sloping beaches. The beach extends a distance
of 7.5 km from the shore to a depth of 150 m. The only parameters varied are the
length of the shelf and the length of the deep ocean between the source location and
the start of the continental slope. The shelf length varied from 0 to 150 km and the
length of the deep ocean varied between 50 and 150 km. A deep ocean length of at
least 50 km was used since the initial data at T0 = 180 seconds has a wave train
that has expanded out to slightly more than 40 km.

Multiple points at the same horizontal point in Figure 12(a) correspond to differ-
ent combinations of deep length and shelf length that give the same total distance.

Both the SWE and Boussinesq equations yield runup curves that vary smoothly
with distance, providing hope that a reasonable engineering model could be derived.
Note that all results are bounded above by the SWE zero shelf length case. The
runup decreases with distance from the beach with both equation sets, but more so
in Boussinesq, where presumably there is more time for the waves to disperse and
decay in the deeper water.

Also note the interesting fact that for a given total distance, the runup observed
with Boussinesq tends to increase as the shelf becomes longer (and the deep ocean
length correspondingly shorter), whereas the opposite trend is observed from the
shallow water results. Examining movies of these simulations reveals the following.
With the shallow water equation, the initial data decays slowly over the deep ocean
due to radial spreading, but remains coherent with one dominant peak since these
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Figure 12. Parameter study comparing SWE and BoussClaw (1D with radial source
terms, B = 1/15) in a study of shoreline runup. The solution is initialized from an AG
simulation before the waves hit the continental slope. ‘X’ is a shallow water solution,
and ‘•’ is a BoussClaw solution.

equations are non-dispersive. This is seen clearly in Figure 12(b) where the results
are plotted relative to the length of the deep ocean segment alone. The SWE
results show that the eventual runup is almost independent of the deep ocean length,
especially for the longer shelf lengths. As the SWE wave moves into shallower water
on the shelf there is initally significant amplification due to shoaling, followed by
decay on the shelf. If the shelf is long enough, then nonlinearity on the shallow
shelf comes into play and the shallow water wave can steepen into a shock (the van
Dorn effect, e.g. [13]), which decays much faster than it would from radial spreading
alone. So the longer the shelf, the more decay and hence smaller runup.

For Boussinesq, on the other hand, the dispersion causes much faster decay of the
main wave in the deep ocean, due to energy being shed into additional oscillations
behind. On the shelf there is very little decay due to dispersion since the wavelengths
are now much longer relative to the fluid depth. Also, with the dispersive equations
the wave does not steepen into a shock and so there is no extra decay from this
effect. We can see in Figure 12(b) that increasing the length of the deep ocean leads
to decay in the Boussinesq runup and also that when this length is fixed, increasing
the shelf length causes further decay (the curves shift downward) but not by as
much as the SWE curves. The combination of faster decay in the deep ocean and
slower decay on the shelf leads to the different ordering of the curves in Figure 12(a)
relative to the SWE results.

Figures 13 and 14 show a few frames from two cases of the parameter study to
illustrate the discussion above.

These radially symmetric tests are perhaps of limited predictive value since on
real topography the geometry of the shelf can lead to areas of focusing or defocusing
and the shore topography is rarely a smooth sloping beach. But we hope that they
provide some guidance on the manner in which runup decreases with increasing
distance of an airburst offshore. They also suggest that simulations performed with
shallow water equations may be sufficient to obtain an upper bound on the runup
that would be computed with the more expensive Boussinesq equations.
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Figure 13. Frames from parameter study using the shallow water equations. The
top row shows three frames from the case where the deep ocean is 150 km long and
the shelf is 100 km long. The bottom row shows the case where the deep ocean is
100 km long and the shelf is 150 km long. In each case the first frame is as the wave
is shoaling, the second frame is as it is propagating on the shelf, and the third frame
shows a zoom of the wave approaching the beach. Note the shock formation on the
shelf. The red curves are the maximum amplitude of the solution over the full length
of the computation, while blue curves (filled or unfilled) show the solution at specific
times.
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Figure 14. Frames from parameter study using the Boussinesq equations. The top
row shows three frames from the case where the deep ocean is 150 km long and the
shelf is 100 km long. The bottom row shows the case where the deep ocean is 100 km
long and the shelf is 150 km long (the same cases as shown in Figure 13. In each case
the first frame is as the wave is shoaling, the second frame is as it is propagating on
the shelf, and the third frame shows a zoom of the wave approaching the beach. Note
the Boussinesq wave decays most rapidly on the deep ocean. The red curves are the
maximum amplitude of the solution over the full length of the computation, while blue
curves (filled or unfilled) show the solution at specific times.
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3.4 Propagation and inundation on real topography

In this section we use the radially-symmetric wave form from the AG simulation
to initialize a GeoClaw simulation on real topography, as an illustration of how
the tsunami might interact with complex continental shelf geometry. Because the
wavelength is quite short relative to the width of the continental shelf, the waves
are subject to focusing and de-focusing as they move into shallower water with a
smaller wave speed. Figure 15 (left) shows an illustration of the main idea in the
context of wind waves focusing on the Northern California shore in a popular surfing
area known as Mavericks.

