National Aeronautics and Space Administration

NASA

GeneLab: "Omics" Data Systems for Spaceflight and Simulated Spaceflight Environment

Sylvain Costes, PhD: Project Manager Jonathan Galazka, PhD: Project Scientist Afshin Beheshti, PhD: GeneLab System Biologist Marla Smithwick: Deputy Project Manager

The GeneLab Team

2011 NRC Decadal Survey

GeneLab

Open Science for Exploration

"...genomics, transcriptomics, proteomics, and metabolomics offer an immense opportunity to understand the effects of spaceflight on biological systems..."

"...Such techniques generate considerable amounts of **data that can be mined and analyzed** for information by multiple researchers..."

Omics Acquisition in Space is Now a Reality

This is truly an exciting time for cellular and molecular biology, omics and biomedicine research on ISS with these amazing additions to the suite of ISS Laboratory capabilities.

Sample Preparation Module

Oxford Nanopore MinION Gene Sequencer

Cepheid Smart Cycler qRT-PCR

GeneLab

Open Science for Exploration

Reaction tube ontaining rophilized hemical assay ead proprietary)

Mini-PCR

GeneLab Data Democratization

GeneLab

Open Science for Exploration

GeneLab Database: >190 data sets

GeneLab Open Science for Exploration

Earth's magnetic field protects us from cosmic radiation

N	MILLIREM:	
CHEST X-RAY	8 to 50	
AVG. YEARLY RADON DO	SE 200	
U.S. AVG. YEARLY DOSE	350	
PET SCAN	1,000	
1 YEAR IN KERALA, INDIA	1,300	
U.S. NUCLEAR WORKER LIMIT PER YEAR	5,000	
APOLLO 14 (9 DAYS)	1,140	
SHUTTLE 41-C (18 DAYS)	5,600	
SKYLAB 4 (84 DAYS)	17,800	
MARS MISSION TOTAL	130,000	

GeneLab

Open Science for Exploration

2½ Years, 2,600 X-Rays

Americans on average absorb the radiation equivalent of at least 7 chest X-rays each year.

Space missions, outside of Earth's protective atmosphere and magnetic field, expose astronauts to many times more.

TRIP TO AND FROM MARS (1 YEAR): 80,000—

NASA

FROM SOLAR -FLARE: 20,000

Source: Brookhaven National Laboratory, U.S. Department of Energy

GeneLab Open Science for Exploration G9 Ground Data Sets: Radiation and simulated microgravity

Beheshti et al., Radiation Research 2018

NA SA

GLDS Phase 2 (Release 2.0) **Google-like Search, Federated Search**

GLDS-88: Age and Space Irradiation Modulate Tumor Progression: Implications for Carcinogenesis Risk

Submitted Date: 28-Mar-2013

Release Date: 13-Jun-2013

Source Accession Number E-GEOD-45606 Total Data Volume: 31.6 MB GeneLab DES NASA pen Science for Exploration **Federated Search** Study Des Home Repository Data Data Mining Tools Submit Data Help Workspa mouse myostatin XQ All GeneLab VIH GEO EBI PRIDE ANL MG-RAST Search results for: mouse myostatin using filter(s): Sort by Relevance ▼ 25 ▼ Myostatin inactivation effects on myogenesis in vitro and in vivo http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28986 Key words: dystrophin, mdx mouse, Duchenne, fibrosis, dystrophy ABSTRACT Stir (MDSC) into myogenic, as opposed to lipofibrogenic, lineages is a promising therape SEO counteracting myostatin, a negative regulator of muscle mass and a pro-lipofibrotic fibrogenic capacity of MDSC from wild. Organism: Mus musculus Accession: GSE28986 PI/Contact: Robert Gelfand The transcriptomic signature of myostatin inhibitory influence on the differenti http://www.ncbi.nlm.nih.gov/geo/guery/acc.cgi?acc=GSE59674 GDF8 (myostatin) is a unique cytokine strongly affecting the skeletal muscle pheno molecular mechanism of myostatin influence on the differentiation of mouse C2C12 S technique. Treatment with exogenous GDE8 strongly affected the growth and deve proliferation and differentiatio ... Organism: Mus musculus Accession: GSE59674 Pl/Contact: Zofia Wick Rele Development of gene expression signature for defining the cell potency of mu Contacts genotypes http://www.ncbi.nlm.nih.gov/geo/guery/acc.cgi?acc=GSE39765 In order to determine the cell potency, by identification of genes responsible for plur isolated from five week old male wild type(WT), C57BI6J and another hypertrophied S microarray analysis and compared this gene expression to that of a standard mouse and Mstn null mice using an esta .. Organism: Mus musculus Accession: GSE39765 Pl/Contact: Bipasha Bose R Rodent Research-3-CASIS: Mouse liver transcriptomic proteomic and epiger https://genelab-data.ndc.nasa.gov/genelab/accession/GLDS-137 The Rodent Research-3 (RR-3) mission was designed to study the effectiveness of occurs during spaceflight. Myostatin is a protein secreted by myoblasts that inhibits block myostatin cause increases in muscle mass. The RR-3 experiment was spons Advancement of Science in Space and ass... Organism: Mus musculus Factor: Microgravity Treatment Assay Type: transgription

