
yy

Dynamic Scheduling Under
Uncertainty

2nd Summer School on Cognitive Robotics at MIT

Robert Morris, NASA Ames Research Center

July 23, 2018

Dynamic Scheduling • Luke Hunsberger • June 12, 2017

1

yOutliney

• Review of Executive Functions

• Models of Uncertainty

• Dynamic Scheduling

• Dispatching Temporal Plans

• Conclusions

Dynamic Scheduling • Robert Morris • July 23, 2018

2

Review	of	Func-ons	of	Execu-ve	
•  The	Execu-ve	is	the	interface	

between	the	numerical	
behavioral	control	and	the	
symbolic	planning	layers.	

•  It	is	responsible	for	transla-ng	
abstract	plans	into	low-level	
behaviors,	invoking	behaviors	at	
the	appropriate	-mes,	monitoring	
execu-on,	and	handling	
excep-ons.		

•  In	a	control	system	with	
delibera-ve	behaviors,	the	plan	
provides	robust	and	effec-ve	
direc-ves	to	the	execu-ve	on	
how	to	direct	the	system	towards	
desired	behaviors.	

•  A	“model-based	execu-ve”	
enables	goal-directed	behavior.	A	
user	can	specify	a	goal	and	the	
execu-ve	can	determine	the	
appropriate	course	of	ac-on	to	
meet	the	goals.	

Execu&ve	

Task	Planning		

Monitoring	
•  Subgoals	
•  Ac-vi-es	
•  Resources	

Ac-vity	
Scheduling	

and	
Dispatch	

Requirements	of	execu-ve:	
•  Simple	and	Fast	
•  Robust	to	uncertainty	in	world	

(including	the	robot	hardware	

Scheduler

Scheduling vs Planning

•  Scheduling
– Decide when and how to

perform a given set of actions
•  Time constraints
•  Resource constraints
•  Objective functions

•  Planning
– Decide what actions to use to achieve a set of objectives

•  Performing planning and scheduling in sequence is
difficult or impossible when planning for complex
systems
– Concurrent actions
–  Shared resources

•  More recent approaches combine both.

Plan	Execu-on		

•  Simple	Sequen-al	Plan	Execu-on:	
–  loop		

•  Take	next	ac-on	from	plan	
•  Send	ac-on	to	control	(Dispatch)	
• Wait	for	ac-on	to	finish	(Monitor)	

•  Extensions	to	make	plans	more	robust:	
– Time	and	resource	management	
– Condi-onal	dispatch	
– Looping		

Time	and	Resource	Execu-ve		

•  Real	world	requires	-me	and	resource	models	
– Dura-ons,	orderings	and	deadlines	
– BaSery	consump-on	

•  Time	&	resource	execu-ve:	
– 1.	Send	-me-enabled	ac-ons	to	control	

•  Record	the	-me	of	dispatch	
– 2.	Propagate	effects	on	the	-me	of	future	ac-ons	
– 3.	Monitor	effects	of	ac-ons	on	resources	
– 4.	Goto	1	

Condi-onal	Execu-ve		

•  Real	world	is	uncertain	
–  The	effects	of	ac-ons	might	be	non-determinis-c	
–  Environment	is	dynamic	and	changing	(full	of	
exogenous	events)	

–  Environment	oZen	filled	with	unknowns	(world	model	
is	incomplete).	

•  Solu-on:	plans	with	condi-onal	‘branches’	
•  Execu-ve	must	have	a	‘condi-on	monitor’	(state	
es-mator)	to	decide	what	ac-ons	to	dispatch	

Other	Extensions	

•  Dispatching	more	than	a	single	plan	
•  Strategic	vs.	Tac-cal	planning	

– Hierarchical	planning	
•  Recursive	planning	

– A	plan	might	be	interrupted	by	the	opportunity	
for	execu-ng	another	plan	

– Once	completed,	the	original	plan	is	resumed	

Uncertainty	in	Cogni-ve	Robo-cs		
•  Uncertainty	is	Ubiquitous		

–  Wheels	slip	(uncertainty	in	the	effects	of	ac-ons)	
–  Sensors	are	affected	by	noise	(knowledge	about	the	current	state	is	limited)		
–  Objects	move	unpredictably	(things	happen	in	the	world	that	are	not	under	the	control	

of	the	robot)		
•  Mobile	robots	need	to	be	robust	to	these	kinds	of	uncertainty.	

–  They	need	to	accomplish	goals	while	remaining	safe	despite	uncertainty	
•  Approaches	to	handling	uncertainty	

–  Reac-ve:	recovering	from	the	effect	of	uncertainty	aZer	it	has	occurred	
–  Proac-ve:	apply		models	to	an-cipate	uncertainty	and	generate	robust	plans/schedules	
–  Hybrid:	combina-on	of	both	

•  Many	kinds	of	uncertainty	can	be	met	by	modeling	and	reasoning	about	it.	
–  Non-determinis-c	models	à	uncertainty	as	a	set	of	possible	outcomes	
–  Probabilis-c	models	à	uncertainty	as	condi-onal	probability	distribu-on	over	set	of	

outcomes	
•  Uncertainty	as	a	‘game	against	nature’.	