Figure 15 (right) shows the continental shelf bathymetry offshore from the Gray’s
Harbor region on the Washington Coast. Westport is on the southern peninsula at
the entrance to the harbor. The outward curvature of the shelf in this region tends
to focus energy towards this region in general, but the wave amplitudes can vary
substantially even along this portion of the coast. This is illustrated in Figure 17,
which shows the waves approach Gray’s Harbor 45 minutes after the airburst.

Figure 15. Left: Illustration showing how the geometry of the continental shelf leads to
focusing or de-focusing of incoming waves. (Public domain image from the Wikipedia
page on Green’s Law.) Right: The continental shelf offshore Grays Harbor on the
Washington coast, also showing the location of Westport.

Figures 16 and 17 show snapshots from four times taken from the GeoClaw
simulation. After 3 minutes, the surface displacement is initialized with a radially
symmetric wave form taken from the AG simulation at this time. The fluid velocity
is taken to be radially directed outwards, with a speed that is chosen based on the
surface elevation in a manner that should give an almost purely outgoing wave on
flat topography (based on the eigenvectors of the linearized SWE). The lower plots
in Figure 16 show that indeed the waves are primarily outgoing.
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The waves propagating toward the deep ocean are not a good approximation of
what we would expect to see with a better model such as the Boussinesq equations,
since the SWE do not properly model the dispersion of these waves, which have a
short wavelength relative to the ocean depth. On the other hand, the waves that
immediately propagate onto the continental shelf might be quite accurate since the
wavelength is longer here relative to the water depth. We also saw in the parameter
study of the previous section that the SWE simulation may at least give an upper
bound on the inundation that would be seen with Boussinesq equations.

For this particular location, there is very little inundation anywhere in the Gray’s
Harbor region for this airburst case, in spite of the generally low lying topography.
There is a sandy ridge near the coastline that is about 5 meters elevation and that
protects the peninsula.

In Section 4.4 we show a similar simulation for a crater-generated tsunami, in
which this region experiences much more extreme flooding.
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Figure 16. Airburst wave form transferred from the AG code at time 180 seconds (3
minutes), at a location just offshore from the continental shelf. The velocity is set to
give an outward expanding shallow water wave. This is propagated forward in time using
GeoClaw (SWE), and shown in the bottom plots at time 15 minutes. The plots on the
right show cross sections of surface elevation at different scales along the transect shown
in the lower left plot. Note that AMR is used and the topography around Westport is
not resolved until later times.
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Figure 17. Continuation of simulation from Figure 16 at later times, zoomed around
Grays Harbor and Westport, WA.
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4 Crater-generated tsunamis

Asteroids above a certain size (depending on the entry angle and other properties)
reach the ocean surface and create a crater (in addition to a blast wave that moves
over the surface). In extreme cases they can reach the sea floor and create a much
more complex crater with solid ejecta, but we have not considered that case. We
also ignore the air blast that accompanies the impact since it moves away on a faster
time scale.

For this study we have used initial data arising from a static crater such as those
shown in Figure 2, with an initial deformation of the sea surface and zero velocity,
following past studies (e.g. [10]). In Section 4.1 we first explore the tsunami wave
that is generated from static crater initial data when various different systems of
equations are used. We conclude that it is probably necessary to solve multidimen-
sional equations that include variations in depth in order to generate the correct
waves. We compare our results with those obtained by Darrel Robertson using the
hydrocode ALE3D [1]. The static crater initial conditions in the SWE or Boussinesq
equations gives very different results from ALE3D.

Then, in Section 4.2, we study what happens if we take the results from the
ALE3D hydrocode at time t = 251 seconds, when it has settled down to a smooth
outward moving wave, and transfer the surface elevation and horizontal velocity to
initialize a depth-averaged simulation and run that out to later times. We previously
found that BoussClaw could accurately propagate the data from airburst data from
AG at t = 180 seconds out to later times. For the tsunami generated by a crater
this is not as successful, as we discuss below in Section 4.1.

Initializing any code with a static crater may give useful bounds along with
insight into the behavior of the models, but is not a realistic model of an asteroid
impact. In the future it would be desirable to initialize the tsunami using results
from a much more complex multidimensional multiphysics hydrocode that models the
full depth of the ocean during the splashing phase, including for example momentum
transfer, temperature changes and vaporization of part of the ocean. However, we
believe it is first necessary to better understand the static crater initial data and
develop approaches that can efficiently model the resulting tsunami (and its onshore
inundation) before moving on to more complex initial data.

After discussing the static crater initialization, in Section 4.3 we present a pa-
rameter study analogous to that of Section 3.3, where the shelf length and depth
of the deep ocean are varied and the 1D radially symmetric SWE or Boussinesq
equations are solved for t > 251 using the ALE3D simulation as initial data. Even
though the initial crater is not realistic, this parameter study gives some indication
of the relation between Boussinesq and SWE results for tsunamis that have large
amplitude and short wavelength relative to the ocean depth. As in the case of air-
burst tsunamis, these results indicate that SWE simulations may at least give an
upper bound on the inundation that would be observed if more accurate equations
are solved.

Finally, in Section 4.4, we show that we can also use the ALE3D solution to
initialize a GeoClaw simulation of the tsunami on real topography. We use the
same location as in the example shown in Section 3.4, but now the resulting tsunami
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inundates all of Westport and Ocean Shores, on the other peninsula bounding Gray’s
Harbor.

4.1 Initialization with a static crater

To begin the discussion of asteroids that impact the ocean, we compare all models
using initial conditions of a static crater. This removes a lot of the complication in
the comparisons. In the next sections we will use a full hydrocode simulation of an
asteroid impact.

