Dynamic Scheduling Under
Uncertainty

2nd Summer School on Cognitive Robotics at MIT
Robert Morris, NASA Ames Research Center

July 23,2018

Outline

e Review of Executive Functions

e Models of Uncertainty

e Dynamic Scheduling

e Dispatching Temporal Plans

e Conclusions

. Dynamic Scheduling

° Robert Morris

July 23, 2018

&

Review of Functions of Executive

The Executive is the interface

between the numerical Requirements of executive:
behavioral control and the * Simple and Fast
symbolic planning layers. .

Robust to uncertainty in world

It is responsible for translating (including the robot hardware
abstract plans into low-level

behaviors, invoking behaviors at
the appropriate times, monitoring Executive
execution, and handling
exceptions.

In a control system with
deliberative behaviors, the plan
provides robust and effective
directives to the executive on
how to direct the system towards
desired behaviors.

A “model-based executive”
enables goal-directed behavior. A Activity
user can specify a goal and the Scheduling
executive can determine the
appropriate course of action to

Task Planning

and
meet the goals. |_* _Resources Dispatch

Scheduling vs Planning @

l Description of

S Che duhng Initial state ——

— Decide when and how to Objectives U|S4h L
perform a given set of actions statul= =

Yy

* Time constraints Controller

* Resource constraints Observations I Actions

* Objective functions System"):
Planning FEvents

— Decide what actions to use to achieve a set of objectives

Performing planning and scheduling in sequence 1s
difficult or impossible when planning for complex
systems

— Concurrent actions
— Shared resources

More recent approaches combine both.

Plan Execution

* Simple Sequential Plan Execution:

— loop
* Take next action from plan

* Send action to control (Dispatch)
* Wait for action to finish (Monitor)

e Extensions to make plans more robust:
— Time and resource management
— Conditional dispatch
— Looping

Time and Resource Executive

* Real world requires time and resource models
— Durations, orderings and deadlines
— Battery consumption

e Time & resource executive:

— 1. Send time-enabled actions to control
e Record the time of dispatch

— 2. Propagate effects on the time of future actions
— 3. Monitor effects of actions on resources
— 4. Goto 1

Conditional Executive

* Real world is uncertain
— The effects of actions might be non-deterministic

— Environment is dynamic and changing (full of
exogenous events)

— Environment often filled with unknowns (world model
is incomplete).

e Solution: plans with conditional ‘branches’

e Executive must have a ‘condition monitor’ (state
estimator) to decide what actions to dispatch

Other Extensions

* Dispatching more than a single plan

e Strategic vs. Tactical planning
— Hierarchical planning

* Recursive planning

— A plan might be interrupted by the opportunity
for executing another plan

— Once completed, the original plan is resumed

&

Uncertainty in Cognitive Robotics

Uncertainty is Ubiquitous
— Wheels slip (uncertainty in the effects of actions)
— Sensors are affected by noise (knowledge about the current state is limited)

— Objects move unpredictably (things happen in the world that are not under the control
of the robot)

Mobile robots need to be robust to these kinds of uncertainty.
— They need to accomplish goals while remaining safe despite uncertainty
Approaches to handling uncertainty
— Reactive: recovering from the effect of uncertainty after it has occurred
— Proactive: apply models to anticipate uncertainty and generate robust plans/schedules
— Hybrid: combination of both
Many kinds of uncertainty can be met by modeling and reasoning about it.
— Non-deterministic models = uncertainty as a set of possible outcomes

— Probabilistic models = uncertainty as conditional probability distribution over set of
outcomes

Uncertainty as a ‘game against nature’.

— Nature as an external ‘decision maker’ whose decisions set the values uncertain state
parameters.

Scheduling under uncertainty

\4

Proactive Hybrid Reactive

| |

| |

4 Y
-~ \‘ I
*Robustness measures

. Fieser
* Redundancy based techniques Distributedt spproaches
* Probabilistic methods s s L2
* Contingent scheduling BTy ruies
* tochniques based on Dynamic choice of priority rules
optimization
)
| 4
\ 4 Y
Proactive - Reactive Predictive - Reactive

I I

| |

\ 4 ¥

(N
“ Off-line phase:

- Static algorithm
- Tabu search
- Genetic algornthm

* Real-time phase:
= Actions to allow new operations
- Reactive schedule
- Decision-maker alternative choice

\ J

* When to reschedule?