–  Nature	as	an	external	‘decision	maker’	whose	decisions	set	the	values	uncertain	state	
parameters.	

Approaches	to	
scheduling	under	

uncertanty	

•  Proac&ve:	Model	uncertainty	
and	produce	robust	schedules	
(“ones	that	sa-sfy	performance	
requirements	predic-vely	in	an	
uncertain	environment”).		

•  Reac&ve:	Con-nually	re-
schedule	based	on	changes	to	
execu-on	environment.	

•  Hybrid	Proac&ve-reac&ve:	Build	
a	set	of	sta-c	schedules	that	
make	it	easy	to	pass	from	one	to	
another	at	run--me	

•  Hybrid	Predic&ve-reac&ve:	
make	a	determinis-c	schedule	
off-line	and	adapt	it	during	run-
-me.	

	

•  From	“Scheduling	under	uncertainty:	survey	and	research	
direc-ons”	Chaari,	et.	al.,	2014.	

Example:	Slack-based	Scheduling	
•  Main	idea:	provide	each	ac-vity	with	extra	-me	to	execute	

so	that	some	level	of	uncertainty	can	be	absorbed	without	
re-scheduling.	

•  How	to	add	slack?	
–  Before	scheduling	(temporal	projec-on)	
–  Sta-cally	as	part	of	the	problem	defini-on	(Time	Window	Slack,	
TWS)	

•  Allows	for	reasoning	about	amount	of	slack	available	during	
scheduling.	

–  Rela-ve	to	where	the	ac-vity	is	scheduled	(Focused	TWS)	
•  Uses	sta-s-cs	to	focus	the	slack	on	areas	of	the	horizon	that	are	in	
need	of	it.	

•  Example:	Focus	on	resources	(machines)	that	have	not	been	
maintained	in	quite	a	while.		

Dynamic	Scheduling	
•  In	classical	scheduling,	it	is	common	to	assume	full	informa-on:	all	tasks	and	their	

constraints	are	known	prior	to	any	decision	making.	
•  Dynamic	scheduling	problems	are	characterized	by	a	stream	of	tasks	arriving	

stochas9cally	over	9me.	Each	job	requires	a	combina-on	of	resources,	sequen-ally	
and/or	in	parallel,	for	different	processing	-mes.	The	existence	of	any	par-cular	
job	and	its	corresponding	characteris-cs	are	not	known	un-l	its	arrival.	

•  Dynamic	scheduling	problems	consist	of	both	challenging	combinatorics,	as	found	
in	classical	scheduling	problems,	and	stochas-cs	due	to	uncertainty	about	the	
arrival	-mes,	resource	requirements,	and	processing	-mes	of	jobs.	

•  To	solve	a	dynamic	scheduling	problem,	the	jobs	must	be	assigned	to	appropriate	
re-sources	and	start	-mes,	respec-ng	the	resource	and	temporal	constraints.	As	
jobs	arrive,	there	must	be	an	online	process	to	make	decisions:	it	is	not	possible	to	
solve	the	en-re	problem	online.	

•  OZen	we	seSle	for	evalua-ng	algorithm	performance	over	a	finite	-me	horizon;	
we	refer	to	such	criteria	as	short-term	criteria.	In	contrast,	long-term	objec-ves	
focus	on	system-level	performance	measures	such	as	stability,	which	establishes	
whether	the	instantaneous	number	of	jobs	will	remain	finite	over	an	infinite	
horizon	for	par-cular	system	parameters.	

Approaches	to	Solving	Dynamic	
Scheduling	Problems	

•  Solving	dynamic	problems	typically	involves	the	periodic	scheduling	
approach	of	solving	a	collec-on	of	linked	sta-c	sub-problems.		

•  At	a	given	-me	point,	the	sta-c	problem,	consis-ng	of	the	jobs	currently	
present	in	the	system,	is	solved	to	op-mize	some	short-term	objec-ve	
func-on.		

•  That	schedule	is	then	executed	(wholly	or	par-ally)	un-l	the	crea-on	of	
the	next	sub-problem	is	triggered.	This	viewpoint	means	that	methods	
developed	for	sta-c	scheduling	problems	become	directly	applicable	to	
dynamic	ones.		

•  Such	methods	can	effec-vely	deal	with	complex	combinatorics	and	can	
op-mize	the	quality	of	schedules	for	each	sta-c	sub-problem.	However,	
they	tend	to	overlook	long-run	performance	and	stochas-c	proper-es	of	
the	system.	