We compare all the models used above (SWE, two Boussinesq codes, and AG)
with a hydrocode that starts from a simple crater of known shape (the parabolic
crater without lip, as shown in Figure 2) and zero velocity. The crater is one
kilometer deep in a 4 kilometer deep ocean. The radius of the crater is 1.5 km.
In [10] Ward and Asphaug estimate that a crater of this size comes from an asteroid
with radius 40 m, along with their density (3 gm/cc) and entry speed estimates
(20 km/sec), with total energy .0115/.155. However there is much debate about
this. Robertson’s calculations 2 suggest that the tsunami energy used in [10] may
be an order of magnitude too large. His results indicate a crater this size could be
generated by a 1GT meteor.

Figure 18 shows six snapshots with the above initial conditions. The ALE3D
hydrocode results are the from Darrel Robertson as discussed above. The shallow
water results are completely wrong, consisting of a single bore traveling with a wave
speed over twice the others. We also expect the AG results to be completely wrong,
since an initial cavity of this size is out of the linear regime.

Both the Boussinesq results have the same qualitative features in wave ampli-
tudes and wave lengths. The generation is incorrect, but the resulting waves travel
at roughly the same speed, lagging each other by approximately 5 seconds. They
appear qualitatively similar to the hydrocode results, giving us hope that although
the initial generation of waves from the cavity is not well simulated by a depth-
averaged model, we might be able to initialize the depth-averaged codes from the
ALE3D simulations and propagate them more efficiently. We do this in the next
sections. The hydrocode results show large waves in the cavity that continue until
approximately 200 seconds, which does not happen in the other simulations. The
ALE3D results generate waves of varying amplitudes, and it is evident that the
longer wavelengths travel faster.

4.2 Initialization from a hydrocode

In Figure 19 we take the ALE3D hydrocode simulation of the wave produced by a
static crater at time t = 251 seconds and use this as initial conditions for the Boussi-
nesq equations with parameter B = 1/15. The velocity in the Boussinesq equations
is initialized by depth-averaging the velocity computed in the ALE3D code. The left
column of this figure shows that at later times the Boussinesq equations do not do
as good a job of propagating this wave form to later times as what we observed ear-
lier in Figure 8 for airburst tsunamis. This is because the crater-generated tsunami

2personal communication

28



Figure 18. Comparison of all depth-averaged models with ALE3D hydrocode results
every 50 seconds, starting from initially static crater.

has a much shorter wavelength, beyond the limit of what can be well modeled by
the Boussinesq equation. The largest wave at the final time has a wavelength of
around 4 or 5 km, so the parameter on the horizontal axis of the plots shown in
Figure A1 is close to 1 since the ocean depth is 4 km. In spite of the limited fidelity,
the Boussinesq solution does at least propagate a wave with roughly the correct
amplitude and speed.

On the other hand, the right column of Figure 19 shows that transferring the
same initial conditions to the shallow water equations gives results at later times
that do not agree at all well with later frames from the ALE3D solution. We have
tested two different ways of initializing the velocity, either taking the depth-averaged
velocity u from the ALE3D data (as was done for Boussinesq), or setting the velocity
to be u = η

√
g/h where η is the surface displacement and h the depth. For the

shallow water equations this gives a purely right-going wave. Using the ALE3D
velocity to initialize SWE gives initial data that splits into left- and right-going
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waves and gives considerably more energy propagating back toward r = 0 (the
initial crater location). In both cases the right-going shallow water waves move
much faster than the ALE3D or Boussinesq waves.

Figure 19. Crater wave form transferred from the hydrocode at time t = 251 seconds
to the Boussinesq equations using BoussClaw (left column) or to the shallow water
equations (right column).

The same difficulties with Boussinesq propagation initialized with static crater
hydrocode data were found when we initialized the codes using ALE3D data from
a full asteroid water impact simulation. We tried several experiments where we
initialized the Boussinesq codes with data extracted at a given time (t = 15 seconds,
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300 seconds, 796 seconds), and compared with ALE3D results from a later time. As
expected, this was no better than the static crater results above, and in fact, this
was the motivation for simplifying the problem and looking just at propagation from
an initial crater without additional complicating physics.

4.3 Parameter study

Here we repeat the parameter study discussed in Section 3.3 using the crater wave
form at t = 251 seconds as initial data, and then solving either the 1D radial
Boussinesq equations with B = 1/15 or the 1D radial shallow water equations on the
same set of piecewise linear topographies, again varying only the length of the deep
ocean and continental shelf segments. Comparing Figure 20 to the corresponding
plot in Figure 12 for the airburst case, we see that the amplitude of runup is much
larger but a similar pattern is observed. The shallow water equations solutions with
zero shelf length again provide an upper bound for the runup.

These results should be viewed with caution since there are still many unresolved
issues regarding the ability of the Boussinesq equations to properly model these
extreme waves.

Figure 20. Parameter study comparing SWE and BoussClaw (1D with radial source
terms, B = 1/15) in a study of shoreline runup. The solution is initialized from an
ALE3D simulation of a 1000 m deep crater at time t = 251 seconds, before the waves
hit the continental slope. The ocean depth is 4000 m and the shelf depth is 150 m. ‘×’
is a shallow water solution, and ‘•’ is a BoussClaw solution.

