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Abstract

The Real Time Safety Monitoring (RTSM) approach allows for assessment and
prediction of the safety margin in the National Airspace System (NAS) to help
preempt incidents and accidents, rather than having to reactively mitigate them.
In RTSM, the NAS is modeled using state variables, and safety metrics are de-
fined in terms of these state variables. The safety metrics have been classified
as weather-related, airspace-related, and human-related. Many of the formu-
lated human-related safety metrics need an estimate of the controller workload
for their computation. However, this computation is not trivial. Hence, in this
report, we perform a literature survey to identify the different factors that en-
able the computation of controller workload and categorize these factors. Next,
we describe studies undertaken to determine a minimal set of factors that pro-
vide a correct assessment of controller workload. Lastly, we survey approaches
for evaluating how well the selected factors correlate with the controllers’ sub-
jective assessment of their workload. Based on this survey, we present factors
beneficial to computing and predicting controller workload in real time, and
discuss the status of data sources necessary for these computations.
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Chapter 1

Introduction

Aviation risk management requires identifying existing and potential hazards to airspace safety, assessing
the risk of those hazards, and finally, mitigating the risks. More mitigation options are available the earlier
the situation is understood and a decision is made. Early mitigation may lead not only to more efficient op-
erations, but also to improved safety by enabling the operator to preemptively avoid incidents and accidents.
In addition, operating with a positive safety margin allows more latitude for managing unexpected events.
In previous work [1, 2], the authors have developed the Real Time Safety Monitoring (RTSM) framework,
an automated system to quantify safety in the National Airspace System (NAS), estimate the current level
of safety, and predict the future evolution of safety and the occurrence of events that pose an increased risk
to flights.

In RTSM, safety is defined by a set of safety metrics that quantify a subset of frequently-occurring and/or
important hazards to flight, limited to hazards that can be measured, modeled, and predicted1 using real-
time data. Hazards are categorized into airspace-related hazards, environmental hazards, and human-related
hazards. The set of related safety metrics is listed in [3], as human-related safety metrics are typically
the most challenging to assess and predict, as the strict privacy policies established by pilot and air traffic
controller unions limit available data. In addition, significant variation between humans with respect to the
correlations between the task load and their perceived workload makes the computation of workload-related
safety metrics difficult.

Since a large number of stakeholders are involved in the management of the national airspace, the safety
metrics related to each stakeholder need to be researched individually in order to obtain a comprehensive
understanding of all human-related safety hazards. In this work, we focus primarily on enroute air traffic
controller (ATC) workload, leaving the study of pilots, traffic managers, and other NAS stakeholders for
future work. In today’s operations, controllers are responsible for the critical task of maintaining adequate
separation between aircraft, and their workload contributes to the assessment of numerous human-related
safety metrics. An overloaded controller may lose some amount of situational awareness, overlook a de-
veloping unsafe situation, make errors in judgement, become confused, or be unable to cope with a sudden
increase in workload. Underworked controllers during a particular shift may become bored and distracted
from their primary task, and repetitively being underworked over many shifts may lead to complacency and
controller error2.

1The prediction horizon can vary from a few minutes to many hours, depending on the availability of relevant data and models.
2https://skybrary.aero/index.php/Controller Workload
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ATC policies are designed to safeguard the airspace against hazards caused by controller workload. One such
policy is to divide the airspace into sectors of responsibility, sized according to the capability of a single
controller (or a collaborating pair of controllers), expected traffic volume, and expected traffic structure.
Moreover, controllers are provided with safety nets and backup teams to support their work. In addition,
shift patterns are designed to ensure that controllers can have sufficient rest and to address the different off-
duty rest issues for nighttime and daylight duties. Each shift contains appropriate breaks to allow controllers
to rest and, if necessary, to recover after periods of high workload. Standard operating procedures (SOPs)
properly define handover procedures so that a controller is fully briefed before taking over a position. These
policies and SOPs govern all aspects of the controller’s job.

Many factors contribute to controller workload, such as staff shortage, equipment malfunction or failure,
controller position design, poor Team Resource Management (TRM), and inadequate SOPs. Although these
factors contribute to controller stress - a condition experienced when a person perceives that demands exceed
the personal and social resources of the individual, they are outside the scope of this report. Instead, we
focus on factors that can be measured, estimated, and predicted to provide a quantitative assessment of an
individual controller’s workload. Operationally, sectors can be combined to maintain at least a minimum
workload level. To protect against overload, traffic may be redirected so the workload is slowed or distributed
to nearby sectors. These decisions depend on accurate prediction of controller workload. Currently, the
Federal Aviation Administration (FAA) determines workload based solely on number of aircraft expected
to be in a sector in a one minute period. Each sector has an associated maximum number of aircraft that
can be safely managed, known as the Monitor Alert Parameter (MAP) [4]. If predictions show the MAP
will be exceeded in any 1-min period, traffic managers reroute aircraft or initiate flow control programs to
redistribute the traffic in space or time.

The number of aircraft is a crude approximation of a controller’s workload and the FAA has considered
modifying it to include additional factors for a more accurate assessment. Various studies have been con-
ducted by the FAA, the National Aeronautics and Space Administration (NASA), associated contractors,
and others to identify the factors that influence controller workload. In addition to benefiting current oper-
ations, understanding the factors that exceed a controller’s capabilities may benefit the next generation air
traffic control system in which aircraft self-separation is the norm, with air traffic controllers stepping in
only under off-nominal situations. Accurately predicting whether a controller will be able to step in when
necessary to assess and manage the situation will be critical for ensuring safety [5].