GeneLab

Open Science for Exploration

	DESCRIPTION				
cription	Age plays a major role in risks. Epidemiological da attributed to a lifetime ac and, for many tumor site decrease in incidence cc atomic number (Z), high to estimating carcinogen which were then subject inhibition of tumor progra whole-body 56F e irradia in case of young animals young mice, to a degree similar to aging with ress tumor dynamics in young CXCL 12/CXCR4 comple to support the progressis progression as a functio CA) were used. Total RN replicate biological same	In tumor incidence and is an im ata show that from adolescent occumulation of cellular, particu s, if actually decreases at suft build be attributed to a decrease energy (E)) radiation different nesis risk for astronauts. Lewis to whole-body 56Fe irradiatio ession and significantly decreis to whole-body 56Fe irradiatio ession and significantly decreis to whole-body 56Fe irradiatio ession and significantly decreis to whole-body 56Fe irradiatio ession and significantly different than pect to tumor progression. We g and middle-aged mice. Thro ex, were determined to be con on phase of carcinogenesis ar n of age. For genome-wide ex ta was amplified with the Am	portant consideration when modelin ce through middle age, cancer incide larly DNA, damage. However, during foiently advanced ages. We investig ted capacity of older hosts to suppor ially modulates tumor progression in lung carcinoma (LLC) cells were inj n (1GeV/amu). Three findings emer ased tumor growth rates were seen f nor progression in both young and in owth rates; and 3) 56Fe irradiation (it transiting from young to middle-age further investigated the molecular u ugh global gene expression analysis tributory. In sum, these findings dem di identify molecular factors contribu pression profiling of tumor tissue. M bion Illumina TotalPrep Amplification	ing the carcinogenesis pro ence increases with age. g middle-age, the inciden lated if the observed decit it tumor progression, and n young versus middle-age ged: 1) among unirradiat for middle-aged mice cor indidle-aged mice (with 1GeV/amu) suppressed ed. Thus, 56Fe irradiation inderpinnings driving the s, the key players, FASN, nonstrate a reduced capa itory to HZE radiation mo louse WG-6 BeadArray c Kst (Ambion, Austin, TX)	cess or estimating cancer This effect is commonly ce begins to decelerate eleration and potential whether HZE (high pe hosts, issues relevant ce (143 and 551 days old) mpared to young mice; 2) greater suppression in a (1GeV/amu) acted radiation modulation of AKT1, and the icity of middle-aged hosts idulation of tumor hips (Illumina, San Diego, and labeled from all
	from young unirradiated aged irradiated mice. To Bioanalyzer (Agilent) an 2:1, RIN (RNA integrity to product was loaded onto (Illumina), and the data s present genes (genes th working data set for furth expression analysis was	mice, 8 samples from young j tal RNA was isolated and puri d samples were deemed suita number) >7. Total RNA of 500 the chips. Following hybridiz were analyzed using Genome at meet the criteria of detectio her analyses. Rank variant noi used to compare to the refer	Imber of tumor sample replicates us irradiated mice, 7 samples from midd fied using Trizol (Invitrogen) or RNet ible for amplification and hybridizatio ng per sample was amplified using A ation at 55C, the chips were washed Studio (Illumina). Data were first ana n p-value < 0.05). Expression above malization was applied to the data b ence group, young unirradiated mice	ed from each condition is dle-aged unirradiated mic asy (Qiagen), quantified - on if they had O.D. 260/20 Ambion TotalPrep (Ambio 1 and then scanned using alyzed for gene expressic e background was includ- before extensive analysis e, and genes were then e	and naces to the amples ze, 5 samples from middle and qualified using Agilen of 1, 7, 2, 1, 28,/18s = in), and 1.5ug of the the Illumina iScan on and then culled for ed in an expressed genes . Differential gene valuated and validated.