•  There	is	interest	in	understanding	how	long-term	objec-ves	can	be	
achieved	by	solving	a	series	of	short-term,	sta-c	scheduling	problems.	
–  Queueing	theory	has	been	used	to	characterize	system	stability	(finite	wai-ng	

lines)			

Example:	Rolling	Horizon	Approach	to	
AircraZ	Runway	Scheduling	

Dynamically	Scheduling	Temporal		
Plans	

•  Plans	are	subject	to	temporal	constraints	on	ac-ons	with	dura-on	
•  Ac-ons	must	be	dispatched	in	a	way	that	sa-sfies	the	constraints	
•  The	execu-ve	might	not	always	be	able	to	control	ac-on	dura-on	

Simple	Temporal	Problems	
•  The	basic	temporal	primi-ves	are	&me	points.	
•  Simple	temporal	constraints	for	instants	ti	and	tj:	

–  unary:	ai	≤	ti	≤	bi	
–  binary:	aij	≤	ti–tj	≤	bij,	
where	ai,	bi,	aij,	bij	are	(real)	constants	

•  Simple	Temporal	Network	(STN)	
–  constraints	rij=	[aij,bij]	are	used	
–  opera&ons:	

•  composi-on:	rij	•	rjk	=	[aij+ajk,	bij+bjk]	
•  intersec-on:	rij	∩	r’ij	=	[max{aij,a’ij},	min{bij,b’ij}]	

–  STN	is	consistent	if	there	is	an	assignment	of	values	to	-me	points	
(a	solu&on)	sa-sfying	all	the	temporal	constraints.	

–  Path	consistency	is	a	complete	technique	making	STN	consistent	(all	
inconsistent	values	are	filtered	out,	one	itera-on	is	enough).	
Another	op-on	is	using	all-pairs	minimal	distance	Floyd-Warshall	
algorithm	

•  Two	STNs	are	equivalent	if	they	have	the	same	solu-ons.	

Distance	graph	
–  Rela-ons	aij	≤	ti–tj	≤	bij	can	be	expressed	as	a	pair	of	inequali-es:	

•  ti–tj	≤	bij	
•  tj–ti	≤	-aij	
•  Absolute	-mes	can	be	defined	as	a	distance	to	a	reference	point	t0	

–  Solving	a	set	of	linear	equali-es	is	well-known.	
–  The	inequali-es	can	be	given	a	graphical	nota-on,	called	a	distance	graph.	

•  Shortest	path	algorithms	can	be	applied	to	do	useful	things.		
•  Nega-ve	cycle	in	the	distance	graph	means	inconsistency.	

(a) (b)

bs be
[1,∞]

ws we
[60,60]

rs re
[30,30]

[0,0]

[0,∞] [0,∞]

t0

[360,∞]
[480,480]

bs be
-1

ws we
60

rs re
30

0

0 ∞

t0

-360

480
-480

∞

-60

0
∞

∞

-30

0

•  Floyd-Warshall	algorithm	O(n^3)	
–  finds	minimal	distances	between	all	

pairs	of	nodes	
–  First,	the	temporal	network	is	

converted	into	a	distance	graph	
•  there	is	an	arc	from	i	to	j	with	

distance	bij		
•  there	is	an	arc	from	j	to	i	with	

distance	-aij.	
–  STN	is	consistent	iff	there	are	no	

nega-ve	cycles	in	the	graph		
–  Same	as	saying	d(i,i)≥0	
–  d	is	called	the	distance	matrix	

Fundamental	Theorem	of	STN	

For	an	STN	S	with	graph	G	
and	distance	Matrix	d,	the	
following	are	equivalent:	
•  S	is	consistent	
•  d	has	non-nega-ve	values	

on	main	diagonal;	
•  G	has	no	nega-ve	length	

loops	
(Dechter,	Meiri,	Pearl,	1991)	

Set	of	Temporal	Constraints	and	
Corresponding	Distance	Graph	

STN	and	Minimal	Distance	Matrix		

Dynamic	Updates	and	Incremental	
Consistency		

Dynamic	Updates:	
•  Update	d	incrementally	by	adding	or	dele-ng	constraints	
•  Some-mes	less	expensive	than	compu-ng	d	from	scratch	

(Demetrescu	and	Italiano	2002)	
Incremental	consistency	
•  Verifying	consistency	aZer	inser-ng/weakening	constraints	

is	less	expensive	than	fully	upda-ng	the	distance	matrix.	
•  Can	verify	consistency	in	O(m+	n	log	n)	-me	aZer	inser-ng	

a	new	constraint.	(Ramalingam	et	al.	1999)	
		

Scheduling	Temporal	Plans	
Op-on	1.	Schedule	Off	Line	

Describe	Temporal	
Plan	

Test	for	Consistency	

Schedule	Plan	

Execute	Plan	

•  Given	an	STN,	a	schedule	is	an	assignment	of	
-mes	to	all	variables.	

•  To	generate	a	schedule	from	a	STN	without	
search,	first	transform	STN	into	a	
‘decomposable’	STN,	where	all	the	implied	
constraints	are	revealed,	using	the	all-pairs-
shortest-path	algorithm	(Floyd-Warshall)		

•  Then	incrementally	assign	-mes	to	variables	(in	
any	order)	and	propagate.	

Scheduling	Ac-ons	in	the	Plan)	ySample STNy

Z

B

C

D

�5

63

�2

�4
30

Dynamic Scheduling • Robert Morris • July 23, 2018

28

Example	STN	Pick	any	-me-point	that	doesn’t	yet	have	a	
value;	
	Give	it	a	value	from	its	-me-window;	
	Update	D;		ß	Expensive	
	Repeat	un-l	all	-me-points	have	values	
		

y“Solving” Sample STNy

First, form APSP graph (equiv. compute D).

