

Testing with the Laser-Enhanced Arc Jet (IHF) Facility at NASA Ames Research Center

Ethiraj Venkatapathy

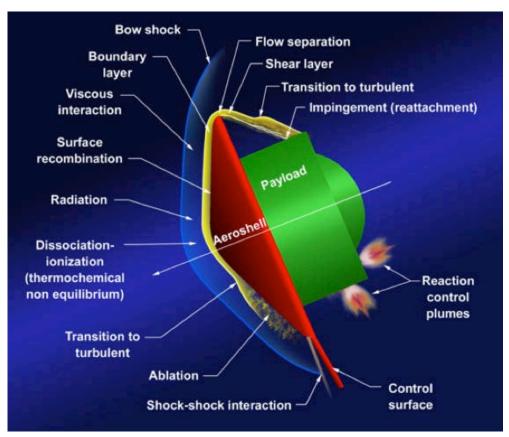
Senior Technologist for Entry Systems

Exploration Directorate, NASA Ames Research Center

Co-authors: Geoff Cushman³, Antonella Alunni¹, Pete Zell¹, and Joe Hartman⁴

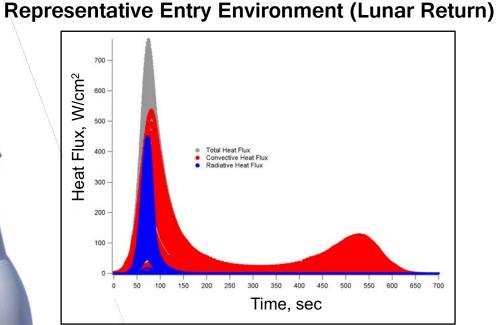
¹ NASA ARC, ² AMA Inc., ³ Sierra Lobo and ⁴Jacobs Technology

Presented at the 2018 National Space and Missiles Materials Symposium Madison, WI June 25, 2018


Outline

- Background
- Requirements
- System Details
- Key Results
- Calibration & Ablative TPS Tests
- Concluding Remarks

Background

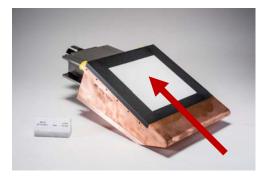

- During entry, shock-layer radiation and the impact on TPS is important for a number of NASA missions
 - Apollo (Lunar Return)
 - Galileo Probe into Jupiter
 - P-V
 - Stardust
 - Future in-situ robotic missions
 - Venus
 - Sample Return Missions
 - (Mars, Comets and Asteroids)
 - Mars Entry
 - Titan Missions
- Near term driver
 - Orion Lunar return

- Shock layer radiation is a significant percentage of entry heating
 - Understanding the ablative TPS material/system response
 - Designing and verifying adequate margin

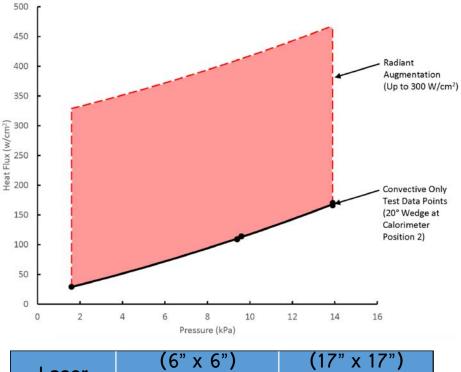
Requirements: Orion TPS Certification and Mission Assurance

- Orion Heat shield design
 - EM1 & EM2
 - EM2 certification
- Heat Shield System **Certification Challenges**
 - Tiled System with gap-filler
 - Compression-pad region