	from young unirradiated aged irradiated mice. To Bioanalyzer (Aglient) an 2:1, RIN (RNA integrity r product was loaded onte (Illumina), and the data present genes (genes th working data set for furth expression analysis was	mice, 8 samples from young i tal RNA was isolated and puri d samples were deemed suita number) >7. Total RNA of 500 the chips. Following hybridiz were analyzed using Genome at meet the criteria of detectio her analyses. Rank variant no used to compare to the reference ROLE	Imber of fumor sample replicates us irradiated mice, 7 samples from midd fied using Trizol (Invitrogen) or RNee ible for amplification and hybridization ong per sample was amplified using A ation at 55C, the chips were washed Studio (Illumina). Data were first ana an p-value < 0.05). Expression above rmalization was applied to the data b ence group, young unirradiated mice ORGANIZATION	ed from each condition is dle-aged unirradiated mic asy (Qiagen), quantified ; n if they had O. D. 260/21 Ambion TotalPrep (Ambio 8 and then scanned using alyzed for gene expressic e background was includ before extensive analysis e, and genes were then e E-MAIL	and holes to have a sa follows: 10 samples ce, 5 samples from middle and qualified using Agilen og = 1.7 - 2.1, 28x/18s = in), and 1.5ug of the the Illumina IScan on and then culled for ed in an expressed genes . Differential gene valuated and validated.
	from young unirradiated aged irradiated mice. To Bioanalyzer (Agilent) an 2:1, RIN (RNA integrity r product was loaded onto (Illumina), and the data u present genes (genes th working data set for furth expression analysis was NAME Christine E Briggs	ince, 8 samples from young j tal RNA was isolated and puri d samples were deemed suita number) >7. Total RNA of 500 the chips. Following hybridiz, were analyzed using Genome tat meet the criteria of detection to used to compare to the reference ROLE submitter	Imber of tumor sample replicates us irradiated mice, 7 samples from midd fied using Trizol (Invitrogen) or RNee ible for amplification and hybridizatio ng per sample was amplified using A ation at 55C, the chips were washed Studio (Illumina). Data were first ana in p-value < 0.05). Expression above malization was applied to the data b ence group, young unirradiated mice ORGANIZATION Tufts University School of Medic	ed from each condition is dle-aged unirradiated mic asy (Qiagen), quantified ; on if they had O.D. 260/2(Ambion TotalPrep (Ambio and then scanned using alyzed for gene expression e background was includ before extensive analysis e, and genes were then e E-MAIL cine cebriggs	and naces in the analysis of a samples from middle and qualified using Agilen of qualified using Agilen of the samples from middle the Illumina iScan on and then culled for ed in an expressed genes b. Differential gene valuated and validated.
	from young unirradiated aged irradiated mice. To Bioanalyzer (Agilent) an 2:1, RIN (RNA integrity r product was loaded onte (Illumina), and the data v present genes (genes th working data set for furtl expression analysis was NAME Christine E Briggs Afshin Beheshti	mice, 8 samples from young i tal RNA was isolated and puri d samples were deemed suita number) >7. Total RNA of 500 o the chips. Following hybridiz were analyzed using Genome at meet the criteria of detectio her analyses. Rank variant no used to compare to the reference ROLE submitter	Imber of tumor sample replicates us irradiated mice, 7 samples from midd fied using Trizol (Invitrogen) or RNexi ble for amplification and hybridization ong per sample was amplified using A ation at 55C, the chips were washed Studio (Illumina). Data were first ana on p-value < 0.05). Expression above malization was applied to the data b ence group, young unirradiated mice ORGANIZATION Tufts University School of Media	ed from each condition is dle-aged unirradiated mic asy (Qiagen), quantified : ni f they had O.D. 260/2(Ambion TotalPrep (Ambio d and then scanned using alyzed for gene expressic e background was includ before extensive analysis a, and genes were then e E-MAIL cine cebriggs	and naces in the analysis of t
	from young unirradiated aged irradiated mice. To Bioanalyzer (Agilent) an 2:1, RIN (RNA integrit) product was loaded onto (Illumina), and the data u present genes (genes th working data set for furth expression analysis was NAME Christine E Briggs Afshin Beheshti Edward Rietman	ince, 8 samples from young j tal RNA was isolated and puri d samples were deemed suita number) > 7. Total RNA of 500 the chips. Following hybridiz were analyzed using Genome tat meet the criteria of detection used to compare to the reference ROLE submitter	Imber of tumor sample replicates us irradiated mice, 7 samples from mide fied using Trizol (Invitrogen) or RNee ible for amplification and hybridizatio ng per sample was amplified using <i>A</i> ation at 55C, the chips were washed Studio (Illumina). Data were first ana on p-value < 0.05). Expression above malization was applied to the data b ence group, young unirradiated mice ORGANIZATION Tufts University School of Media	ed from each condition is dle-aged unirradiated mic asy (Qiagen), quantified ; on if they had O.D. 260/2(Ambion TotalPrep (Ambio and then scanned using alyzed for gene expressio e background was includ before extensive analysis e, and genes were then e E-MAIL cine cebriggs	and naces as follows: 10 samples se, 5 samples from middle and qualified using Agilen of 1.7 - 2.1, 28x18s = in), and 1.5ug of the the Illumina iScan on and then culled for ed in an expressed genes . Differential gene valuated and validated.