In this report, we first perform a literature survey to identify the different factors that influence the compu-
tation of controller workload and also survey the different formulations available for computing controller
workload. While a comprehensive literature survey was done in [6] and [7], in this work we update the
findings in these surveys with information presented in more recent literature, and we classify these features
based on the approaches used to develop them. A number of authors have also studied the minimum set
of factors that must be included for an accurate prediction of workload, and we summarize these factors in
this report. Next, based on the survey results, we recommend a set of factors beneficial to assessing and
predicting controller workload and discuss the availability of data to compute such features. Finally, we
discuss future work where the recommended factors can be utilized to quantitatively explore and evaluate
the effect of controller workload on the safety of the NAS.

The report is organized as follows. Chapter 2 presents the results of the literature survey regarding the factors
affecting controller workload (Section 2.1), methods used to determine a minimal set of factors that provide a
correct assessment of controller workload (Section 2.2), and approaches for evaluating how well the selected
factors correlate with the controllers’ subjective assessment of their workload (Section 2.3). Chapter 3
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presents an analysis of the survey results, beginning with some background on the effects of controller
workload on NAS safety and concluding with recommended factors for assessing and predicting workload.
Finally, Chapter 4 presents some future directions of research on incorporating controller workload into the
RTSM framework.
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Chapter 2

Factors Affecting Controller Workload

Numerous researchers have attempted to distill the significant factors that contribute to the cognitive com-
plexity of controlling traffic and could be used to predict controller workload. In Section 2.1, we provide a
summary of the proposed factors, organized by the techniques used to identify them. Section 2.2 describes
the different approaches employed for determining a minimal set of factors that still provide an accurate
assessment of workload. Finally, Section 2.3 reports on studies undertaken to evaluate how well the selected
factors correlate with controllers’ subjective assessments of their workload.

2.1 Survey of Factors for Predicting Controller Workload

The factors contributing to controller workload have been studied from different vantage points, utilizing
methods such as observing controllers to determine their overall tasks, analyzing the complexity of the air
traffic and the airspace structure under their responsibility, and relating the air traffic situation to a pattern
recognition problem. In this subsection, we describe the various factors or features needed to compute the
workload of a controller, organizing the discussion of these factors based on the methods leveraged to derive
them.

2.1.1 Task Analysis Methods

Task analysis is the process of observing controllers in action to identify the tasks necessary to achieve
safe and expeditious operation of air traffic. The result of such an analysis is a categorization of tasks that
contribute to controller’s workload and can be used to estimate and predict it. Welch et al. [8,9] categorized
the tasks into four types:

• Background activities

• Inter-sector coordination

• Traffic scanning

• Aircraft separation assurance

6



The first task, background activities, is assumed to be identical for all sectors and to be a constant fraction
of the workload that is arbitrarily set to 0.1, or 10%, of a controller’s time. In contrast, the controller’s
time required for the other three tasks depends on the number of aircraft being controlled. In particular, the
workload is computed by estimating the expected rate and mean service times required for transit tasks (i.e.,
inter-sector coordination required to service aircraft transiting into or out of a controller’s sector), recurring
tasks (e.g., traffic scanning), and conflict tasks (i.e., provide aircraft separation assurance). The mean service
times for transit, recurring, and conflict tasks can be computed from archived data, extracting information
such as aircraft handoff duration, time spent looking for potential conflicts, and time required to resolve
a conflict. Predicted traffic data can then be used to determine the expected rate for transit, recurring, and
conflict tasks. The weighted sum represents the workload intensity, as follows: G = Gb+τtλt+τrλr+τcλc,
where Gb is the workload of background tasks, τt, τr, τc are the mean service times for transit, recurring,
and conflict tasks, respectively, and λt, λr, λc are the rates of transit, recurring, and conflict tasks.

Similarly, Yousefi and Donohue [10] estimate a controller’s workload with a weighted sum but partition it
using the following four tasks:

• Horizontal movement workload, determined by the number of aircraft in a sector (sector density) and
the average flight time

• Conflict detection and resolution workload, determined by the type of conflict and the conflict severity

• Coordination workload, determined by the type of coordination action, e.g., voice call, clearance
issuance, and inter- or intra-facility transfer

• Altitude change workload, determined by the type of sector clearance request, i.e., level off, com-
mence climb, and commence descent

Marr and Lindsay [4] decompose a controller’s task into more detail and compute workload by accounting
for the time required for the following subtasks:

• Entry

• Exit

• Separation

• Delay

• Non-radar arrival

• Non-radar departure

• Scanning

• Coordination

• Transition

NASA/TM–2018–219985 7



Subject matter experts (SME, i.e., expert enroute controllers) expect safety to degrade when the time spent
on the sum of each of the tasks for predicted traffic data exceeds a specified percentage of a controller’s
available time during a selected period (e.g., 15 min). In Marr and Lindsay’s work, SMEs recommended
that workload in a sector be considered excessive if the sum of time spent on the above tasks exceeds 90% of
the controller’s available time. In contrast, Schmidt [11] asserts that safety begins to degrade when workload
intensity exceeds 80% of a controller’s available time.