4.4 Propagation and inundation on real topography

We initialize a GeoClaw simulation on the same topography as used in Section 3.4,
offshore from Gray’s Harbor and Westport, WA. We use the radially-symmetric
ALE3D simulation results at 251 seconds for the surface displacement. As in the
airburst case, we initialize the fluid velocity by assuming an outgoing shallow water
wave so as to minimize ingoing waves when the SWE are used to propagate this
initial data further in time. Again the wave going toward the deep ocean lacks the
dispersion that we would expect in reality, but we are only interested in the wave
going onto the shelf and towards shore. Even this wave may be far from correct
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in the crater case, since the wavelength is smaller than in the airburst case and
the amplitude is much larger. Shocks form on the continental shelf when using the
SWE that would not form in the Boussinesq equations, where instead the dispersion
should lead to generation of more waves of smaller wavelength that remain smoother
until approaching shore.

These results are presented primarily to illustrate that GeoClaw can propagate
extreme waves and model extensive inundation. Based on our parameter study,
we believe they might also give an upper bound on the inundation that would be
produced with a more realistic model, but much more work is required to get more
quantitative results.
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Figure 21. Crater wave form transferred from the AG code at time 120 seconds (2
minutes), at a location just offshore from the continental shelf. The velocity is set to
give an outward expanding shallow water wave. This is propagated forward in time using
GeoClaw (SWE), and shown in the bottom plots at time 14 minutes. The plots on the
right show cross sections of surface elevation at different scales along the transect shown
in the lower left plot. Note that AMR is used and the topography around Westport is
not resolved until later times.
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Figure 22. Continuation of simulation from Figure 21 at later times, zoomed around
Grays Harbor and Westport, WA.
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5 Summary and Conclusions

We summarize our conclusions in this bulleted list, followed by recommendations of
directions for future research.

Airburst Summary:

• For airburst asteroids, we have found that the depth-averaged models con-
sidered (shallow water equations and Boussinesq) are not able to accurately
simulate the initial generation of the main tsunami. Instead we used the linear
Euler / acoustics plus gravity (AG) model to generate this wave. We believe
that this is a more quantitatively correct representation of the gravity waves
generated by airbursts.

• We showed that we can take the wave form generated by AG and transfer it
at time t = 180 seconds to the Boussinesq equations. Propagating forward
in time then matches later results from AG provided we use the BoussClaw
model with B = 1/15. Using the SWE model from the same starting data
does not match well at later times.

• We showed the previous result still holds as wave shoaling occurs at later times
onto a shallow continental shelf.

• A parameter study was performed to vary the shelf length and the length of the
deep ocean between the airburst location and the shelf, to see how the runup on
a beach varies with these parameters. Simplified geometry and the 1D radially
symmetric SWE and BoussClaw were compared, producing Figure 12. The
runup decreases with distance of airburst to shore, but results depend on the
relative length of the shelf and deep ocean. We also found that the shallow
water equations results are generally an upper bound on the (presumably more
correct) Boussinesq results, at least for the geometries studied.

• For the radially-symmetric topography and the gently sloping beach used in
the parameter study, we found that runup of 3 meters or more might be
observed for a 250 MT airburst, even when the airburst distance from shore
is more than 100 km. Note from Figure 1 that within a radius of about 60
km of the airburst, 50% fatalities can be expected from the blast wave itself,
independent of a tsunami.

• We used the wave form generated by AG at 180 seconds to initialize a GeoClaw
simulation with a radially symmetric wave at the edge of the continental slope
offshore Westport, WA. We then used GeoClaw (shallow water equations)
to propagate that wave onto the shelf and to model inundation. We believe
shallow water equations are useful in this case since on the shelf the wavelength
is long relative to the water depth, and because our parameter study indicated
that SWE results may at least give an upper on what would be observed
with Boussinesq equations. We found very little inundation for this particular
location, but noted that the wave structure depends very much on the shelf
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geometry and the runup depends greatly on the beach and onshore topography,
so this was presented as an illustration of the sort of site-specific simulations
that could be done for airbursts. In view of the parameter study, this one
sample simulation does not allow us to conclude that airburst tsunamis will
never inundate.

Crater Summary:

• For crater tsunamis, depth-averaged codes cannot model the initial generation
of the tsunami since the vertical variation is critical at early times when the
crater depth is 1000 m, for example, as used in our study. Moreover the
AG code is also not suitable since this code comes from linearizing the Euler
equations about a state at rest, assuming the displacement of the surface is
very small relative to the ocean depth.

• In our study we used initial data provided by Darrel Robertson that came
from running a 2D radially-symmetric version of the hydrocode ALE3D [1]
with a static crater initial condition. At time t = 251 seconds we transferred
the wave form, along with depth-averaged horizontal velocity coming from
the hydrocode, to the Boussinesq equations. Running forward in time we got
reasonable agreement of the Boussinesq solution with later frames from the
hydrocode simulation, in terms of wave amplitude, but the wave length is
much shorter than in the airburst case and so Boussinesq was not as good a
model. We did show that it is much better than SWE, however.

• We repeated the parameter study (varying shelf and deep ocean length) for
the crater initial conditions and found similar results as in the airburst case,
in the sense that the shallow water runup generally provides an upper bound
on Boussinesq runup, although the magnitudes are much larger in this case
than for the airburst case.