*How to reschedule?
- Right shift rescheduling
- Total rescheduling
- Multi-objective rescheduling
- Maich-up rescehduling

Approaches to
scheduling under
uncertanty

Proactive: Model uncertainty
and produce robust schedules
(“ones that satisfy performance
requirements predictively in an
uncertain environment”).
Reactive: Continually re-
schedule based on changes to
execution environment.

Hybrid Proactive-reactive: Build
a set of static schedules that
make it easy to pass from one to
another at run-time

Hybrid Predictive-reactive:
make a deterministic schedule
off-line and adapt it during run-
time.

* From “Scheduling under uncertainty: survey and research
directions” Chaari, et. al., 2014.

Example: Slack-based Scheduling

Main idea: provide each activity with extra time to execute
so that some level of uncertainty can be absorbed without
re-scheduling.

How to add slack?

— Before scheduling (temporal projection)

— Statically as part of the problem definition (Time Window Slack,
TWS)

* Allows for reasoning about amount of slack available during
scheduling.

— Relative to where the activity is scheduled (Focused TWS)

e Uses statistics to focus the slack on areas of the horizon that are in
need of it.

* Example: Focus on resources (machines) that have not been
maintained in quite a while.

Dynamic Scheduling

In classical scheduling, it is common to assume full information: all tasks and their
constraints are known prior to any decision making.

Dynamic scheduling problems are characterized by a stream of tasks arriving
stochastically over time. Each job requires a combination of resources, sequentially
and/or in parallel, for different processing times. The existence of any particular
job and its corresponding characteristics are not known until its arrival.

Dynamic scheduling problems consist of both challenging combinatorics, as found
in classical scheduling problems, and stochastics due to uncertainty about the
arrival times, resource requirements, and processing times of jobs.

To solve a dynamic scheduling problem, the jobs must be assigned to appropriate
re-sources and start times, respecting the resource and temporal constraints. As

jobs arrive, there must be an online process to make decisions: it is not possible to
solve the entire problem online.

Often we settle for evaluating algorithm performance over a finite time horizon;
we refer to such criteria as short-term criteria. In contrast, long-term objectives
focus on system-level performance measures such as stability, which establishes
whether the instantaneous number of jobs will remain finite over an infinite
horizon for particular system parameters.

Approaches to Solving Dynamic
Scheduling Problems

Solving dynamic problems typically involves the periodic scheduling
approach of solving a collection of linked static sub-problems.

At a given time point, the static problem, consisting of the jobs currently
present in the system, is solved to optimize some short-term objective
function.

That schedule is then executed (wholly or partially) until the creation of
the next sub-problem is triggered. This viewpoint means that methods
developed for static scheduling problems become directly applicable to
dynamic ones.

Such methods can effectively deal with complex combinatorics and can
optimize the quality of schedules for each static sub-problem. However,
they tend to overlook long-run performance and stochastic properties of
the system.

There is interest in understanding how long-term objectives can be
achieved by solving a series of short-term, static scheduling problems.

— Queueing theory has been used to characterize system stability (finite waiting
lines)

Example: Rolling Horizon Approach t@
Aircraft Runway Scheduling

Length of planning horizon

< PH, s
ApH, s
—
0 600 1200 1800 2400 3000 3600
ETA, s | ! I ! I ! !
—9—-0 O | *—0 .: O | O C .:-. -0 | -0 @
| | | I |
. HHstart, m : p.Hend, m : :
Planning Stage m < l > | |
| | I |
. FiHstart, m+1 : P:Hend, m+1 :
Planning Stage m+1 < : > i
I | P!Hend, m+2

PHstart, m+2 !
K 1

Planning Stage m+2 . .
Rolling HOI’IZOI‘]‘

\ 4

Dynamically Scheduling Temporal @
Plans

Plans are subject to temporal constraints on actions with duration

* Actions must be dispatched in a way that satisfies the constraints

The executive might not always be able to control action duration

Uncertainty Type

No Uncertainty

Uncertainty

20

20

7 8 11 16 19 0 7 8 11 16 19
A, A A
Activities Bs Be
[7,11] e [7,11] e
[0, 20] [0, 0) [0, 20] [0, 00)
. [8,11] [8,11]
TimePoints . :

Simple Temporal Problems

* The basic temporal primitives are time points.
* Simple temporal constraints for instants t; and t;:
— unary:a, <t <b,
— binary: a; < t—t;< b,
where a;, b;, a;, b; are (real) constants
* Simple Temporal Network (STN)
— constraints r;= [a;,b;] are used
— operations:
* composition: r; * ry = [a;+a;,, by+b,]
* intersection: r; M r’; = [max{a;,a’;}, min{b;,b";}]

— STN is consistent if there is an assignment of values to time points
(a solution) satisfying all the temporal constraints.