Additional emphasis is placed on coordination workload by Manning et al. [12]. The authors show that
instructional clearances and activity together are a better predictor of workload than either alone, where
the activity is significantly correlated with number and duration of all communications, clearances, and
frequency changes/courtesies. However, the results of this analysis should be interpreted with caution as the
analysis took into account only 40 observations from 4 sectors, and only 4-minute time-segments of data
were analyzed. Subsequent analyses using larger data sets could be conducted to obtain more stable results.
The authors identified that the most useful measures for evaluating controller workload are:

• Total number of aircraft

• Maximum number of aircraft controlled simultaneously

• Average time the aircraft remain under control

• Average heading/speed/altitude variation

• Average time to accept handoff

• Average time until initiated handoffs are accepted

• Number of radar controller data entries and entry errors

• Number of data controller data entries and entry errors

Interaction with computer systems is considered by Hudgell and Gingell [13]. They present an approach
for assessing ATM systems using information processing load (IPL), a combination of workload of all NAS
stakeholders, such as controllers, pilots, and computer systems. Some of the factors that contribute to IPL
include flight arrival into airspace, interaction detection, resolution planning, resolution implementation,
monitoring, other trajectory changes, and coordination with other control agencies.

The above task analysis studies focused primarily on the information to be processed. Hendy et al. [14],
describe this as intensity-load. They posit that the load on the human information-processing system results
not only from intensity-load but also on the time allowable for making a decision. The ratio of the time
necessary to process the required information to the time allowable for making a decision, termed time
pressure, determines subjective estimates of workload as well as operator performance.

The previously described workload models focus on enroute controllers. In contrast, Croft1 describes the
factors believed to be increasing the workload of ground controllers, as follows:

• Traffic crossing the takeoff and landing runways

1http://aviationweek.com/commercial-aviation/who-charge-safety-amsterdam-schiphol
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Table 2.1. Dynamic density features affecting controller workload [15].
Heading Change (N > 15 deg in 2 min) (N = Number of
aircraft)

Speed Change (N > 10 kts/0.02 Mach in 2 min)

Altitude Change (N > 750 ft in 2 min) Conflict Predicted 0-25 nm (N predicted to be in conflict with
another aircraft within 0-25 nm at end of 2 min)

Minimum Distance 0-5 nm (N within 0-5 nm to closest air-
craft at end of 2 min)

Conflict Predicted 25-40 nm

Minimum Distance 5-10 nm Conflict Predicted 40-70 nm

• Deviations from procedures to handle the increased traffic load

• Shortage of parking areas

• Large number of daily runway configuration changes, many of which are due to noise restriction
agreements

These factors are derived from comments from controllers at Amsterdam Airport Schiphol, one of the busiest
airports in Europe.

2.1.2 Air Traffic Complexity Methods

The methods in the previous section derive workload-influencing factors by explicitly analyzing a con-
troller’s major tasks. An alternative method for deriving factors focuses only on the traffic characteristics
that influence the difficulty of providing aircraft separation assurance to a dynamic set of aircraft, omitting
tasks such as communication, scanning, etc.

Dynamic Density

In sociology, dynamic density refers to the combination of population density and the amount of social inter-
action within that population. Laudeman et al. [15] introduced the concept of dynamic density as a controller
workload metric. Their proposed function includes a traffic density term and eight traffic complexity terms,
as shown in Table 2.1. Researchers at NASA, the FAA, Wyndemere, and related organizations expanded on
the dynamic density concept to characterize the types of interactions that impact controller workload. Zi-
natullin and Lykens [7] summarize the factors suggested by NASA [5], the FAA, and Wyndemere Inc. [16].
Table 2.2 reproduces their summary. Zinatullin and Lykens also provide a comprehensive description of
each factor, including equations on how to compute the factor and required data.

Zhang et al. [17] propose a method similar to dynamic density that forecasts terminal-area congestion
through five metrics, as follows:

• Average flow velocity of the aircraft in a controller’s area.

• Standard deviation of velocity. Smaller deviations are associated with lower controller workload for
anticipating aircraft positions and sequencing aircraft.

NASA/TM–2018–219985 9



Table 2.2. Air traffic complexity features, consolidated list from FAA, NASA, and Wyndemere [5, 7, 16].
Reproduced from [7].

Sector count Aircraft density Aircraft density by sector
Convergence recognition index Separation criticality index Degrees of freedom index
Coordination task load index 1 Coordination task load index 2 Fraction of flights that are climbing
Fraction of flights that are cruising Fraction of flights that are descending Inverse weighted mean of horizontal

separation
Inverse weighted mean of vertical sepa-
ration

Inverse average minimum horizontal
separation

Inverse average minimum vertical sepa-
ration

Inverse of minimum horizontal separa-
tion in same vertical neighborhood

Inverse minimum vertical separation in
same horizontal neighborhood

Fraction of aircraft with time-to-go to
conflict less than 600s

Inverse minimum time to go to conflict
with time-to-go to conflict less than 600s

Inverse of smallest time-to-go to conflict
for aircraft pairs with time-to-go to con-
flict less than 600s

Variance of groundspeed

Ration of standard deviation of ground
speed to mean of ground speed

Mean conflict resolution difficulty Number of aircraft with heading change
greater than 15 deg

Number of aircraft with speed change
greater than 10 knots or 0.002 Mach

Number of aircraft with altitude change
greater than 750 ft

Number of aircraft pairs with 3-D Eu-
clidean distance between 0-5 nm

Number of aircraft pairs with 3-D Eu-
clidean distance between 5-10 nm

Number of aircraft pairs with lateral
distance between 0-25 nm and verti-
cal separation less than 2000/1000 ft
above/below 29000 ft