	from young unirradiated aged irradiated mice. To Bioanalyzer (Aglient) an 2:1, RIN (RNA integrity r product was loaded onto (Illumina), and the data v present genes (genes th working data set for furtl expression analysis was NAME Christine E Briggs Afshin Beheshti Edward Rietman Lynn Hlatky	Principal Investigator	Imber of tumor sample replicates us irradiated mice, 7 samples from midd fied using Trizol (Invitrogen) or RNexi ble for amplification and hybridization ag per sample was amplified using A ation at 55C, the chips were washed Studio (Illumina). Data were first ana in p-value < 0.05). Expression abouty malization was applied to the data bi ence group, young unirradiated mice ORGANIZATION Tufts University School of Media Tufts University School of Media	ed from each condition is dle-aged unirradiated mic asy (Qiagen), quantified - on if they had O.D. 260/20 Ambion TotalPrep (Ambio a and then scanned using alyzed for gene expressic e background was includ before extensive analysis e, and genes were then e E-MAIL cine cebriggs	and naces 10 samples as follows: 10 samples re, 5 samples from middle and qualified using Agilen 00 = 1.7 - 2.1, 28s/18s = n), and 1.5ug of the the Illumina iScan on and then culled for ed in an expressed genes . Differential gene valuated and validated.
	from young unirradiated aged irradiated mice. To Bioanalyzer (Aglient) an 2:1, RIN (RNA integrit) product was loaded onte (Illumina), and the data u present genes (genes th working data set for furth expression analysis was NAME Christine E Briggs Afshin Beheshti Edward Rietman Lynn Hlatky Michael Peluso	Principal Investigator	Imber of tumor sample replicates us irradiated mice, 7 samples from mide fied using Trizol (Invitrogen) or RNea ible for amplification and hybridizatio ag per sample was amplified using A ation at 55C, the chips were washed Studio (Illumina). Data were first ana on p-value < 0.05). Expression above malization was applied to the data b ence group, young unirradiated mice ORGANIZATION Tufts University School of Medic Tufts University School of Medic	ed from each condition is dle-aged unirradiated mic asy (Qiagen), quantified ; on if they had O.D. 260/2(Ambion TotalPrep (Ambio and then scanned using alyzed for gene expressio e background was includ before extensive analysis e, and genes were then e E-MAIL cine cebriggs	and naces 10 samples as follows: 10 samples re, 5 samples from middle and qualified using Agilen ob = 1.7 - 2.1, 28x/18s = in), and 1.5ug of the the Illumina IScan on and then culled for ed in an expressed genes . Differential gene valuated and validated. 7135@gmail.com
	from young unirradiated aged irradiated mice. To Bioanalyzer (Aglient) an 2:1, RIN (RNA integrity r product was loaded onto (Illumina), and the data v present genes (genes th working data set for furtt expression analysis was NAME Christine E Briggs Afshin Beheshti Edward Rietman Lynn Hlatky Michael Peluso Phillip Hahnfeldt	Inice, 8 samples from young j tal RNA was isolated and puri d samples were deemed suita number) > 7. Total RNA of 500 the chips. Following hybridiz were analyzed using Genome tat meet the criteria of detection used to compare to the reference ROLE submitter Principal Investigator	Imber of tumor sample replicates us iradiated mice, 7 samples from midd fied using Trizol (Invitrogen) or RNee ible for amplification and hybridizatio ng per sample was amplified using <i>A</i> ation at 55C, the chips were washed Studio (Illumina). Data were first ana in p-value < 0.05). Expression above malization was applied to the data b ence group, young unirradiated mice ORGANIZATION Tufts University School of Medic Tufts University School of Medic	ed from each condition is dle-aged unirradiated mic asy (Qiagen), quantified ; on if they had O.D. 260/2(Ambion TotalPrep (Ambio a and then scanned using alyzed for gene expressic e background was includ before extensive analysis e, and genes were then e E-MAIL cine cebriggs	and naces 10 samples as follows: 10 samples re, 5 samples from middle and qualified using Agilen 00 = 1.7 - 2.1, 28s/18s = n), and 1 5ug of the the Illumina iScan on and then culled for ed in an expressed genes . Differential gene valuated and validated.