• For both airburst and cavity tsunamis, the parameter study revealed an in-
teresting phenomenon that, for a fixed distance from impact to shoreline,
with shallow water equations the runup is largest with a short shelf, while for
Boussinesq the runup is smallest with the shorter shelf.

• We used the radially symmetric hydrocode data at 251 seconds to initialize
GeoClaw off-shore from Westport, WA, similar to what was done in the air-
burst case. With this hypothetical event, the entire Westport peninsula is
overtopped and flooding depths exceed several meters. This illustrates that
GeoClaw can be used to model extreme inundation. But this was done using
shallow water equations only, and more work needs to be done to determine
whether these results are realistic or are overly pessimistic for this size event,
as might be suggested by the parameter study.
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Recommendations and Future Work:

• We believe that the AG equations can be used to generate radially-symmetric
airburst asteroid tsunamis, but this needs further validation. We can then
transfer this solution to depth-averaged equations. For airbursts that occur
over relatively flat ocean and close to the continental shelf, this may be ad-
equate. Adding bottom bathymetry to a full 3D AG formulation could be
explored in the future as a way to propagate an airburst tsunami over the
deep ocean, but may not be a high priority since airbursts far from shore
cause small tsunami inundation.

• It is possible that better source terms can be derived for the Boussinesq equa-
tions that would allow using depth-averaged equations to also generate the
airburst tsunami. But it is also possible that depth-dependent effects are sig-
nificant in the early phases of tsunami generation and that this cannot be
done. This is a future research problem.

• For static crater initial conditions, the linearized AG model is inadequate
to generate the tsunami and a multidimensional hydrocode must be used to
generate the wave form.

• Results from a hydrocode simulation can be transferred to depth-averaged
equations at a later time. We showed that Boussinesq equations are not as
good at modeling the later phases of the tsunami propagation for these short
wavelengths as they were for the airburst tsunami. We had even more trouble
trying to transfer hydrocode results coming from a full impact simulation on
the Japan Trench to the depth-averaged equations, as would be required for
future work with more realistic craters. This requires further study.

• For site-specific hazard studies we believe it is necessary to have a two-dimensional
depth-averaged model that can accurately propagate a tsunami onto the conti-
nental shelf and onshore, since full three-dimensional modeling is not practical
for inundation studies. The GeoClaw model using the shallow water equations
may be adequate for airburst tsunamis and might at least give an upper bound
for larger-amplitude shorter-wavelength tsunamis arising from cratering aster-
oids. The parameter study of Figure 20 suggests this, but also shows the SWE
results being much larger, which for these large-amplitude events would make
a significant difference in how far inland the tsunami propagates as well the
depth of flooding.

• Ideally, a two-dimensional Boussinesq code that handles general topography
and also inundation modeling would be useful, particularly for crater cases. We
explored use of the Basilisk software, but found it too rigid for our purposes,
and although it works in parallel, it is not easily adaptive. For future work,
adaptive mesh refinement in a Boussinesq code is critical since it is necessary
to model coastal regions at much higher resolution than offshore to perform
hazard assessments.
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• The BoussClaw code is also not yet adaptive. Solving the Boussinesq equa-
tions requires solving an elliptic equation in each time step and/or using an
implicit method for time stepping. Implementing this in the context of AMR
in BoussClaw is a major undertaking. The 2D BoussClaw software without
AMR could be used for some purposes, but has not yet been carefully tested.
Based on our experience in 1D, we believe it requires some improvements, but
this should be relatively easy to do compared to adding AMR.
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Appendix A

Details of model equations and numerical
implementations

A.1 Shallow water equations

The shallow water equations (SWE) are depth-averaged equations modeling the
depth h(x, y, t) and the depth-averaged velocities u(x, y, t) and v(x, y, t) in two hor-
izontal directions. Letting ~u = (u, v), the equations can be written as

ht +∇ · (h~u) = 0,

(h~u)t + u∇ · (h~u) + (h~u · ∇)~u+
1

2
g∇(h2) = −gh∇B,

(A1)

where B(x, y) is the sea floor bathymetry (where B < 0) or onshore topography
(where B > 0). The first equation gives conservation of mass. If B ≡ constant (a
uniform flat sea floor) then the right hand side reduces to 0 and the second equation
gives conservation of momentum.

In one space dimension these equations reduce to

ht + (hu)x = 0,

(hu)t +

(
hu2 +

1

2
gh2
)
x

= −ghBx.
(A2)

These equations model plane waves in which there is no v ≡ 0 and there is no
variation in the topography, initial conditions, or solution in the y direction.

For asteroid impacts a more relevant special case is radially-symmetric solutions
where the initial conditions and solution are assumed to vary only with distance r
from the center and the azimuthal velocity is assumed to be zero. Of course for
solutions to have this form the topography B(r) must also vary only with r. The
2D equations can be written in polar coordinates and then assuming no variation in
the θ direction and letting U(r, t) denote the radial velocity, the equations reduce
to

ht + (hU)r = −1

r
(hU),

(hU)t +

(
hU2 +

1

2
gh2
)
r

= −(hU2)/r.
(A3)

Bottom friction drag terms are usually also added to the momentum equations
in any of these formulations, which become important in very shallow water near
the coast and for properly modeling inundation and onshore propagation. We use
a standard Manning friction term with coefficient n = 0.025, as recommended for
generic tsunami inundation modeling.