Number of aircraft pairs with lateral
distance between 25-40 nm and verti-
cal separation less than 2000/1000 ft
above/below 29000 ft

Number of aircraft pairs with lateral
distance between 40-70 nm and verti-
cal separation less than 2000/1000 ft
above/below 29000 ft

Number of aircraft pairs with horizontal
separation under 8 nm

Convergence angle of conflicting air-
craft (average)

Proximity count Conflict count Altitude variation
Aircraft heading variation Number of aircraft close to sector

boundary
Aircraft-axis heading variation

Aspect ratio A measure of the aircraft count A measure of the aircraft density per
sector

A measure of the number of aircraft
pairs with less than 8 or 13 nm horizon-
tal distance between them

A measure of the convergence angle for
aircraft pairs which are within 13 nm of
each other

A measure of the number of aircraft in
the neighborhood of an aircraft pair pro-
jected to be in conflict

A measure of the number of aircraft
pairs which are in conflict with each
other and are close to a subsector bound-
ary

Number of aircraft with an altitude
change greater than 500 ft per min

Measure of the variation in heading

Measure of the number of aircraft close
to a subsector boundary

A measure of airspace structure and the
distribution of aircraft within a sector

An alternative measure of airspace
structure and the distribution of aircraft
within a sector

• Standard deviation of heading angle. This metric reflects the clustering of flight paths. The more
dispersed the flight paths, the more difficult it is for controllers to apply structure-based abstractions,
as discussed in Section 2.1.2

• Traffic mixing coefficient. This metric reflects the number of aircraft and the mixing degree of differ-
ent categories of aircraft (i.e., climbing, descending, cruising). The bigger the traffic mixing coeffi-
cient, the higher the workload.

• Equivalent airspace occupancy. This metric takes into account the different level of workload associ-
ated with each category of aircraft.

NASA/TM–2018–219985 10



Traffic Disorder

Another approach that uses air traffic complexity to predict controller workload is Lee, Feron, and Pritchett’s
work [18] on visualizing how a given traffic situation responds to disturbances. They consider airspace as a
closed-loop control system where the signal of interest is the control activity required to avoid conflicts with
a disturbance, such as an entering aircraft. Three types of control activity are considered:

• Sum of the total heading changes over all aircraft inside the sector to maintain a conflict-free situation

• Sum of heading changes due to secondary conflicts

• Number of aircraft that undergo a heading change inside the sector

Delahaye et al. [19,20] also believe that a controller’s workload is affected not just by the number of aircraft
under control but also by the control actions required from the controller. They measure air traffic complexity
by considering the stability of the traffic configuration. Their workload model contains the following factors
which measure the disorder of the speed vector field in 3D airspace:

• Density, defined as the level of aggregation of aircraft

• Convergence and divergence of aircraft pairs

• Sensitivity of relative distance to speed and heading changes, using either of the following metrics
depending on the operator’s objective. In both cases, high sensitivity corresponds to lower workload,
since small changes in heading or speed will result in faster conflict resolution.

– Change of relative distance when small modification is applied to speed and heading of the
aircraft involved

– Conflict duration with the speed and heading modifications

Airspace Structure

The previous studies examine the contribution of the characteristics of air traffic to the cognitive complexity
of air traffic control (ATC). The studies of this subsection additionally consider the contribution from the
structural design of the airspace.

Histon et al. [21] conducted a series of site visits to ATC facilities to determine the contributors to the
complexity of managing traffic. In addition to identifying factors strictly related to the traffic distribution,
controllers indicated that the airspace structure within which that traffic operates also contributes to work-
load. The complete list of factors derived from their study are shown in Table 2.3, duplicated from [21].

To decrease the effort required to maintain situational awareness, Histon et al. report that controllers use
structure-based abstractions such as flows, groupings, and critical points. They note that “not including the
underlying structural elements on which these abstractions are based may artificially inflate the outputs of
any cognitive complexity metrics.”

Wei et al. [22] report on the structure-based abstraction concept of grouping traffic to reduce cognitive
complexity. As discussed in Section 2.3.1, the authors show that managing traffic segregated by streams

NASA/TM–2018–219985 11



Table 2.3. Airspace-related features derived from ATC site visits. Reproduced from [21]. Items marked
with * are related to structural elements.

Airspace Factors Traffic Factors Operational Constraints
Sector dimensions*

• Shape, physical size,

• Effective “area of regard”

Density of aircraft

• Clustering*

• Sector-wide

Buffering capacity*

Spatial distribution of airways / Naviga-
tional aids*

Aircraft encounters

• Number of,

• Distance between aircraft,

• Relative speed between aircraft,

• Location of point of closest ap-
proach (near airspace boundary,
merge points, etc)*,

• Difficulty in identifying,

• Sensitivity to controller’s actions

Restrictions on available airspace

• Presence of convective weather,

• Activation of special use
airspace,

• Aircraft in holding patterns*

Number and position of standard ingress
/ egress points*

Ranges of aircraft performance

• Aircraft types (747, Cessna)

• Pilot abilities

Procedural restrictions

• Noise abatement procedures*

• Traffic management restrictions
(e.g., miles-in-trail require-
ments)

Letters of agreement / Standardized pro-
cedures*

Sector transit time* Communication limitations

Standard flows*

• Number of,

• Orientation relative to sector
shape,

• Trajectory complexity, Interac-
tions between flows (crossing
points, merges)

Number of aircraft in transition

• Altitude,

• Heading,

• Speed

Coordination with other controllers*

• Point-outs

• Hand-offs

reduces controller workload over managing traffic segregated only by sectors. In their study, a stream is
composed of aircraft that have the same engine type, destination airport, and arrival gate.