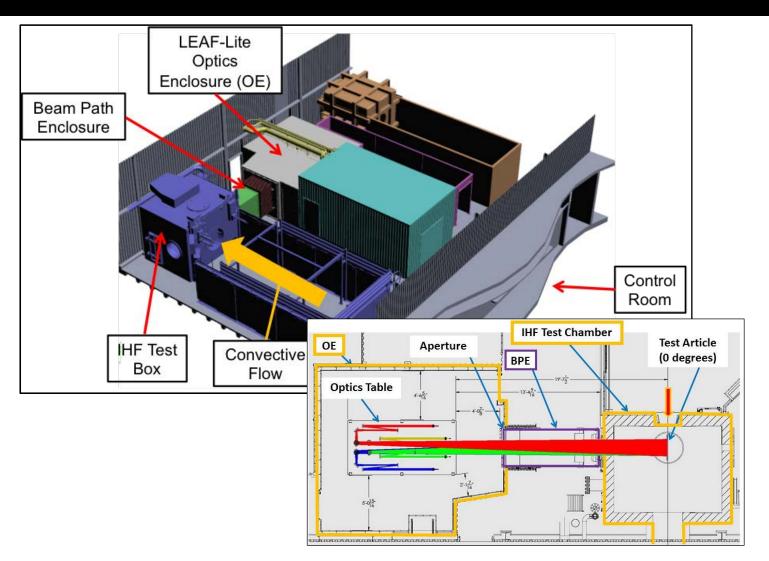
Orion Lunar Capable Heat Shield (Avcoat Tiles)



Crew and Service Module Attachment (Compression Pad with Tension Ties)

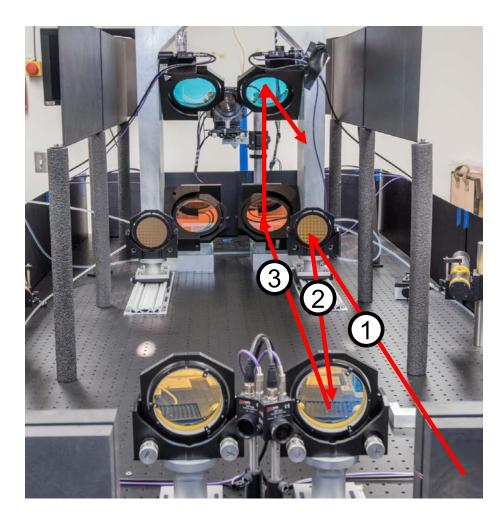

Laser Enhancement System Requirements

- Laser enhancement system is designed to add radiant heating to the IHF (Interaction Heating Facility) at NASA Ames Research Center
- Test article configurations
 - Wedge (6"x6") in a conical nozzle



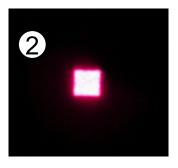
- Panel (17'x17")
 - In a semi-elliptic nozzle

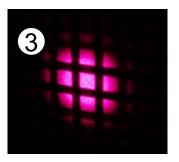
Laser Count	(6" x 6") Square (W∕cm²)	(17" x 17") Square (W/cm²)
50 kW	195	27
100 kW	390	54
150 kW		80
200 kW		107


Integrated IHF and Laser Enhancement Setup


 Major facility upgrades, in addition to the laser power system, include modifications to the plenum, new nozzle (9"), large wedges and overall operational safety.

Laser Enhancement Optical Setup




1) Gaussian beam emerges from collimator

2) Beam at the focus of the integrator (1cm x 1cm square spot)

3) Converging beamlets to be reimaged

*Images of red guide beam

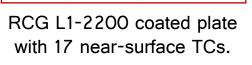
Laser Enhancement System Explained by the Lead Engineer

9

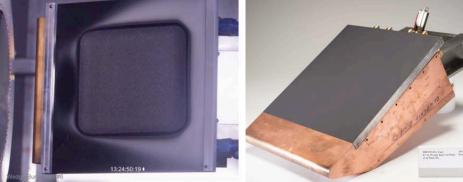
Integrated System Verification and Avcoat Tests