— Path consistency is a complete technique making STN consistent (all
inconsistent values are filtered out, one iteration is enough).
Another option is using all-pairs minimal distance Floyd-Warshall
algorithm

 Two STNs are equivalent if they have the same solutions.

i

i

&

Distance graph

— Relations a;; < t—t; < b; can be expressed as a pair of inequalities:

* tts bij

. tj—tis h

* Absolute times can be defined as a distance to a reference point t,
— Solving a set of linear equalities is well-known.

— The inequalities can be given a graphical notation, called a distance graph.
* Shortest path algorithms can be applied to do useful things.
. Negative cycle in the distance graph means inconsistency.

[480,480]

Fundamental Theorem of STN

* Floyd-Warshall algorithm O(n”3)

— finds minimal distances between all
pairs of nodes

For an STN S with graph G

— First, the temporal network is

and distance Matrix d, the converted into a distance graph
fo”owing are equivalent: * thereis an arc fromito j with
. . distance b;
* Sisconsistent * thereis an arc from j to i with
* d has non-negative values cistance -2,
. _ & — STN is consistent iff there are no

on main diagonal; negative cycles in the graph
* G has no negative length — Same as saying d(i,i)=0

Ioops — dis called the distance matrix

(Dechter, Meiri, Pearl, 1991)

Floyd-Warshall(X, E)
for each i and j in X do
if (i,5) € E then d(i,j) < I; else d(i,) «— o0
d(i, i) <0
for each i,j, k in X do
d(i, j) < min{d(i,5), d(i, k) + d(k, j)}
end '

Set of Temporal Constraints and
Corresponding Distance Graph

=% = =4 ty— 7 < 250)
ts —t1 < 168, to —t3 < —120 >
by —13 < 7, t1 —ty < 0
L f3— 1y < 0)
168
o 0 o = 120 oOot4

x t5
4
D Z
z O
t1 -4
to -4
t3 -124
ta -124

~ \7\
120 - =,
250
to t3 T4
130 250 250
48 168 168
O 168 168
-120 O 7

-120 O O

Dynamic Updates and Incremental
Consistency

Dynamic Updates:

Update d incrementally by adding or deleting constraints

Sometimes less expensive than computing d from scratch
(Demetrescu and Italiano 2002)

Incremental consistency

Verifying consistency after inserting/weakening constraints
is less expensive than fully updating the distance matrix.

Can verify consistency in O(m+ n log n) time after inserting
a new constraint. (Ramalingam et al. 1999)

&

Scheduling Temporal Plans

Option 1. Schedule Off Line [40,50]

|

[60,70]

* Given an STN, a schedule is an assignment of
times to all variables.

* To generate a schedule from a STN without
search, first transform STN into a
‘decomposable’ STN, where all the implied
constraints are revealed, using the all-pairs-
shortest-path algorithm (Floyd-Warshall)

* Then incrementally assign times to variables (in
any order) and propagate.

Schedule Plan

Scheduling Actions in the Plan)

Pick any time-point that doesn’t yet have a Exam ple STN
value;
Give it a value from its time-window; B
Update D; < Expensive ﬂ
Repeat until all time-points have values
/% \g
30
4 = — D
M| [©
)

Solving an Example STN
First, form APSP graph (equiv. compute D).

Time Windows: B € [5,26], C € [2,28], D € |9, 30

Dynamic Scheduling o Robert Morris o July 23,2018

“Solving”” Sample STN (ctd.)

Next, select D = 20; and update APSP graph:

|

Remaining Time Windows: B € |5, 16], C € |2, 18]

. Dynamic Scheduling ° Robert Morris ° July 23, 2018

“Solving”” Sample STN (ctd.)

Next, select 5 = 10; and update APSP graph:

Remaining Time Windows: C' € [7, 16]

. Dynamic Scheduling ° Robert Morris ° July 23, 2018

“Solving”” Sample STN (ctd.)