Gariel, Srivastava, and Feron [23] report on the structure-based abstraction concept of standard flows. They
hypothesize that when an aircraft does not conform to standard flight patterns, more attention is required
from controllers, thereby increasing workload. They introduce a complexity measure based on Shannon’s
theory of communication that indicates the disorder with regard to nominal operations. The complexity
increases with the number of outliers detected and also with the number of aircraft. Whereas other air traffic
complexity approaches require knowledge of the intended trajectory (e.g., via a flight plan) and thus are
more applicable to the enroute phase of flight, this method can better handle terminal-area operations in

NASA/TM–2018–219985 12



Table 2.4. Workload model features from treating air traffic management as a pattern recognition / image
processing problem [24].

Angular second moment Contrast Correlation
Variance Inverse Difference Method Sum average
Sum variance Sum entropy Entropy
Difference variance Difference entropy Difference average

which controllers often vector aircraft off the flight plan, pilots comply with varying urgency with issued
directives, and pilots have more leeway in the route flown on a visual approach.

2.1.3 Other Methods

A unique approach to predicting controller workload was taken by Chatterji and Sridhar [24]. They draw
an analogy between image processing and traffic pattern recognition and utilize gray-level statistics from
image processing to describe a traffic pattern. In their scheme, the aircraft within the traffic pattern are
analogous to pixels in the image, while the properties of the aircraft such as their position and velocity are
analogous to the gray-level property of the pixels. To determine workload from the traffic pattern statistics,
they train a neural network to categorize twelve airspace complexity measures, shown in Table 2.4, into three
workload categories (low, medium, high). The complexity measures are derived from second-order statistics
and computed from the sum and difference histograms of the positions and velocities of the aircraft.

2.1.4 Weakly Supported Factors

It is informative to also understand features that have been either disproved or not yet proven to be well
correlated with increased workload. In this regard, Hagmueller et al. [25] conducted studies to evaluate
the human voice as an indicator of workload induced stress. Their results indicate only a weak correlation
between stress and voice characteristics, affirming a previous study by EUROCONTROL Experimental
Centre.

2.2 Determining a Minimal Set of Predictive Factors

In this subsection, we present some methodologies that can be employed to determine a minimal set of
predictive factors.

Riley et al. [26] train a neural network with different sets of complexity measures to determine the ones that
perform best at predicting pilots’, rather than controllers’, assessment of airspace complexity/workload, as
the authors stated that pilots retain the primary responsibility for long-term prevention of loss of separation
in the operational concept they were investigating. The following complexity measures were found to be
most predictive:

• Number of aircraft

• Number of climbing aircraft
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• Number of cruising aircraft

• Number of descending aircraft

• Horizontal proximity

• Vertical proximity

• Time until conflict

• Ratio of standard deviation of speed to average speed

• Number of unique alerts ongoing

• Presence/absence of alerting state

• Convergence recognition index, which indicates shallow angle conflicts

Chatterji and Sridhar [24] also train a neural network to determine which subset of 16 dynamic density
metrics are most useful for predicting workload. The best predictions occur with the full set of 16 metrics,
as follows:

• C1: Complexity based on aircraft count

• C2: Complexity measure of aircraft in climb mode

• C3: Complexity measure of aircraft in level flight

• C4: Complexity measure of aircraft in descent mode

• C5: Complexity measure associated with the mean weighted horizontal separation distance

• C6: Complexity measure associated with the mean weighted vertical separation distance

• C7: Complexity measure related to the average minimum horizontal separation between aircraft pairs

• C8: Complexity measure related to the average minimum vertical separation between aircraft pairs

• C9: Complexity measure based on horizontal separation of aircraft within an altitude band

• C10: Complexity measure based on vertical separation of aircraft within an altitude band

• C11: Complexity measure related to the number of aircraft pairs with positive time-to-go less than
equal or equal to ∆t, the threshold time at which conflict resolution becomes urgent

• C12: Complexity measure related on the average time-to-go

• C13: Complexity measure based on the smallest time-to-go value from the set of all aircraft pairs that
are involved when conflict resolution becomes urgent

• C14: Complexity measure based on variance in the groundspeed

• C15: Complexity measure based on the variance and mean of the groundspeed

• C16: Complexity measure based on the level of conflict resolution difficulty
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Table 2.5. Complexity metrics mentioned in [27].
Metric Definition
NUM Sector aircraft count
MAP Monitor/Alert Parameter (operationally defined threshold) SECTVOL Sector

Volume, cubic nautical miles (nm3)
SC Speed Change; number of aircraft with an airspeed change greater than 10 knots

or 0.02 Mach during a 2-minute interval
WACT A normalized measure of the aircraft count per sector
WDEN A normalized measure of the aircraft counter per sector
WCLAP A measure incremented by aircraft pairs with less than 8 nm horizontal distance,

and to a lesser extent by pairs with less than 13 nm horizontal distance
WCONVANG A measure of the convergence angle for aircraft pairs within 13 nm of each other
WCONFLICTNBRS A measure of the number of aircraft in close proximity to an aircraft pair pro-

jected to be in conflict
WCONFBOUND A measure of the number of aircraft pairs in conflict with each other and close to

a subsector boundary
WALC A measure of the number of aircraft with an altitude change greater than 500 feet

per minute
WASP A measure of the distribution of aircraft relative to sector structure