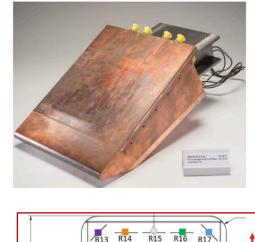
Purpose:

- Test wedge configuration (6" x 6")
- Verify low variation in irradiance
- Evaluate max heat flux
- Nearly 40 Tests
- **Tested:**


June 25. 2018

- Burn Plates
- Cal Plates
 - Conv. Cal Plate 6 Gardon Gauges and 3 Pressure Ports
 - Rad. Cal plate only Gardon Gauges
- Heatshield materials
 - RCG Coated Tiles (non-ablative)
 - Avcoat Ablative Orion


Successful with no major problems.


🛛 \bullet 🔶 P3 Cal4 Cal3 Cal6 Cal5 Cal2 -P2 Cal1

Pressure

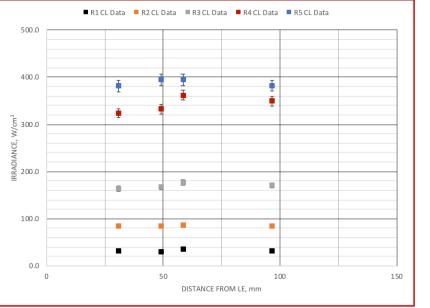
R10 R11

6.537

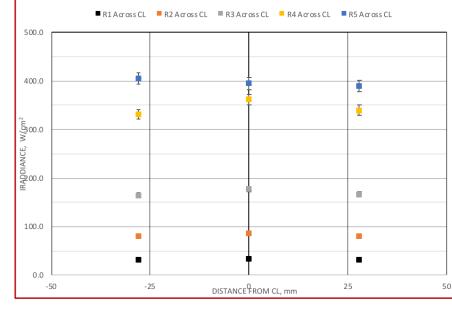
3.275

Convective Cal Plate

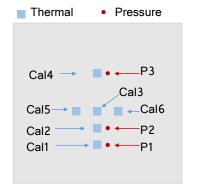
R3 Burn Plate



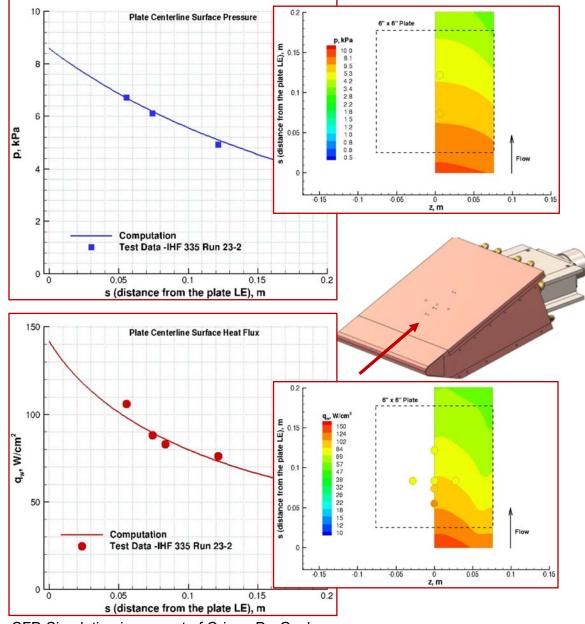
Avcoat


Thermal

Radiative Cal Plate

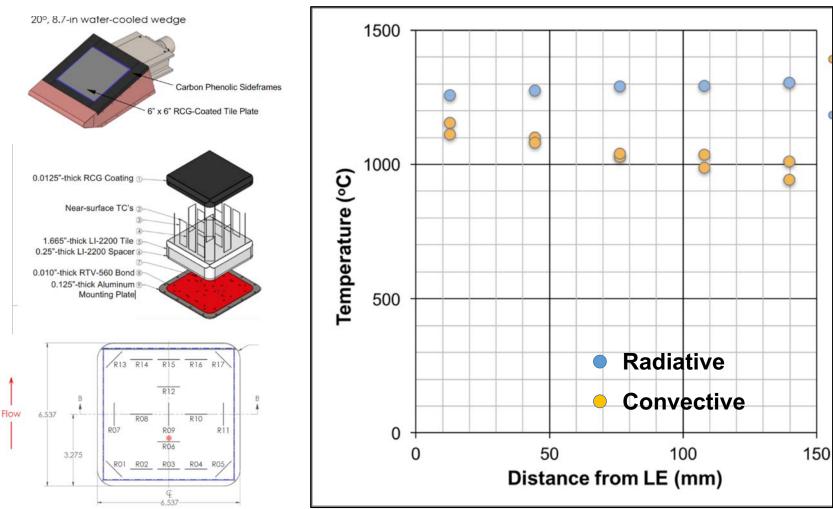

Radiative Heating Calibration Results

Radiative calibration across centerline



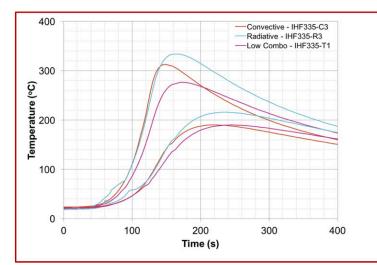
- Beam is uniform within 6% of the average irradiance across all conditions.
- Measurements across multiple runs, for R3 and R4, run-to-run variability is <11%.

Convective Heat Flux Calibration Results & Comparisons with CFD



- Convective pressure and heat-flux measured were compared with CFD
- As predicted, the heat-flux and pressure decrease with increasing distance from leading edge
- The comparison shows the measurement and CFD are in agreement

RCG Coated Tile Test Results



Centerline Data

- Near Surface Thermocouple on RCG coated test article captures the trend observed with convective and radiative cal plates
 - Run at lowest convective (and radiative conditions

Avcoat Test Results

 Avcoat test results show differences between radiative, convective and combined heating

- Entire surface covered in glass
- Glass limited to periphery
- Glass limited to periphery