Z

B

C

D

26

�5

28
�2

30

�9

63

25
�4

28

�2

Time Windows: B 2 [5, 26], C 2 [2, 28], D 2 [9, 30]

Dynamic Scheduling • Robert Morris • July 23, 2018

29

Solving	an	Example	STN	

y“Solving” Sample STN (ctd.)y

Next, select D = 20; and update APSP graph:

Z

B

C

D

16

�5

18
�2

20

�20

63

15
�4

18

�2

Remaining Time Windows: B 2 [5, 16], C 2 [2, 18]

Dynamic Scheduling • Robert Morris • July 23, 2018

30

y“Solving” Sample STN (ctd.)y

Next, select B = 10; and update APSP graph:

Z

B

C

D

10

�10

16
�7

20

�20

63

10
�10

13

�4

Remaining Time Windows: C 2 [7, 16]

Dynamic Scheduling • Robert Morris • July 23, 2018

31

y“Solving” Sample STN (ctd.)y

Finally, select C = 9; and update APSP graph:

Z

B

C

D

10

�10

9
�9

20

�20

1�
1

10
�10

11

�1
1

Easy to verify that this is a solution.
Dynamic Scheduling • Robert Morris • July 23, 2018

32

Execu-ng	Temporal	Plans	
•  Autonomous	systems	with	a	delibera-ve	(planning)	

component	combine	planning	with	execu-on.	
–  The	subsystem	responsible	for	carrying	out	a	plan	is	called	
the	execu9ve.	

– When	dispatching	plans	with	flexible	temporal	constraints,	
there	is	a	need	for	a	separate	dispatcher.	

•  Dispatcher	no-fies	execu-ve	when	an	ac-on	can	or	must	be	
executed.	
–  Correctness:	whatever	execu-ve	does	adheres	to	
temporal	constraints	

–  Preserves	flexibility:	dispatcher	never	tells	the	execu-ve	
that	an	ac-on	can’t	be	performed	at	a	certain	-me	when	it	
can.	

Dispatching	Temporal	Plans	
Op-on	1.	Schedule	Off	Line	

Describe	Temporal	
Plan	

Test	for	Consistency	

Schedule	Plan	

Execute	Plan	

Reformulate	Plan	

Dynamic	Execu-on	

Off	line	

On	line	

Describe	Temporal	
Plan	

Consistency	Test	for	Consistency	

Op-on	2.	Schedule	On	Line	

Execu-ng	Temporal	Plans	
Op-on	1.	Schedule	Off	Line	

Describe	Temporal	
Plan	

Test	for	Consistency	

Schedule	Plan	

Execute	Plan	

•  Problem:	changes	in	task	dura-on	can	
cause	plan	failure	if	scheduling	occurs	off	
line.	

•  Fixed	schedule	removes	flexibility	
	
•  Solu-on:	Execu-on	adapts	through	

dynamic	scheduling.	

•  Assign	-me	to	event	at	execu-on	
-me.	

•  Guarantee	that	all	constraints	wil	
be	sa-sfied.	

	

Reformulate	Plan	

Dynamic	Execu-on	

Off	line	

On	line	

Describe	Temporal	
Plan	

Consistency	Test	for	Consistency	

Op-on	2.	Schedule	On	Line	

Dispatching	Flexible	Temporal	Plans	

•  Problem:	execu-on	latency	
while	propaga-ng	effects	of	
assigning	-mes.	

•  Solu-on:	generate	equivalent	
STN	with	low	latency	through	
removal	of	dominated	edges.	

•  This	reformula-on	minimizes	
latency.	

yRemove Dominated Edgesy

A negative edge AC is dominated by a negative edge AB
if D(A,B) +D(B,C) = D(A,B):

A

B

C

�8 2

�6
Note: AB and AC have the same source node: A.

Dynamic Scheduling • Robert Morris • July 23, 2018

37

yRemove Dominated Edges (ctd.)y

A non-negative edge AC is dominated
by a non-negative edge BC
if D(A,B) +D(B,C) = D(A,B):

A

B

C

�2 9

7
Note: BC and AC have the same destination node: A.

Dynamic Scheduling • Robert Morris • July 23, 2018

38

Dynamic	Execu-on	of	Flexible	STNs	

Reformulate	Plan	

Dynamic	Execu-on	

Off	line	

On	line	

Describe	Temporal	
Plan	

Consistency	Test	for	Consistency	

Op-on	2.	Schedule	On	Line	

•  Execute	an	event	when	it	is	enabled	and	
ac9ve.	

•  Enabled	:	predecessors	of	event	have	been	
scheduled.	

•  Ac9ve	:	Current	-me	is	within	bounds	of	
event.	