Masalonis, Callaham, and Wanke [27] assess metrics from previous studies on how well they can support
traffic flow management, including whether they can be predicted up to 120 min ahead and their face validity,
i.e., how much operational sense a metric makes. They use proportional odds logistic regression to determine
the metrics’ usefulness for predicting subjective complexity ratings and narrow down 41 metrics to just 12,
as shown in Table 2.5. The findings were validated through interviews with traffic management coordinators
(TMC) who implement traffic flow initiatives that ultimately affect controller workload. When asked about
the desirability of replacing a single dynamic density value with a multivariate value, the TMCs preferred
a single number, partially because of familiarity and partially because they feared multiple values could
lead to information overload. In an analysis of whether the same set of metrics could be used for different
enroute centers, they determined that different factors may contribute to perceived complexity and difficulty
in different centers and altitudes.

2.3 Controller Workload Validation Methodologies

In the previous two subsections, we presented factors that can be used to compute and predict controller
workload and we described methods to determine the minimal set of such factors that can correctly predict
controller workload. In this subsection, we describe some approaches for evaluating how well selected
factors correlate with the controllers’ subjective assessment of their workload.

2.3.1 Task Analysis

Brooker [28] presents a substantial literature review of applied psychology validation techniques. He con-
cludes that the current techniques need to be improved to provide guidance to next generation ATC systems
designers. Until that occurs, systems engineers and operations researchers will continue to use ad hoc vali-
dation studies to evaluate prospective ATC systems.
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Lee [29] presents a controller-in-the-loop flight simulator experiment used to compare controller workload
modeled as linear, nonlinear, and s-curve functions of the number of aircraft to the controllers’ subjective
scores of the perceived workload. Results suggested the s-curve model to be the best under the tested
conditions in which number of aircraft was varied but remained below manageable levels and weather was
not considered.

2.3.2 Dynamic Density

Sridhar et al. [30] examine the relationship between airspace complexity and controller workload by as-
sessing how well dynamic density (DD) metrics that consider only the flow conditions in a sector can be
predicted. The authors used a trajectory estimator to predict 5 min and 20 min ahead and compared those
predictions to the real traffic that occurred. The 5 min predictions were found to be accurate. For the 20 min
predictions, missing intent information for several aircraft and not accounting for departure traffic decreased
the accuracy, though it still had a high correlation with actual sector controller activity. Hence, it was con-
cluded that dynamic density can be used as a good indicator of controller activity (and workload) up to 20
min ahead. A weighted, linear combination of the following variables were included in the dynamic density
formulation in [30], each measured during a sample interval of one minute:

• N: traffic density (number of aircraft)

• NH: number of aircraft with heading change greater than 15 deg

• NS: number of aircraft with speed change greater than 10 kts or 0.002 Mach

• NA: N with altitude change greater than 750 ft

• S5: N with 3D Euclidean distance between 0-5 nm excluding violations

• S10: N with 3D Euclidean distance between 5-10 nm excluding violations

• S25: N with lateral distance between 0-25 nm and vertical separation < 2000/1000 ft above/below
29,000 ft

• S40: N with lateral distance between 25-40 nm and vertical separation < 2000/1000 ft above/below
29,000 ft

• S70: N with lateral distance between 40-70 nm and vertical separation < 2000/1000 ft above/below
29,000 ft

The weights were computed either by regression analysis of activity data or subjective weights from con-
troller survey data.

Wei et al. [22] present a comparison of the workload for conventional sector management versus automation-
assisted stream management in which controllers were responsible for merging and spacing and automation
was responsible for separation between streams and with terrain. Workload is measured with an adapted
version of DD that uses variables relevant to both types of control. As in Sridhar et al.’s work [30], two
analyses were conducted, each with a different weighting scheme, either derived by regression analysis or
by consulting subject matter experts. It was found that workload was reduced by 18% (using SME-weighted
DD equations) or 24% (using regression-weighted DD equations) for the particular data set utilized.
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Chatterji et al. [31] evaluate all the ARTCC sectors above 17,000 ft against 15 traffic metrics and 18 sector
geometry metrics with the goal of understanding how sectors are currently designed to manage controller
workload. The traffic metrics include:

• Maximum number of aircraft

• Maximum number of aircraft in climb

• Maximum number of aircraft in cruise

• Maximum number of aircraft in descent

• Maximum number of jet aircraft

• Maximum number of non-jet aircraft

• Peak conflict count

• Average horizontal separation between aircraft in sector

• Minimum horizontal separation between aircraft in sector

• Average vertical separation between aircraft in sector

• Minimum vertical separation between aircraft in sector

• Average time-to-go to conflict

• Sector average transit time

• Average airspeed

• Variance in airspeed of aircraft

The sector geometry metrics include:

• Number of sectors in centers

• Number of sectors in eight air-traffic control regions

• Sector-type: low, high, or super-high

• Sector volume

• Sector height

• Sector area

• Sector length

• Aspect ratio - length/width

• Principal direction
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• Number of subsectors