Near- and Longer-Term Use

- Near-term focus is to support Orion
 - EM2 certification using the combined convective and radiative heating capability

Near Term Radiative Capability

Laser Count	(6" x 6") Square (W∕cm²)	(17" x 17") Square (W/cm²)
50 kW	195	27
100 kW	390	54
150 kW		80
200 kW		107

- Longer-term use by both NASA and other customers envisioned.
 - The shock layer radiation for most of planetary entry missions, with the exception of Jupiter, are below 1000 W/cm2
 - Testing at higher heat-flux on a reasonably size articles could be achieved (with some facility and optical system modifications).
 - 200 kW system on a 6" x 6" article (> 700 W/cm2 radiative)
 - Testing in vacuum with radiative heating alone can provide insight into material behavior

- Laser Enhanced IHF a unique capability is nearing completion
 - Combined radiative and convective testing capability will be used primarily for Orion in the near term.
 - 100 kW system has been successfully installed, operational
 - System upgrade in progress will bring the 200 kW capability to the IHF
- Testing
 - Calibration of the laser enhanced IHF is completed
 - Exploratory testing of Avcoat is completed
 - Orion TPS testing in support of EM1 and EM2 will begin soon.

- Thanks to the staff of the NASA Ames Entry Systems and Technology Division that has contributed to the development of this new capability
- Thanks to the Orion Program Office for funding this expanded testing capability for future crewed, and un-crewed, missions

POC:

Imelda Terrazas-Salinas Test Engineer Group Lead Thermophysics Facilities Branch (650) 604-3730 imelda.terrazas@nasa.gov

Avcoat: Arc jet flow on – Laser Off Convective Heating Only

Avcoat: Arc jet flow off – Laser On Radiative Heating Only

Avcoat: Arc jet flow on – Laser on Combined Heating