Details about how these equations are solved numerically in the GeoClaw soft-
ware can be found in the papers [14,15].
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A.2 Dispersion

The shallow water equations are derived from three-dimensional fluid equations by
making two assumptions: that the wavelength of the wave modeled is long relative to
the fluid depth and that the amplitude is small relative to the depth. However, they
have been shown to work well for modeling nonlinearities in very shallow depths near
shore, including bore formation (which appears as discontinuous shock waves in the
shallow water equations), and for modeling inundation providing the wetting-and-
drying is handled well. They break down, however, for waves with short wavelength
relative to the fluid depth as these waves propagate over long distances. In this
case the 3D equations exhibit dispersive behavior, where the propagation velocity
depends on the wavelength, and hence an initial Gaussian-shaped wave, for example,
will spread out into an oscillatory wave train with each wave number propagating
at its own group velocity, which can be calculated from the dispersion relation of
the model equations. If we consider a monochromatic translating wave of the form

η(x, t) = η0 exp(i(ξx− ωt)), (A4)

and a similar expression of the velocity, then plugging this into the equations gives
the dispersion relation relating ω to ξ. The group velocity for wave number ξ is
given by the derivative of this relation, dω(ξ)/dξ.

If the fluid dynamics equations in a vertical cross section of the ocean are lin-
earized then the dispersion relation can be worked out for the “Airy solution” to
these equations. Rather than plotting the dispersion relation, we plot the group
velocity which is more meaningful and convenient to look at in relation to the speed
at which waves are expected to propagate. The group velocity for the Airy solution
is shown in Figure A1 as a function of the wave length normalized by the fluid
depth, and where the vertical axis shows the group velocity divided by

√
gh. The

linearized shallow water equations are non-dispersive, and all waves propagate at
the same speed

√
gh, also illustrated in Figure A1. Note that for the Airy solution,

the group velocity approaches the shallow water speed for long wave lengths, but de-
creases and approaches 0 for short wave lengths. The other two curves correspond to
two versions of Boussinesq equations described below with parameter choices B = 0
(the Peregrine equations) and B = 1/15, as we typically use in the BoussClaw code.

A.3 Shoaling

As a wave train moves from deep water into shallower water and the wave speed
decreases, the spatial wavelength of the wave also decreases, while the amplitude
of the wave typically increases. Consider small amplitude waves on an ocean depth
that changes from h` in the ocean to hr on the shelf, for example, and let A` and
Ar be the corresponding amplitudes.

For linearized shallow water with a continental slope that rises slowly relative to
the wavelength, there is very little reflected energy at the slope and the amplitude
increase follows Green’s Law,

Ar/A` = (h`/hr)
1/4. (A5)
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Figure A1. Plots of the ratio of group velocity to the shallow water wave speed√
gh as a function of the ratio of wavelength to fluid depth, and a similar plot of

the phase velocities.

This can be found via conservation of energy in a Gaussian pulse, for example,
by assuming the wave has the form A`η0((x − c`t)/c`) before hitting the shelf and
Arη0((x− crt)/cr) on the shelf, with c`,r =

√
h`,r. Equipartition of energy holds on

each side and so we can consider the potential energy alone, for example, which is
g
∫∞
−∞ η(x, t) dx = gA2c2

∫∞
−∞ η0(y) dy and equating this for the two sides gives (A5).

Alternatively, one can look at a monochromatic Fourier mode exp(i(ξx − ct))
with amplitude A(x) and work out that A′(x)/A(x) = −0.25h′(x)/h(x) provided
ξh` is sufficiently small that the shallow water equations are valid. Integrating this
between a point in the deep ocean and a point on the shelf gives log(Ar)− log(A`) =
0.25(log(h`)− log(hr)), and exponentiating again gives (A5).

For Boussinesq equations the wave velocity is slower than
√
gh for short wave-

lengths and so the shoaling equation changes. In general it is possible to derive an
expression of the form A′(x)/A(x) = −α5h

′(x)/h(x) where we follow the notation
of [3] and call the parameter α5 the shoaling gradient. This parameter varies with ξh
and replaces 0.25 in Green’s Law (A5) when studying waves that are short relative
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to the fluid depth.
According to [3], the linearized Airy wave solution has

α5 =
G
(
1 + 1

2G(1− cosh(2ξh)
)

(1 +G)2
(A6)

where G = 2ξh/ sin(2ξh). Taylor expansion of (A6) gives α5 = 1
4

(
1− (ξh)2 + · · ·

)
as ξh → 0, showing the connection to Green’s Law for wavelengths L = 2π/ξ that
are long compared to h. The shoaling gradient can also be calculated for Boussinesq
equations and compared with the expression (A6), see Section A.4.2.

A.4 Boussinesq equations

There are several forms of “Boussinesq equations” that have been introduced and
studied over the past several decades.

A.4.1 Peregrine equations

One of the earliest proposals for depth-averaged equations to better model dispersion
was Peregrine’s model, see [4]. In 2 dimensions on a variable bottom, let ~x = (x, y)
and as before ~u = (u, v) and let h0(~x) be the undisturbed depth. Then the equations
take the form:

ht +∇ · (h~u) = 0

(h~u)t + gh∇η + (h~u · ∇)~u+ ~u∇ · (h~u)

+
1

6
h30∇(∇ · ((h~u)t/h0)−

1

2
h20∇(∇ · (h~u)t) = 0.