• Number of navigational aids

• Number of intersections

• Number of airways

• Number of airports

• Number of surrounding sectors

• Special Use Airspace completely inside sector

• Special Use Airspace contained partially

• Distance to closest major airport

Finally, Zhang et al. [17] present a method for evaluating traffic congestion status in terminal areas using a
fuzzy C-means clustering algorithm and a method for forecasting traffic congestion status using a support
vector machine. Several traffic congestion status evaluation metrics are presented, including:

• Average flow velocity

• Standard deviation of velocity

• Standard deviation of heading angle

• Traffic mixing coefficient

• Equivalent airspace occupancy

2.3.3 Traffic Disorder

Sridhar et al. [32] suggest that to be operationally useful, workload predictions should be available 60-120
min ahead. Because trajectory predictions are imprecise so far in advance, the authors perform a worst-case
analysis to determine conditions under which additional aircraft entering a sector would exceed controller
workload limits. Their analysis shows that the impact of additional aircraft in a sector is not uniform and
depends significantly on the location of the new aircraft in relation with the existing ones. Notably, aircraft
entering the interior of a sector (pop-ups) and those entering near boundaries have the worst impact on
controller workload, especially if the entering aircraft are close to other aircraft clusters, such as at the
intersection of major flows.
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Chapter 3

Controller Workload Factors Analysis

Until now, we have presented a summary of factors that have been identified in literature for computing
controller workload. In this section, we tie our findings back to our earlier RTSM work on the analysis of
safety of the NAS [3]. To this end, we first present the safety metrics that need controller workload as their
input. Then, we identify the main factors that were most pervasive in our literature review findings and also
comment on the availability of the information needed for quantifying these factors.

3.1 Effects of Controller Workload on NAS Safety

Table 3.1 lists the controller workload safety metric and other RTSM safety metrics from [2] that need
controller workload as their input. As indicated in the table, controller workload is a component in the com-
putation of other human-related metrics such as probability of controller error, controller fatigue, probability
of fuel exhaustion, and probability of miscommunication. Specifically, the rationale for each related safety
metric is as follows:

• Probability of controller error: Excessive controller workload may result in a controller overlooking
a developing unsafe situation, making errors in judgement, or becoming confused. Additionally,
insufficient workload may result in errors due to, e.g., inattention caused by boredom.

• Controller fatigue: Prolonged periods of maintaining adequate situational awareness and effectively
planning for separation of a large number of aircraft with many interdependencies between their routes
may lead to increased stress, mental strain, and mental fatigue.

• Probability of fuel exhaustion: A controller experiencing excessive workload may place some aircraft
in a hold to allow for additional decision making time. Extended holding could lead to multiple aircraft
declaring minimal fuel and requiring expedited routing to the airport, in turn exceeding the allowed
airport arrival rate. Note that controller workload is just one link in a potential accident chain. The
pilots will be carefully monitoring available fuel and may decide to divert to an alternate if necessary.

• Probability of miscommunication: While managing multiple tasks, an overworked controller may
misidentify an improper readback of a clearance. Likewise, a bored and complacent controller may
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Table 3.1. Safety metrics that need controller workload as an input.
Safety Metrics Inputs Outputs
Controller work-
load

controller id, time, services available, aircraft at coordinates, weather at coordi-
nates, airspace complexity, congestion and density, visibility, traffic homogene-
ity, degree of operational normalcy, approach complexity, communication issues
(multiple languages, lack of command in English, multiple frequencies, etc.)

Workload category,
e.g., low, medium,
high

Probability of con-
troller error

controller id, time, controller workload, controller fatigue, controller observabil-
ity

Probability in per-
centage

Controller fatigue controller id, time, controller workload, number of hours on duty, number of
hours of sleep, experience level, days on duty, etc.

Fatigue level, e.g.,
low, medium, high

Probability of fuel
exhaustion

aircraft of interest, time, weather at coordinates, congestion and density, degree
of operational normalcy, controller workload, services operation status, airport
configuration, avoidance areas at coordinate, departure complexity, wind com-
ponents, probability of airplane icing, probability of runway contamination, etc.

Probability in per-
centage

Probability of mis-
communication

volume of interest, time, airspace complexity, pilot fatigue, pilot workload, con-
troller workload, controller fatigue, congestion and density, weather at coor-
dinates, degree of operational normalcy, operation type, communication issues
(multiple languages, lack of command in English, multiple frequencies, etc.)

Probability in per-
centage

not be paying adequate attention to the readback and assume that this pilot, like many previous others,
correctly understood the clearance.

Note that controller workload is just one component of each of these safety metrics. Many of the other
factors for these metrics are challenging to assess and predict in their own right.

Each of the safety metrics listed in Table 3.1 requires a large number of inputs. The availability of data to
measure or compute these inputs is imperative to the real-time prediction of these safety metrics. Not all
of these inputs are currently available in real-time, such as number of hours on duty, or controller fatigue.
Until these inputs become available, metrics may be approximated using user provided or assumed values.

3.2 Recommended Controller Workload Factors

In this report, we focus on the inputs required to compute controller workload. As shown in the previous sec-
tion, the hypothesis in [2] was that workload is affected by the following: controller id, time of day, {services
available, aircraft at coordinates, weather at coordinates, airspace complexity, congestion and density, vis-
ibility, traffic homogeneity, degree of operational normalcy, approach complexity}, communication issues
(multiple languages, lack of command in English, multiple frequencies, etc.). In the terminology of [2],
inputs within braces, e.g., services available, are “helper” metrics that contribute to the computation of other
metrics and may also be of interest in their own right. As a result of this survey, we are now able to better
define the details of some of the helper metrics, specifically airspace complexity, approach complexity, and
congestion and density. In Chapter 2, we surveyed the main factors that previous research has correlated
with controller workload. In this section, we list the most prevalent factors that contribute to workload.