Finally, select C' = 9; and update APSP graph:

|

Easy to verify that this 1s a solution.

. Dynamic Scheduling ° Robert Morris ° July 23, 2018

Executing Temporal Plans

Autonomous systems with a deliberative (planning)
component combine planning with execution.

— The subsystem responsible for carrying out a plan is called
the executive.

— When dispatching plans with flexible temporal constraints,
there is a need for a separate dispatcher.

Dispatcher notifies executive when an action can or must be
executed.

— Correctness: whatever executive does adheres to
temporal constraints

— Preserves flexibility: dispatcher never tells the executive

that an action can’t be performed at a certain time when it
can.

Dispatching Temporal Plans

Option 1. Schedule Off Line Option 2. Schedule On Line

Describe Temporal i) Describe Temporal
Plan Plan

Test for Consistency Test for Consistency

Schedule Plan Reformulate Plan

Off line

On line
Execute Plan Dynamic Execution

&

Executing Temporal Plans

Option 1. Schedule Off Line

Problem: changes in task duration can
cause plan failure if scheduling occurs off
line.

* Fixed schedule removes flexibility

Test for Consistency

* Solution: Execution adapts through
dynamic scheduling.

Schedule Plan * Assign time to event at execution

time.
 @Quarantee that all constraints wil
be satisfied.

Execute Plan

&

C

:> (A i
N

Problem: execution latency Reformulate Plan
while propagating effects of

assigning times. Off line

Solution: generate equivalent

STN with low latency through On line
removal of dominated edges.
This reformulation minimizes

latency.

Remove Dominated Edges

A negative edge AC is dominated by a negative edge AB
it D(A,B)+ D(B,C) =D(A, B):

TN

Note: AB and AC have the same source node: A.

. Dynamic Scheduling ° Robert Morris ° July 23, 2018

s

Remove Dominated Edges (ctd.)

A non-negative edge AC' is dominated
by a non-negative edge BC
it D(A,B)+ D(B,C) =D(A, B):

TN

Note: BC' and AC have the same destination node: A.

. Dynamic Scheduling ° Robert Morris ° July 23, 2018

&

Dynamic Execution of Flexible STNs

Execute an event when it is enabled and
active.

Enabled : predecessors of event have been
scheduled.

Active : Current time is within bounds of
event.

Algorithm: when event is enabled and
active, assign time and propagate effects

to immediate ep’q]'s.

(A) |,|] (D)

[0,9]
Off line

Option 2. Schedule On Line

est Tor Consistency

Rerormulate Plan

11

L1
0 = On line

t=0
(A [1.1]

[0.9]

Dynamic Execution

Making STN Dispatchable (ctd.)

Remove “dominated” edges:*

B
1
@6
/6 \1
30
Z — D
<8 | [©
I
C

*(Muscettola, Morris, and Tsamardinos 1998)

. Dynamic Scheduling ° Robert Morris ° July 23, 2018

Dispatching the STN

Initially: t =0, X = {}, E = {Z}.

B
1
29
/6 \1
30
[—> D
<8 | o
I
C

Pick Z from E. Set Z = 0.

. Dynamic Scheduling ° Robert Morris ° July 23, 2018

Dispatching the STN (ctd.)

Propagate Z = 0 to neighbors;

B
|
DS
/6 \1
30
A = D
<8 | [©
[
C

X ={Z},E={B,C};Be526,C € [228],D € [0,30].

. Dynamic Scheduling ° Robert Morris ° July 23, 2018

Dispatching the STN (ctd.)

X ={Z},E={B,C};Bounds: B € [5,26], C' € [2,28].

B
1
@6
/6 \1
30
Y/ —> D
<8 | o
I
C

Let t advance to 12; Pick B from E; Set B = 12.

. Dynamic Scheduling ° Robert Morris ° July 23, 2018

Dispatching the STN (ctd.)

Propagate 5 = 12 to neighbors

B
1
29
/6 \1
30
[T —> D
<8 | o
I8
C

X ={Z B}, t=12,E={C}, C € [12,18], D € [16, 30]

. Dynamic Scheduling ° Robert Morris ° July 23, 2018

Dispatching the STN (ctd.)

X ={Z B} t=12,E={C}, C € [12,18],D € [16, 30]

B
|
q/@
/g‘) \1
30
Z = = D
<8 | |©
I
C

Let ¢ advance to 16, pick C' from E, set C' = 16.