GLDS Phase 2 (Release 2.0) Open Science for Exploration Customized NASA Collaborative Workspace

NA S

Open Science for Exploration				
Launch View Manage Help To	ols GeneLab Data Repository			
-				
Galaxy				
		Default 🔍		
	Up to: Home . Public . genelab			
Home	E Filename		Tags	Ov
💼 Genel.ab 🔻	GLDS-1			gene
Shared to abehesht *	GLDS-10			gene
Public V	GLDS-100			gene
genelab *	GLDS-101			gen
Chi GLDS-1 V	GLDS-102	· · · · · · · · · · · · · · · · · · ·		gen
Cal GLDS-10 V	GLDS-103		NASA Genel ab OpenID Login	gene
GLDS-100 ▼	GLDS-104	NASA	ndok denezili openio zogin	gen
GLDS-101 •	GLDS-105		USERNAME:	gen
CLDS-102 *	GLDS-106		PASSWORD:	gen
GLDS-103 *	GLDS-107	<u> </u>	Sign In Cancel	gen
GLDS-104 *	GLDS-108	GeneLab	Congiriant	gen
GLDS-105 *	GLDS-109		Register new NASA GeneLab user Fornot your password?	gen
GLDS-106 *	GLDS-11		. eget for paratety	gen
IN GLDS-107 *	GLDS-110			gen
CLDS-108 *	GLDS-111	Open Science		gen
CLDS-109	GLDS-112	for Exploration		gen
CLDS-11 F	GLDS-113			gen
GLDS-110 T	GLDS-114	Î.		gen
GLDS-112 ¥	GLDS-115	This is a U.S. Course	Loughout and in fac authorized upper only	900
0 CI DS-113 V	GLDS-116	This is a US Government system and is for authorized users only. By accessing and using this information system, you acknowledge and consent to the following: You are accessing a U.S. Government information system, which includes: (1) this computer; (2) this computer network; (3) all computers connected to this network; and (4) all devices and storage media attached to this network or to a computer on this network; and (5) cloud and remote information system; you have no reasonable expectation of privacy regarding any communication transmitted through or data stored on this information system. At any time, and for any lawful purpose, the U.S. Government may monitor, intercept, search and seize any communication or data transiting, stored on, or traveling to or from this information system. You are NOT authorized to process classified information on this information system. Unauthorized or information system.		gen
Ch GLDS-114 Y	GLDS-117			gen
GLDS-115 V	GLOS-118			gen
GLDS-116 ¥	GLOS-110			gen
CH GLDS-117 Y	GL05-112			ger
C GI DS-118 Y	CLDS-12			gen
C GI DS-119 Y				gen
CLDS-12 V				gen
GLDS-120 ¥				gen
THE OFFICE ISA	GLUS-123			gen

GLD3.0 – Omics Analysis Toolshed

Barriers to reproducible analysis of omics data:

- 1. Large files are difficult to move around and process
- 2. Workflows vary from user to user and details are sometimes poorly documented

Galaxy platform:

- 1. Open source, extensible platform for cloud based analysis of omics data
- 2. Allows any command line tool or script to be run and chained together into workflows
- 3. Workflows can published, shared and downloaded

Galaxy PROJECT galaxyproject.org

Afgan et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Research (2016)

GeneLab Analysis Working Groups: Letting the scientific community take the lead

Annual Workshop (April 2018)

- Monthly meetings + "Homework"
- Deliverables:

GeneLab

Open Science for Exploration

- Consensus pipelines for primary analysis of data (Microarray, RNASeq, Bisulfite sequencing, Proteomics, 16S metagenomics, Whole genome metagenomics)
- Recommendations for visualization of data

Total AWG Members:	114					
AWG Members Per Group:						
Animal	47					
Multi-Omics/System Biology	33					
Plants	24					
Microbes	21					

*Some members are in multiple groups

Cage Effects with rodent experiments: Carbon Dioxide as an Environmental Stressor in Spaceflight

Beheshti A, Cekanaviciute E, Smith DJ, Costes SV. Global transcriptomic analysis suggests carbon dioxide as an environmental stressor in spaceflight: A systems biology GeneLab case study. Sci Rep. 2018;8(1):4191. doi: 10.1038/s41598-018-22613-1. PubMed PMID: 29520055; PMCID: PMC5843582.