•  Algorithm:	when	event	is	enabled	and	
ac-ve,	assign	-me	and	propagate	effects	
to	immediate	successors.	

yMaking STN Dispatchable (ctd.)y

Remove “dominated” edges:⇤

Z

B

C

D

26

�5

28
�2

30

�9

63

25
�4

28

�2

⇤(Muscettola, Morris, and Tsamardinos 1998)
Dynamic Scheduling • Robert Morris • July 23, 2018

39

yDispatching the STNy

Initially: t = 0, X = {}, E = {Z}.

Z

B

C

D

26

�5

28
�2

30

63

�4

�2

Pick Z from E. Set Z = 0.

Dynamic Scheduling • Robert Morris • July 23, 2018

40

yDispatching the STN (ctd.)y

Propagate Z = 0 to neighbors;

Z

B

C

D

26

�5

28
�2

30

63

�4

�2

X = {Z}, E = {B,C}; B 2 [5, 26], C 2 [2, 28], D 2 [0, 30].

Dynamic Scheduling • Robert Morris • July 23, 2018

41

yDispatching the STN (ctd.)y

X = {Z}, E = {B,C}; Bounds: B 2 [5, 26], C 2 [2, 28].

Z

B

C

D

26

�5

28
�2

30

63

�4

�2

Let t advance to 12; Pick B from E; Set B = 12.

Dynamic Scheduling • Robert Morris • July 23, 2018

42

yDispatching the STN (ctd.)y

Propagate B = 12 to neighbors

Z

B

C

D

26

�5

28
�2

30

63

�4

�2

X = {Z,B}, t = 12, E = {C}, C 2 [12, 18], D 2 [16, 30]

Dynamic Scheduling • Robert Morris • July 23, 2018

43

yDispatching the STN (ctd.)y

X = {Z,B}, t = 12, E = {C}, C 2 [12, 18], D 2 [16, 30]

Z

B

C

D

26

�5

28
�2

30

63

�4

�2

Let t advance to 16, pick C from E, set C = 16.

Dynamic Scheduling • Robert Morris • July 23, 2018

44

yDispatching the STN (ctd.)y

Propagate C = 16 to C’s only remaining neighbor, D.

Z

B

C

D

26

�5

28
�2

30

63

�4

�2

X = {Z,B,C}, t = 16, E = {D}, D 2 [18, 30]

Dynamic Scheduling • Robert Morris • July 23, 2018

45

yDispatching the STN (ctd.)y

X = {Z,B,C}, t = 16, E = {D}, D 2 [18, 30]

Z

B

C

D

26

�5

28
�2

30

63

�4

�2

Let t advance to 25, pick D from E, set D = 25.

Dynamic Scheduling • Robert Morris • July 23, 2018

46

yDispatching the STN (ctd.)y

X = {Z,B,C,D}, t = 25, E = {}

Z

B

C

D

26

�5

28
�2

30

63

�4

�2

Solution: Z = 0, B = 12, C = 16, D = 25.

Dynamic Scheduling • Robert Morris • July 23, 2018

47

yDispatching the STN (ctd.)y
Easy to check that Z = 0, C = 20, B = 23, D = 28 can
also be generated by the dispatcher.

Z

B

C

D

26

�5

28
�2

30

63

�4

�2

Dynamic Scheduling • Robert Morris • July 23, 2018

48

Summary	
•  STNs	have	been	used	to	provide	flexible	planning	and	
scheduling	systems	for	more	than	a	decade.	

•  	Efficient	algorithms	for	checking	consistency,	
incrementally	upda-ng	the	APSP	matrix,	and	managing	
execu-on	in	real	-me	for	maximum	flexibility.	

•  In	order	to	represent	richer	families	of	choices,	this	
basic	model	has	been	extended	in	different	ways.	
–  Uncertainty	
–  Condi-ons	
–  Disjunc-ons	

Temporal	Uncertainty:	Mo-va-on	
•  “Drill	a	hole	3	inches	deep”	
•  Dura-on	of	drill	ac-on	is	unknown	but	within	known	

bounds	
•  Such	ac-ons	can	be	modeled	as	con&ngent	links	in	

network	

s	
[l,u]	

Temporal		Uncertainty	Temporal Uncertainty Characterization

Uncertainty can be seen as a game between an Executor and the
adversarial Nature.

Rules
The Executor schedules a set of Controllable Time Points (Xc)

The Executor must fulfill a set of temporal constraints called Free

Constraints (Cf)

The Nature tries to prevent the success of the executor scheduling a
set of Uncontrollable Time Points (Xu)

The Nature must fulfill a set of temporal constraints called
Contingent Constraints (Cc)

10/49

STNU	Temporal Problem with Uncertainty Example

Example
As Ae

[7, 11]

Bs

[0, Œ)

Be
[8, 11]

[0, 20]

As , Ae , Bs are Controllable Time Points (Xc)

Be is an Uncontrollable Time Point (Xu)

represents Free Constraints (Cf)

represents Contingent Constraints (Cc)

Taxonomy
Let {x

1

, ..., xk} =̇ Xc fi Xu.