. Dynamic Scheduling ° Robert Morris ° July 23, 2018

Dispatching the STN (ctd.)

Propagate ' = 16 to C’s only remaining neighbor, D.

B
|
29
/6 \1
30
[T —> D
<8 | o
I
C

X ={Z B,C},t=16,E = {D}, D € [18,30]

. Dynamic Scheduling ° Robert Morris ° July 23, 2018

Dispatching the STN (ctd.)

X ={Z B,C},t=16,E = {D}, D € [18,30]

B
|
q/@
/g‘) \1
30
Z = = D
<8 | |©
I
C

Let ¢t advance to 25, pick D from E, set D = 25.

. Dynamic Scheduling ° Robert Morris ° July 23, 2018

Dispatching the STN (ctd.)

X={Z B,C,D},t=25E =1}

B
1
@6
/6 \1
30
Y/ —> D
<8 | o
I
C

Solution: Z =0,B =12,C' =16, D = 25.

. Dynamic Scheduling ° Robert Morris ° July 23, 2018

Dispatching the STN (ctd.)

Easy to check that Z7 = 0,C = 20, B = 23, D = 28 can
also be generated by the dispatcher.

B
|
q/@
/g‘) \1
30
Z = = D
<8 | |©
I
C

. Dynamic Scheduling ° Robert Morris ° July 23, 2018

Summary

* STNs have been used to provide flexible planning and
scheduling systems for more than a decade.

e Efficient algorithms for checking consistency,
incrementally updating the APSP matrix, and managing
execution in real time for maximum flexibility.

* |n order to represent richer families of choices, this
basic model has been extended in different ways.
— Uncertainty
— Conditions
— Disjunctions

Temporal Uncertainty: I\/Iotivation@

“Drill a hole 3 inches deep”

Duration of drill action is unknown but within known m
bounds Q.--------.’

Such actions can be modeled as contingent links in
network

Temporal Uncertainty

Uncertainty can be seen as a game between an Executor and the
adversarial Nature.

Rules
@ The Executor schedules a set of Controllable Time Points (X.)

@ The Executor must fulfill a set of temporal constraints called Free
Constraints (Cr)

@ The Nature tries to prevent the success of the executor scheduling a
set of Uncontrollable Time Points (X,)

@ The Nature must fulfill a set of temporal constraints called
Contingent Constraints (C.)

STNU

Example
[7,11] . .
As ——(A As, Ae, Bs are Controllable Time Points (X.)
Be is an Uncontrollable Time Point (X,)
[0,20] [0, 00)
— represents Free Constraints (Cr)
W» represents Contingent Constraints (C.)

A Simple Temporal Network with Uncertainty (STNU) [Vidal and Fargier 1999] is an extension
of an STN that distinguishes between controllable and uncontrollable events.
A directed graph, consisting of a set of nodes, representing timepoints, and a set of edges,
called links , constraining the duration between the timepoints.
The links represent two categories of constraints:

» A free constraint specifies a constraint on the duration between two timepoints.

* A contingent constraint models an uncontrollable process whose uncertain duration

may last any duration between the specified lower and upper bounds.

All contingent constraints terminate on a timepoint whose timing is controlled exogenously.
All other timepoints are called requirement timepoints and are controlled by the scheduler.

Flavors of Controllability

Strong Controllability (No observation)

Find a fixed schedule for controllable time points that fulfills all the free
constraints for every possible assignment to uncontrollable time points
fulfilling contingent constraints.

Dynamic Controllability (Past observation)

Find a strategy, that depends on past observations only, for scheduling
controllable time points that fulfills all the free constraints for every
possible assignment to uncontrollable time points fulfilling contingent
constraints.

