The IFS for WFIRST CGI: Science Requirements to Design

WIDE-FIELD INFRARED SURVEY TELESCOPE
ASTROPHYSICS ¢ DARK ENERGY ¢ EXOPLANETS

Tyler D. Groftf, Qian Gong , Avi Mandell, Neil Zimmerman, Maxime Rizzo, Michael W. McElwain, David Harvey, Prabal Saxena, Eric Cady, Camilo Mejia Prada
Goddard Space Flight Center

The CGI Flight IFS Instrument Simulations:
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Direct Imaging of exoplanets using a coronagraph has become a major field of research both on the
ground and 1n space. Key to the science of direct imaging 1s the spectroscopic capabilities of the
instrument, our ability to extract spectra, and measure the abundance of molecular species such as
Methane. To take these spectra, the WFIRST coronagraph instrument (CGI) uses an integral field
spectrograph (IFS), which encodes the spectrum into a two-dimensional 1image on the detector. This
results 1n more efficient detection and characterization of targets, and the spectral information 1s
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critical to achieving detection limits below the speckle floor of the imager. The CGI IFS operates 1n Y o
two18% bands spanning 600nm to 840nm at a nominal spectral resolution of R50. We present the
current science and engineering requirements for the IFS design, the instrument design, anticipated N
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performance, and how the calibration 1s integrated into the focal plane wavefront control algorithms.
We also highlight the role of the Prototype Imaging Spectrograph for Coronagraphic Exoplanet
Studies (PISCES) at the JPL High Contrast Imaging Testbed to demonstrate performance and
validate calibration methodologies for the flight instrument.
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Angular separation where requirements are set

O Baseline differential imaging mode is via reference star subtraction

General IFS Design: o Differential images taken and spectra are extracted via template fitting process

O Example spectra on a fiducial target show anticipated performance using Operating Scenario 5 data.
O Performance will evolve, but steps are now in place to work on new operating scenarios

Flight IFS in CGI o Example overlay of the IFS FOV overlaid onto HR8799 to chow detection area

Optomechanical Design and Trades:

Basic IFS Concept

Dispersed Spectra:
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O Example data using PISCES

O Summed probe sets provide a suitable
“flat field” for cube calibration.

O NO telescope repointing would be
required

General Optical Design Specifications:
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O Open question: can we recalibrate data Slice of summed probes
cube with a broadband flat? g
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O Two likely paths forward, both of which
should work but not tested yet

O Testing can be done with PISCES and
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