The intersection between the factors proposed and validated by the numerous previous studies is quite large
and well summarized by Histon et al. [21] Our recommended factors, therefore, begin with their list, repro-
duced from [21]. To this list, we recommend adding a subset of the remaining factors identified only in a few
of the studies, as shown in Table 3.2. First, we recommend additional airspace complexity factors. Next,
we include factors defining the workload requirements identified through structured task analyses. Then,
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we enumerate factors that have been associated with contributing to the workload of ground controllers in
particular. Finally, a number of factors were hypothesized to affect controller workload in [2]. The list in [2]
was generated from studying accident and incident reports and from the authors’ experience as general avi-
ation pilots flying in the system. We believe that some of these factors remain relevant after our study of the
literature and thus include them in Table 3.2.

Given that many of the recommended factors have been validated through simulations, it is expected that
data is available for their computation. For the factors identified through observation and factors proposed
by [2] but not yet validated, the data may not currently be in a digital or accessible form. Whether all of the
listed factors are critical could be studied in future research. If the factors are found in validation studies to
indeed be beneficial, the data may potentially be provided.

Table 3.2: Recommended factors for computing and predicting controller work-
load.

Category Inputs Data Availability

Factors documented in
Table 2.3 [reproduced from
Histon et al. [21]]

Sector dimensions
• Shape, physical size

• Effective “area of regard”

Yes

Spatial distribution of airways / Navigational aids
Number and position of standard ingress / egress points
Letters of agreement / Standardized procedures
Standard flows

• Number of

• Orientation relative to sector shape

• Trajectory complexity, Interactions between flows
(crossing points, merges)

Coordination with other controllers

• Point-outs

• Hand-offs

Density of aircraft

• Clustering

• Sector-wide

Aircraft encounters

• Number of

• Distance between aircraft

• Relative speed between aircraft

• Location of point of closest approach (near airspace
boundary, merge points, etc.)

• Difficulty in identifying

• Sensitivity to controller’s actions

Ranges of aircraft performance

• Aircraft types (747, Cesna)

• Pilot abilities
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Category Inputs Data Availability
Sector transit time
Number of aircraft in transition

• Altitude

• Heading

• Speed

Buffering capacity
Restrictions on available airspace

• Presence of convective weather

• Activation of special use airspace

• Aircraft in holding patterns

Procedural restrictions

• Noise abatement procedures

• Traffic management restrictions (e.g., miles-in-trail
requirements)

Communication limitations

Factors identified by subset of
Air Traffic Complexity
methods

Number of non-radar arrival and departure aircraft

Yes

Number of radar controller data entries and entry errors
Number of data controller data entries and entry errors
Ratio of time necessary to process the required information
to the time allowable for making a decision (time pressure)
Number of outliers detected wrt standard operations
Number of airports
Distance to closest major airport
Large number of daily runway configuration changes

Factors identified through
Task Analysis

Background activities

These are typically controller
specific and could be
analyzed in situ

Aircraft separation assurance tasks
Traffic scanning
Mean service times for transit tasks
Mean service times for recurring tasks
Mean service times for conflict tasks
Rate of transit tasks
Rate of recurring tasks
Rate of conflict tasks

Factors specific to ground
controller workload

Traffic crossing takeoff and landing runways
YesDeviations from procedures to handle the increased traffic

load
Shortage of parking areas

Additional factors identified
in Roychoudhury et al. [3]

Services available
Yes

Visibility
Degree of operational normalcy Partial: Traffic Management

Initiatives are available, how-
ever, emergency aircraft, etc.,
may not be readily available

Communication issues (multiple languages, lack of com-
mand in English, multiple frequencies, etc.)

Partial: frequencies in use are
available, however, languages
used are not readily available

Controller fatigue Still in research
Controller observability Could be obtained if desired
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Chapter 4

Conclusions

This report presents a survey of the different factors that influence the computation of controller workload,
presents methods utilized to identify the minimum set of factors that must be included for an accurate
prediction of workload, and compiles studies that validate the identified factors. The survey results are
summarized into recommended factors to compute workload. The recommended set is composed of (a)
factors pervasive in much of the literature, (b) factors resulting from only a subset of surveyed approaches
that nevertheless have been shown to be predictive, and (c) factors formerly proposed by the authors that have
not otherwise been explored in the literature, but have contributed to incidents and accidents. Additionally,
the rationale linking controller workload to other safety metrics is presented.

As part of future work, controller workload for a region of the NAS will be computed using the recom-
mended factors identified in the previous section. Workload will also be predicted with an operationally-
useful 120 min lookahead. The computation and prediction results can then be validated with actual human
in the loop experiments using approaches similar to those presented in Section 2.3.

Also in future work, methods of assessing and predicting workload and its effects on the safety of the NAS
can be studied for other stakeholders of the NAS, such as pilots, ground and ramp controllers, dispatchers,
and so on. Maintaining air traffic controller workload within an acceptable range is critical. Being able to
assess and predict controller workload has been the holy grail for many years. The survey and recommen-
dations in this report may bring us one step closer to this goal.
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