STPU TCSPU DTPU

No disjunctions Interval disjunctions Arbitrary disjunctions
(xi ≠ xj) œ [l , u] (xi ≠ xj) œ

t

w [lw , uw]
x

w ((xiw ≠ xjw) œ [lw , uw])

11/49

•  	A	Simple	Temporal	Network	with	Uncertainty	(STNU)	[Vidal	and	Fargier	1999]	is	an	extension	
of	an	STN	that	dis-nguishes	between	controllable	and	uncontrollable	events.		

•  A	directed	graph,	consis-ng	of	a	set	of	nodes,	represen-ng	-mepoints	,	and	a	set	of	edges,	
called	links	,	constraining	the	dura-on	between	the	-mepoints.		

•  The	links	represent	two	categories	of	constraints:			
•  A	free	constraint	specifies	a	constraint	on	the	dura-on	between	two	-mepoints.		
•  A	con-ngent	constraint	models	an	uncontrollable	process	whose	uncertain	dura-on	

may	last	any	dura-on	between	the	specified	lower	and	upper	bounds.		
•  All	con-ngent	constraints	terminate	on	a	-mepoint		whose	-ming	is	controlled	exogenously.		
•  All	other	-mepoints	are	called	requirement	-mepoints		and	are	controlled	by	the	scheduler.	

Flavors	of	Controllability	Temporal Problem with Uncertainty Solution
Three possible degrees of Controllability

Strong Controllability (No observation)
Find a fixed schedule for controllable time points that fulfills all the free
constraints for every possible assignment to uncontrollable time points
fulfilling contingent constraints.

Dynamic Controllability (Past observation)
Find a strategy, that depends on past observations only, for scheduling
controllable time points that fulfills all the free constraints for every
possible assignment to uncontrollable time points fulfilling contingent
constraints.

Weak Controllability (Full observation)
Find a strategy for scheduling controllable time points that fulfills all the
free constraints for every possible assignment to uncontrollable time points
fulfilling contingent constraints.

12/49

Schedules and Strategies Examples
Example

As Ae
[7, 11]

Bs

[≠1, Œ)

Be
[8, 11]

[0, 20]

Fixed Schedule

(Strong Controllability)

start(A) at 0
start(B) at 11

time

0 7

A ([7, 11])

11 1911

B ([8, 11])

20

B ([8, 11])B ([8, 11])

20

13/49

Dynamic	Controllability		Schedules and Strategies Examples
Example

As Ae
[7, 11]

Bs

[≠1, Œ)

Be
[8, 11]

[0, 20]

Dynamic Strategy

(Dynamic Controllability)

start(A) at 0
start(B) at Ae

time

0 7

A ([7, 11])

B ([8, 11])

8 11 16

B ([8, 11])

17

B ([8, 11])

20

13/49

Weak	Controllability		Schedules and Strategies Examples
Example

As Ae
[7, 11]

Bs

[≠1, Œ)

Be
[8, 11]

[0, 20]

Clairvoyant Strategy

(Weak Controllability)

start(A) at 0
start(B) at Ae ≠ 1

time

0 7

A ([7, 11])

B ([8, 11])

8 11

B ([8, 11])

15

B ([8, 11])

16

20

13/49

ySTNU Exampley

Contingent Link: (A, 2, 9, C)

C

B

5c :
2

C
: �

9

C � A 2 [2, 9]
C � B  5
(i.e., B � C � 5)

A

If A = 0, when is it safe to execute B?

Dynamic Scheduling • Robert Morris • July 23, 2018

57

ySTNU Graphy

• Nodes and Edges as in an STN graph

Y �X 2 [3, 7] () X Y
7

�3

• Contingent Links () Labeled Edges⇤

C � A 2 [3, 7] () A C
c : 3

C : �7

Labeled edges represent uncontrollable possibilities.

⇤ (Morris and Muscettola 2005)
Dynamic Scheduling • Robert Morris • July 23, 2018

56

yEdge-Generation Rulesy

• No Case Rule

• Upper-Case Rule

• Lower-Case Rule

• Cross-Case Rule

• Label-Removal Rule

(Morris and Muscettola 2005)

Dynamic Scheduling • Robert Morris • July 23, 2018

71

yThe No-Case Ruley

Q S T3 4

7

Dynamic Scheduling • Robert Morris • July 23, 2018

72

yThe Upper-Case Ruley

Q C A3 C :�10

C :�7

Dynamic Scheduling • Robert Morris • July 23, 2018

73

yThe Lower-Case Ruley

A C Xc : 3 �5

�2

(Applies since �5  0)

Dynamic Scheduling • Robert Morris • July 23, 2018

74

yThe Cross-Case Ruley

A C A2c : 3 C2 :�8

C2 :�5

(Applies since �8  0 and C 6⌘ C2)

Dynamic Scheduling • Robert Morris • July 23, 2018

75

yThe Label-Removal Ruley

X A CC :�1 c : 3

�1

(Applies since 1  3)

Dynamic Scheduling • Robert Morris • July 23, 2018

76

ySemi-Reducibilityy

A path is semi-reducible if it can be transformed into a path
with no lower-case edges.