(A7)

If the higher-derivative terms on the last line are dropped, these reduce to the 2D
SWE. If the bottom if flat (h0 ≡ constant) then the higher-derivative terms reduce
to 1

3h
2
0∇(∇ · (h~u)t).

In one space dimension, the equations (A7) reduce to:

ht + (hu)x = 0

(hu)t + ghηx + (hu2)x +
1

6
h30(hu/h0)txx −

1

2
h20(hu)txx = 0.

(A8)

Again the last two terms can be combined if h0 is constant. Also note that ghηx =(
1
2gh

2
)
x
− gη(h0)x, the form typically used in the conservative form of the SWE,

with gη(h0)x moved to the right hand side as the topographic source term.
To derive the 1D equations with radial source terms, we can assume that

~u(x, y, t) = (U(r, t) cos(θ), U(r, t) sin(θ))

in polar coordinates, where U(r, t) is the radial velocity, and then assume the topog-
raphy h0 varies only with r and that the initial data and solution are functions of
r, t only, constant in the θ direction. The r-component of the gradient ∇s of a scalar
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quantity in polar coordinates is just sr, the divergence transforms to ∇·~u = 1
r (rU)r,

and so ∇(∇ · ~u) =
(
1
r (rU)r

)
r
. The Peregrine equations (A7) thus transform to:

ht +
1

r
(rhU)r = 0

(hU)t + ghηr +
1

r
(rhu2)r +

1

6
h30

(
1

r
(rhu/h0)tr

)
r

− 1

2
h20

(
1

r
(rhu)tr

)
r

= 0.
(A9)

Alternatively, these can be written as

ht + (hU)r = −hU/r

(hU)t +

(
hU2 +

1

2
gh2
)
r

+
1

6
h30

(
1

r
(rhu/h0)tr

)
r

− 1

2
h20

(
1

r
(rhu)tr

)
r

= −(hU2)/r + gh(h0)r.

(A10)

Dropping the dispersive terms from this equation gives the conservative form of the
1D SWE with radial and topographic source terms. The dispersive terms are also
modified from the pure 1D version of (A8) and give additional radial source terms.

A.4.2 BoussClaw

The Peregrine equations are generally too dispersive and so improved versions have
been developed that better match the dispersion relation of the Airy solution to the
linearized Euler equations.

The BoussClaw code described in [5] solves the equations discussed by Schäffer
and Madsen [7] and Madsen and Sorensen [3]. These equations can be derived by
choosing a scalar B, applying the operator −Bh20∇(∇·) to the terms (h~u)t + gh∇η
appearing in the momentum equation and then adding this quantity,

− Bh20 [∇(∇ · (h~u)t) + g∇(∇ · (h∇η))] (A11)

to the momentum equation of the Peregrine equations (A7). If B = 0 then of course
this just reduces to the Peregrine equations, but it turns out that choosing B = 1/15
gives much better agreement with the dispersion relation. (Don’t confuse B with
B(~x) = −h0(~x), which is used elsewhere for the bathymetry.) This is illustrated
in Figure A1, where the group velocity is plotted for both B = 0 (Peregrine) and
B = 1/15. BoussClaw allows setting B to any value, so it has also been used to
compute solutions to the Peregrine equation for various test problems, and we have
confirmed that these solutions are generally too dispersive and that B = 1/15 works
much better.

Plots in [3] also show that this form of Boussinesq equations with B = 1/15
match the expression (A6) for the shoaling gradient very well, and much better
than with B = 0. This suggests that these equations are also very good at modeling
the shoaling of waves onto the continental shelf, as was seen numerically in Figure 8.
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A.4.3 SGN

The Serre-Green-Naghdi equations start with shallow water equations (A1) and add
to the source terms in momentum equations. The right hand side becomes

S = −gh∇B + h(
g

α
∇η −D). (A12)

The vector D with components (Dx, Dy) satisfies the complicated second order
equation

− αh2
[
h

3
∇(∇ ·D) + (∇ ·D)

(
∇h+

1

2
∇B

)]

+ αh

[
h

2
∇(∇B ·D) + (∇B ·D)∇η

]
+ hD =

g

α
∇η +Q1(u).

(A13)

The operator Q1 is a nonlinear function of h, B, the velocities and their first deriva-
tives. The parameter α in the SGN code used for these experiments is 1.15. For
details on SGN and the methods used to solve it see [8] and references therein.

A.5 Acoustics+Gravity equations

In one horizontal dimension x plus depth z, the linearized Euler (AG) equations can
be written

ρt + ρwux + ρwwz = 0

ρwut + c2aρx = 0

ρwwt + c2aρz = −ρg .

(A14)

In (A14), u is the horizontal velocity, w is the vertical velocity, ca =
√

dp
dρ(ρw) =

1500 m/sec is the acoustic speed of sound in water, ρw = 1025 km/m3 is taken
to be constant in ocean water, and g is gravity. These are derived by linearizing
the compressible Euler equations around the rest state u = w = 0 and ρ is the
perturbation in density from ρw. Note that the sea level η, or equivalently the
height of the water h = η −B, has not yet appeared.