Carbon Dioxide as an Environmental Stressor in Spaceflight

A) Cage Types

Open Science for Exploration

GeneLab

Animal Enclosure Module (AEM)

Sample vivarium cage

Beheshti, et al., Scientific Reports, 2018

Plots Suggest Strong Cage Effect

AEM = Animal Enclosure Modules (now referred to as Rodent Habitats) Vivarium = normal ground based rodent cages

Beheshti, et al., Scientific Reports, 2018

Ŋ

GeneLab

Open Science for Exploration

Differential Gene Expression: Cage or CO2 Effect?

An increase in aldosterone is associated with metabolic syndrome, which is characterized by chronic inflammation; aldosterone secretion can be triggered by hypoxia.

Beheshti, et al., Scientific Reports, 2018

Systems Biology analysis reveals biological spaceflight master regulators

Beheshti, et al., PLOS One, 2018

Number of Significant Genes from Each Dataset

Fold-Change ≥ |1.2| Pathway/Functional Predictions: Ingenuity Pathway Analysis (IPA) Gene Set Enrichment Analysis (GSEA)

Beheshti, et al., PLOS One, 2018

GeneLab

Open Science for Exploration

Predicted Master Regulators

GeneLab

Open Science for Exploration

Key Genes and the Connections

(BF)

B) Connections Between all Key Genes for all Datasets (Flight vs AEM): Radial Plot with the most Connected Gene in the Middle

IGFβ

(ISS) for VAV3 Fliaht TGF_{β1} found to be central regulator of key genes TGF_β is known to play a context specific role in sustaining tissue homeostasis predominantly via transcriptional regulation of genes involved in differentiation, cell motility, proliferation, cell survival along with regulating immune responses during homeostasis and infection. Previous Studies found reduction in gravitational force to diminish TGF- β expression and apoptosis with higher carcinoembryonic antigen expression in 3D human colorectal carcinoma cells, as compared to 3D cultures in unit gravity. In another study, differential regulation of blood vessel

EDL

 In another study, differential regulation of blood vessel growth using basic fibroblast growth factor was identified in modeled microgravity with induction early and late apoptosis, extracellular matrix proteins, endothelin-1 and TGFb1 expression

Beheshti, et al., PLOS One, 2018

GeneLab

A) Direct

for Key

Genes

Connections/

Open Science for Exploration

Soleus

(ISS)

MYL

Predicted miRNAs Involved with Microgravity Effects

Health Risk Due to miRNAs

A recent report showed that inactivation of p53 altered TGF-β signaling, which ironically displayed both tumor-suppressive and pro-oncogenic functions. p53 functions to integrate crosstalk between Ras/MAPK and TGF-β signaling via binding to Smad3, dislocating the Smad3/Smad4 complex formation and differentially regulating subsets of TGF-β target genes

Biological Health Risk Increased

Beheshti, et al., PLOS One, 2018

Analysis Working Group (AWG) Member related work determines novel systemic biological factors causing damage due to spaceflight

Work in progress

AWG Members Involved

Gary Hardiman Willian da Silveira

MEDICAL UNIVERSITY of SOUTH CAROLINA

USC Health

J. Tyson McDonald

Helio Costa

Kathryn Grabek

STANFORD

UNIVERSITY

AWG Members Involved

Chris Mason

Cem Meydan Jor

Jonathan Foox Flavia Rius

Yared Kidane

Manned Space Flight Education Foundation

Susana Zanello Scott Smith

Cornell University.

Sara Zwart

Afshin Beheshti Sylvain Costes

GeneLab Open Science for Exploration

Specific Datasets and Tissues AWG Members Analyzed

In addition, human datasets are also included:

> GLDS-54, GLDS-174, GLDS-86, GLDS-118, GLDS-53, GLDS-54, GLDS-13. GLDS-52, or GLDS-114 (Tyson McDonald and Yared Kidane)

Engaging with GeneLab

GeneLab

About

Newsletters

Contact Us

FAQ

Open Science for Exploration

ResearchGate: https://www.researchgate.net/project/Omics-tor-Space-Biology-The-GeneLab-project