Weak Controllability (Full observation)

Find a strategy for scheduling controllable time points that fulfills all the
free constraints for every possible assignment to uncontrollable time points
fulfilling contingent constraints.

v

T~ /

AN

Schedules and Strategies Examples

Example

[7,11]

[0,20]

A ([7,11])

B ([8,11])

Fixed Schedule
(Strong Controllability)

o start(A) at 0
o start(B) at 11

20
19 20

> time

13/49

&

Dynamic Controllability

Example
[7,11] .
R [A Dynamic Strategy
(Dynamic Controllability)
[0, 20] [—1, 00)
‘ ‘ o start(A) at 0
5.) > (B, o start(B) at Ae
20
0 7 8 11 16 17
| e — — > time
A ([7,11])
B ([8,11])

&

Weak Controllability

Example
[7,11] -
B [Ae Clairvoyant Strategy
(Weak Controllability)
[0, 20] -1, 00)
o start(A) at 0
5.) > (B, o start(B) at Ae — 1
20
0 7 8 11 15 16
| e E— — > time
A ([7,11])
B ([8,11])

STNU Graph

e Nodes and Edges as in an STN graph
7

Y-Xe3,7 <= X‘<_3,/‘>Y

e Contingent Links <= Labeled Edges*

c: 3
C-Acl3,7] <= A = 7’0

Labeled edges represent uncontrollable possibilities.

* (Morris and Muscettola 2005)

. Dynamic Scheduling ° Robert Morris ° July 23, 2018

Edge-Generation Rules

e No Case Rule

e Upper-Case Rule
e Lower-Case Rule
e Cross-Case Rule

e Label-Removal Rule

(Morris and Muscettola 2005)

The No-Case Rule

&

The Upper-Case Rule

&

The Lower-Case Rule

A

— 2

T

c:3 ¢ —H

(Applies since —5 < 0)

- X

The Cross-Case Rule

A

021—5

.3 ¢ Cg:—8>A2

(Applies since —8 < 0 and C' = ())

The Label-Removal Rule

c.3

(Applies since 1 < 3)

Semi-Reducibility

A path 1s semi-reducible 1t it can be transformed 1nto a path
with no lower-case edges.

" Fundamental Theorem of STNUs

For an STNU &, with graph G, and APSSRP matrix D*, the
following are equivalent:

e S is dynamically controllable
e § has no semi-reducible negative loops

e D* has non-negative values on its main diagonal

(Morris and Muscettola 2005; Morris 2006; Hunsberger 2010; 2013b)

Compiling and Dispatching STNUs

An STNU must be checked to determine if a dynamically controllable
execution strategy exists, and if so compile it into a dispatchable form.

Once the plan is dispatchable , the dispatcher schedules timepoints
through local propagation of timebounds [Muscettola 1998, Morris et al.
2000].

STNUs can be translated into labeled distance graphs and tested for
consistency, like STNs.

— An STNU is consistent only if its associated distance graph contains no
negative cycles.

However, consistency is not sufficient to guarantee dynamic
controllability.

The dynamic controllability (DC) algorithm [Morris et al. 2001]
reformulates the distance graph to ensure that each uncontrollable
duration, is free to finish any time in the interval [li,ui], as specified by
the contingent constraint, Ci .

&

DC Algorithm Steps

Using Floyd-Warshall, compute the distance graph to uncover the
implicit constraints.
— If the exposed constraints imply strictly tighter bounds on an uncontrollable

duration, then that uncontrollable duration is squeezed [Morris et al. 2001]
and the plan is not dynamically controllable.

— An STNU is pseudo-controllable [Morris et al. 2001] if it is both temporally
consistent and none of its uncontrollable durations are squeezed.
— If the scheduler makes the wrong decisions during plan execution, then
uncontrollable durations make be squeezed then.
To avoid squeezing uncontrollable durations during scheduling, the DC
algorithm adds constraints to the plan.

— The constraints take the form of simple temporal constraints and conditional
constraints (or “wait” constraints) and are applied according to the precede,
unordered, and unconditional unordered reduction rules applied to
triangular graphs.

The conditional constraints can be regressed to deduce new conditional
constraints.

STNU Example

Contingent Link: (A, 2,9,C)
C—Aec|29
C C -B<5
\ Y : > (O —
//; V(l.e., B>C-5)
O .
A B

If A = 0, when is it safe to execute B?

STNU Example

Contingent Link: (A, 2,9, C)
C—Aec |29
\\\ C C—-B<5
D : > () _
//; V(l.e., B>C—-5)
O .
A B

If A=0and B = 2, then problem if C' > 7.

STNU Example

Contingent Link: (A, 2,9, C)
C—Ac |29
C C—B<5
N g i > —
/; V(l.e., B>C—-5)
O .
A B

If A= 0and B > 4, then no problems!