Dynamic Scheduling • Robert Morris • July 23, 2018

77

yFundamental Theorem of STNUsy

For an STNU S , with graph G, and APSSRP matrix D⇤, the
following are equivalent:

• S is dynamically controllable

• G has no semi-reducible negative loops

• D⇤ has non-negative values on its main diagonal

(Morris and Muscettola 2005; Morris 2006; Hunsberger 2010; 2013b)

Dynamic Scheduling • Robert Morris • July 23, 2018

78

Compiling	and	Dispatching	STNUs	
•  	An	STNU	must	be	checked	to	determine	if	a	dynamically	controllable	

execu-on	strategy	exists,	and	if	so	compile	it	into	a	dispatchable		form.		
•  Once	the	plan	is	dispatchable	,	the	dispatcher	schedules	-mepoints	

through	local	propaga-on	of	-mebounds	[MusceSola	1998,	Morris	et	al.	
2000].	

•  STNUs	can	be	translated	into	labeled	distance	graphs	and	tested	for	
consistency,	like	STNs.	
–  An	STNU	is	consistent		only	if	its	associated	distance	graph	contains	no	

nega-ve	cycles.	
•  	However,	consistency	is	not	sufficient	to	guarantee	dynamic	

controllability.	
•  	The	dynamic	controllability	(DC)	algorithm	[Morris	et	al.	2001]	

reformulates	the	distance	graph	to	ensure	that	each	uncontrollable	
dura-on,	is	free	to	finish	any	-me	in	the	interval	[li	,ui],	as	specified	by	
the	con-ngent	constraint,	Ci	.	

	

DC	Algorithm	Steps	
1.  Using	Floyd-Warshall,	compute	the	distance	graph	to	uncover	the	

implicit	constraints.	
–  If	the	exposed	constraints	imply	strictly	-ghter	bounds	on	an	uncontrollable	

dura-on,	then	that	uncontrollable	dura-on	is	squeezed		[Morris	et	al.	2001]	
and	the	plan	is	not	dynamically	controllable.	

–  An	STNU	is	pseudo-controllable		[Morris	et	al.	2001]	if	it	is	both	temporally	
consistent	and	none	of	its	uncontrollable	dura-ons	are	squeezed.	

–  If	the	scheduler	makes	the	wrong	decisions	during	plan	execu-on,	then	
uncontrollable	dura-ons	make	be	squeezed	then.	

2.  	To	avoid	squeezing	uncontrollable	dura-ons	during	scheduling,	the	DC	
algorithm	adds	constraints	to	the	plan.	

–  The	constraints	take	the	form	of	simple	temporal	constraints	and	condi-onal	
constraints	(or	“wait”	constraints)	and	are	applied	according	to	the	precede,	
unordered,	and	uncondi-onal	unordered	reduc-on	rules	applied	to	
triangular	graphs.	

3.  The	condi-onal	constraints	can	be	regressed	to	deduce	new	condi-onal	
constraints.	

ySTNU Exampley

Contingent Link: (A, 2, 9, C)

C

B

5c :
2

C
: �

9

C � A 2 [2, 9]
C � B  5
(i.e., B � C � 5)

A

If A = 0, when is it safe to execute B?

Dynamic Scheduling • Robert Morris • July 23, 2018

57

ySTNU Exampley

Contingent Link: (A, 2, 9, C)

C

B

5c :
2

C
: �

9

C � A 2 [2, 9]
C � B  5
(i.e., B � C � 5)

A

If A = 0 and B = 2, then problem if C > 7.

Dynamic Scheduling • Robert Morris • July 23, 2018

58

ySTNU Exampley

Contingent Link: (A, 2, 9, C)

C

B

5c :
2

C
: �

9

C � A 2 [2, 9]
C � B  5
(i.e., B � C � 5)

A

If A = 0 and B � 4, then no problems!

Dynamic Scheduling • Robert Morris • July 23, 2018

59

ySTNU Exampley

Contingent Link: (A, 2, 9, C)

C

B

5c :
2

C
: �

9

C � A 2 [2, 9]
C � B  5
(i.e., B � C � 5)

A

If A = 0 and C = 3, then B > 3 no problem!

Dynamic Scheduling • Robert Morris • July 23, 2018

60

ySTNU Exampley

C : �4

C

B

5c :
2

C
: �

9

C � A 2 [2, 9]
C � B  5
(i.e., B � C � 5)

A

Contingent Link: (A, 2, 9, C)

Strategy: As long as C unexecuted,
B must wait at least 4 after A.

Dynamic Scheduling • Robert Morris • July 23, 2018

62

yDynamic Controllability (DC)y

An STNU is dynamically controllable (DC) if:

there exists a dynamic strategy . . .

for executing the non-contingent time-points . . .

such that all of the constraints will be satisfied . . .

no matter how the contingent durations turn out.

) A dynamic strategy can react to contingent executions.

Dynamic Scheduling • Robert Morris • July 23, 2018

61

yReal-Time Execution Decisions⇤y

The semantics for dynamic controllability can be stated in
terms of Real-Time Execution Decisions (RTEDs):

• WAIT:
Wait for some activated contingent link to complete.

• (t,�):
If nothing happens before time t 2 R, then execute
the (non-contingent) time-points in � at time t.