The three boundary conditions come from linearizing the dynamic, kinematic
and pressure boundary conditions for the Euler equations. The boundary conditions
become

w =
∂η

∂t
(x, t) top

w = u ·Bx bottom

c2aρ(x, h0, t)− ρwgη = patm(x, t) continuity of pressure

(A15)

The right-hand side in the last equation is where the atmospheric overpressure patm
from the Friedlander profile of an airburst appears. For the flat bottom experiments
in this report Bx = 0, so the bottom boundary condition simplifies to w = 0. The
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boundary condition that gives η can be integrated at every time step to give η (or
h) at every x location. We do this by linearly extrapolating w to the top of the
domain, and then updating η from the previous time step, ηn+1 = ηn + dt · w(h0),
where we use z = 0 as the bottom of the domain, and η0 is the top.

These equations can also be rewritten to use pressure instead of density, using
p = c2aρ. If this is done, we implement the boundary conditions in a slightly different
way. The boundary conditions are given by setting the pressure at the top boundary
to the sum of the atmospheric overpressure patm and a displacement pressure ρwgη,
where η is determined by integrating in time the vertical component of velocity.

Radial source terms were included in the AG model so that this vertical cross
section actually models acoustics in a 3D ocean, for the case we consider of radially
symmetric bathymetry, initial data, and atmospheric pressure forcing. These terms
modify only the first equation in (A14), replacing 0 on the right hand side by
−ρwu/r.
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Appendix B

Computer time required

We have not attempted to do a careful comparison of the run times of the various
codes used, but report some estimates to give an idea of the relative computational
costs.

B.1 Acoustics+Gravity (AG)

The results presented in Section 3.2 and Section 3.2.2 were computed using Clawpack
with AMR and OpenMP on a quadcore MacBook Pro. The run up to t = 100
seconds shown in Figures 4 and 5 took about 24 minutes of CPU time and 6 minutes
of wall time to complete, for the resolution used. A 200× 20 grid was used at level
1, with refinement by factors of 4,4 in x and t and 4, 1 in y at levels 2 and 3 (less
in y since there is less variation in the vertical direction). For this two-dimensional
calculation, increasing the resolution by a factor of 2 in each direction would increase
the computational time by a factor of 8.

The computation of Section 3.2.2 took much longer since it is on a larger domain
(100 km by 4 km depth) and goes out to a later time, t = 1000 seconds, and we
refined with factors 4,2 in y starting from a 500×20 grid. Moreover, the grid mapping
used to conform to the shelf results in the grid cells being more compressed in y on
the shelf than in the ocean, hence requiring a smaller time step because of the CFL
condition. This computation took about 101 hours of CPU time and 35 hours of
wall time, again on the same MacBook.

B.2 One-dimensional (radial) shallow water and Boussinesq

The 1D code was run on a nonuniform grid chosen so that the Courant number is
close to 1 everywhere in the deep ocean and on the shelf, with the cell size decreasing
to a minimum width of 10m near the beach and onshore. Adaptive refinement was
not used, since solving the Boussinesq equations requires using an implicit method,
which is not yet implemented with AMR.

The run time required depends on the size of the domain and the length of time
simulated. As an example, we timed the code for one intermediate case from the
case study presented in Section 3.3. We set the shelf length to 50 km and the deep
ocean length to 100 km. The entire domain is then approximately 200 km long
(including also the continental slope and beach) and 9680 grid cells are used. We
estimated that the time for the first wave to reach the beach was approximately 2500
seconds and so ran the calculation out to 4300 seconds (longer than necessary, but
we wanted to insure that we captured the largest run-up for the parameter study).

For the Boussinesq code, this case took roughly 7.5 minutes of CPU time on a
MacBook. The shallow water version slightly faster, about 5.25 minutes of CPU
time on the same computer, since it uses an explicit method. But note that in the
1D case the implicit solver only needs to solve a tridiagonal system of equations
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which is the same order of magnitude work asymptotically as an explicit method.
By contrast, in 2D the Boussinesq code would be much slower than solving the
shallow water equations.

B.3 GeoClaw simulations of propagation and inundation

The two-dimensional GeoClaw (SWE) simulation from Section 3.4 was run on a
MacBook Pro using AMR and OpenMP with 4 threads, and required about 4 hours
of CPU time and 1 hour of wall clock time.

The simulation from Section 4.4 was run on the same MacBook using AMR and
OpenMP but with 3 threads, and required about 20 hours of CPU time and 7 hours
of wall clock time.

Both simulations were run out to 1 hour of simulated time. The large increase
in CPU time required for the crater case is partly because a larger region along the
shore was flagged for refinement, but mostly (we think) because there was signifi-
cant inundation and so more Riemann solutions on this level required the relatively
expensive logic of the nonlinear wetting-drying region. By contrast, with the air-
burst case most of the onshore cells stayed dry, in which case the Riemann solution
is trivial and much less work is done to advance these cells. This requires further
study.

B.4 SGN simulations

The radially symmetric SGN simulations used the fully two-dimensional Basilisk
code on a quarter plane. For one example of timing, the airburst calculation in
Figure 6 on a 1024 by 1024 grid took 4 minutes 22 seconds of wallclock time to
simulate the first 100 seconds, using 10 cores of an Intel Linux box with Haswell
cores. By contrast, the same mesh using the SGN solver in Basilisk took 7 hours
30 minutes of wallclock time. We have no explanation for why this is so much more
expensive than the estimate given by Popinet [8] that SGN should be 4-10 times the
cost of SWE, and are conferring with him about this.
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