STNU Example

Contingent Link: (A, 2,9, C)
C—Ac|29
\\ C C—-—B<5
D ' > () _
/; V(l.e., B >C—-5)
O .
A B

If A=0and C' = 3, then B > 3 no problem!

STNU Example

Contingent Link: (A, 2,9, C)
C—Ael29
\\ C C—-B<5H
Y i > (C —
//; 5/(1.6.,3_0 5)
O .
A < B

C : —4

Strategy: As long as C' unexecuted,
B must wait at least 4 after A.

Dynamic Controllability (DC)

An STNU is dynamically controllable (DC) if:

there exists a dynamic strategy ...
for executing the non-contingent time-points . . .
such that all of the constraints will be satisfied ...

no matter how the contingent durations turn out.

= A dynamic strategy can react to contingent executions.

r

Real-Time Execution Decisions™

The semantics for dynamic controllability can be stated in
terms of Real-Time Execution Decisions (RTEDs):

o WAIT:

Wait for some activated contingent link to complete.

o (1, X):
If nothing happens before time t € R, then execute
the (non-contingent) time-points in x at time t.

* (Hunsberger 2009)

RTED Example

Contingent Link: (A, 2,9, C)
C—Ac|29

Initial Decision: (4,{B})
(If nothing happens before time 4, execute B at 4.)

RTED Example (ctd.)

Contingent Link: (A, 2,9, C)
C—Ael29

/\/oegi 5)

Possible Outcome: (' executes at time 2.

Next decision: (3,{B})

RTED Example (ctd.)

Contingent Link: (A, 2,9, C)
C—Aec |29
\\\ C C—-—B<5
D ' > () _
//; 5//(1.6.,B_C' D)
O .
A <= B

C . -4

Initial Decision: (4,{B})
(If nothing happens before time 4, execute B at 4.)

RTED Example (ctd.)

Contingent Link: (A, 2,9, C)
C—Ael29

Possible Outcome: C' does not execute yet;
so B 1s executed at 4

Next decision: WAIT (for C' to execute)

RTED Example (ctd.)

Contingent Link: (A, 2,9,C)
C—Ael29

Possible Outcome: C' does not execute yet;
so B 1s executed at 4

Next decision: WAIT (for C' to execute)

Patrick Conrad and Brian Williams. “Drake: An Efficient Executive for Temporal Plans wi
Choice.” Journal of Artificial Intelligence Research 42 (2011) 607-659

David Kortenkamp and Reid Simmons, “Robotic Systems Architectures and Programming”.
Chapter 8 of Robotics Systems Handbook.

Tarek Chaari, Sondes Chaabane, Nassima Aissani and Damien Trentesaux. “Scheduling under
uncertainty: survey and research directions.” International Conference on Advanced Logistics
and Transport 2014.

Andrew J. Davenport and Christophe Gefflot and J. Christopher Beck. “Slack-Based Techniques
for Robust Schedules” Proceedings of the Sixth European Conference on Planning 2014

Tsamardinos, I., Muscettola, N., Morris, P. 1998 “Fast transformation of temporal plans for
efficient execution.” Proc. AAAI-98.

Laura Hiatt and Reid Simmons. “Pre-positioning Assets to Increase Execution Efficiency” ICRA
2007.

Julie Shah, John Sted|, Brian Williams, and Paul Robertson. “A Fast Incremental Algorithm for
Maintaining Dispatchability of Partially Controllable Plans Executing Reactive, Model-based
Programs Through Graph-based Temporal Planning” 1JCAI 2001.

Tsamardinos, I. “Flexible dispatch of disjunctive plans.) Proceedings of the 6th European
Conference on Planning 2001

Muscettola, Morris et al.,“Reformulating Temporal Plans For Efficient Execution” Princig
Knowledge Representation and Reasoning, 1998

Ono, et. al, “Probabilistic Planning for Continuous Dynamic Systems under Bounded Risk.”
JAIR 2013.

Jing Cui “Models of Robustness for Temporal Planning and Scheduling with Dynamic
Controllability”, 2015.

Daria Terekov, et. al. “Integrating Queueing Theory and Scheduling for Dynamic
Scheduling Problems” Journal of Articial Intelligence Research 50 (2014) 535-572

Backup

Planning under Uncertainty

e Solution to a Planning problem: a sequence of
actions that transforms an initial state to one
that realizes a set of goals, possibly optimizing
a cost function along the way.

— Uncertainty forces us to reconsider this definition.