⇤ (Hunsberger 2009)

Dynamic Scheduling • Robert Morris • July 23, 2018

66

yRTED Exampley

C : �4

C

B

5c :
2

C
: �

9

C � A 2 [2, 9]
C � B  5
(i.e., B � C � 5)

A

Contingent Link: (A, 2, 9, C)

Initial Decision: (4, {B})
(If nothing happens before time 4, execute B at 4.)

Dynamic Scheduling • Robert Morris • July 23, 2018

67

yRTED Example (ctd.)y

C : �4

C

B

5c :
2

C
: �

9

C � A 2 [2, 9]
C � B  5
(i.e., B � C � 5)

A

Contingent Link: (A, 2, 9, C)

Possible Outcome: C executes at time 2.

Next decision: (3, {B})
(If nothing happens before time 3, execute B at 3.)

Dynamic Scheduling • Robert Morris • July 23, 2018

68

yRTED Example (ctd.)y

C : �4

C

B

5c :
2

C
: �

9

C � A 2 [2, 9]
C � B  5
(i.e., B � C � 5)

A

Contingent Link: (A, 2, 9, C)

Initial Decision: (4, {B})
(If nothing happens before time 4, execute B at 4.)

Dynamic Scheduling • Robert Morris • July 23, 2018

69

yRTED Example (ctd.)y

C : �4

C

B

5c :
2

C
: �

9

C � A 2 [2, 9]
C � B  5
(i.e., B � C � 5)

A

Contingent Link: (A, 2, 9, C)

Possible Outcome: C does not execute yet;
so B is executed at 4

Next decision: WAIT (for C to execute)

Dynamic Scheduling • Robert Morris • July 23, 2018

70

yRTED Example (ctd.)y

C : �4

C

B

5c :
2

C
: �

9

C � A 2 [2, 9]
C � B  5
(i.e., B � C � 5)

A

Contingent Link: (A, 2, 9, C)

Possible Outcome: C does not execute yet;
so B is executed at 4

Next decision: WAIT (for C to execute)

Dynamic Scheduling • Robert Morris • July 23, 2018

70

Patrick	Conrad	and	Brian	Williams.	“Drake:	An	Efficient	Execu&ve	for	Temporal	Plans	with	
Choice.”	Journal	of	Ar&ficial	Intelligence	Research	42	(2011)	607-659	
	
David	Kortenkamp	and	Reid	Simmons,	“Robo&c	Systems	Architectures	and	Programming”.	
Chapter	8	of	Robo&cs	Systems	Handbook.		
	
Tarek	Chaari,	Sondes	Chaabane,	Nassima	Aissani	and	Damien	Trentesaux.	“Scheduling	under	
uncertainty:	survey	and	research	direc&ons.”	Interna&onal	Conference	on	Advanced	Logis&cs	
and	Transport	2014.	
	
Andrew	J.	Davenport	and	Christophe	Gefflot	and	J.	Christopher	Beck.		“Slack-Based	Techniques	
for	Robust	Schedules”	Proceedings	of	the	Sixth	European	Conference	on	Planning	2014	
	
Tsamardinos,	I.,	Musceeola,	N.,	Morris,	P.	1998		“Fast	transforma&on	of	temporal	plans	for	
efficient	execu&on.”	Proc.	AAAI-98.	
	
Laura	Hiae	and	Reid	Simmons.	“Pre-posi&oning	Assets	to	Increase	Execu&on	Efficiency”	ICRA	
2007.	
	
Julie	Shah,	John	Stedl,	Brian	Williams,	and	Paul	Robertson.	“A	Fast	Incremental	Algorithm	for	
Maintaining	Dispatchability	of	Par&ally	Controllable	Plans	Execu&ng	Reac&ve,	Model-based	
Programs	Through	Graph-based	Temporal	Planning”	IJCAI	2001.	
	
Tsamardinos,	I.	“Flexible	dispatch	of	disjunc&ve	plans.)	Proceedings	of	the	6th	European	
Conference	on	Planning		2001	
	
	

Musceeola,	Morris	et	al.,“Reformula&ng	Temporal	Plans	For	Efficient	Execu&on”	Principles	of	
Knowledge	Representa&on	and	Reasoning,	1998	
	
Ono,	et.	al,	“Probabilis&c	Planning	for	Con&nuous	Dynamic	Systems	under	Bounded	Risk.”	
JAIR	2013.	
	
Jing	Cui	“Models	of	Robustness	for	Temporal	Planning	and	Scheduling	with	Dynamic	
Controllability”,	2015.	
	
Daria	Terekov,	et.	al.	“Integrating Queueing Theory and Scheduling for Dynamic
Scheduling Problems” Journal	of	Ar&cial	Intelligence	Research	50	(2014)	535-572	

Backup	

Planning	under	Uncertainty		

•  Solu-on	to	a	Planning	problem:	a	sequence	of	
ac-ons	that	transforms	an	ini-al	state	to	one	
that	realizes	a	set	of	goals,	possibly	op-mizing	
a	cost	func-on	along	the	way.	
– Uncertainty	forces	us	to	reconsider	this	defini-on.	

