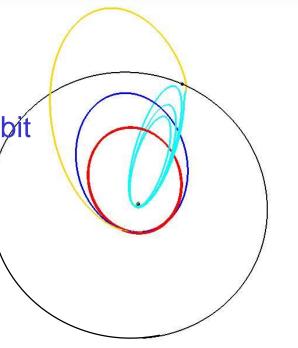


Arcus Mission Design

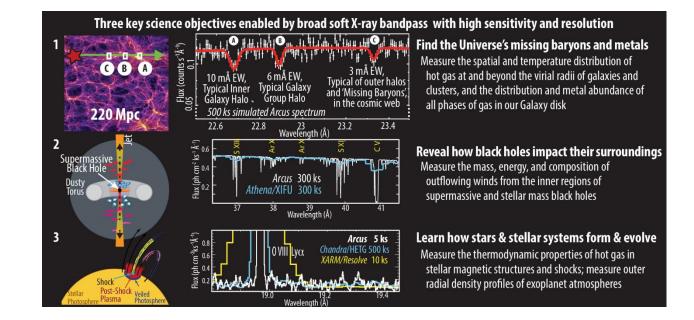
Stable Lunar Resonant HEO for X-ray Astronomy

Laura Plice, Andres Dono Perez (NASA Ames Research Center) Lisa Policastri, John Carrico, Mike Loucks (Space Exploration Engineering)

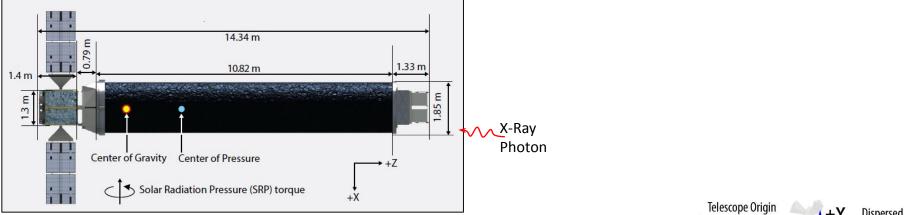


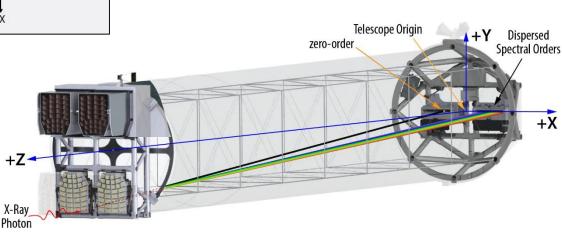
8/20/2018

Arcus Mission Design - Overview


- Arcus mission
 - Project currently in Step 1 of NASA SMD 2016 MIDEX AO in Astrophysics
- Spacecraft and instrument
 - X-ray telescope, 14m long
- Transfer trajectory and science orbit
 - Phasing loops to lunar swingby
 - P/4 lunar resonant HEO
- Ground segment design
 - Tracking & Orbit Determination

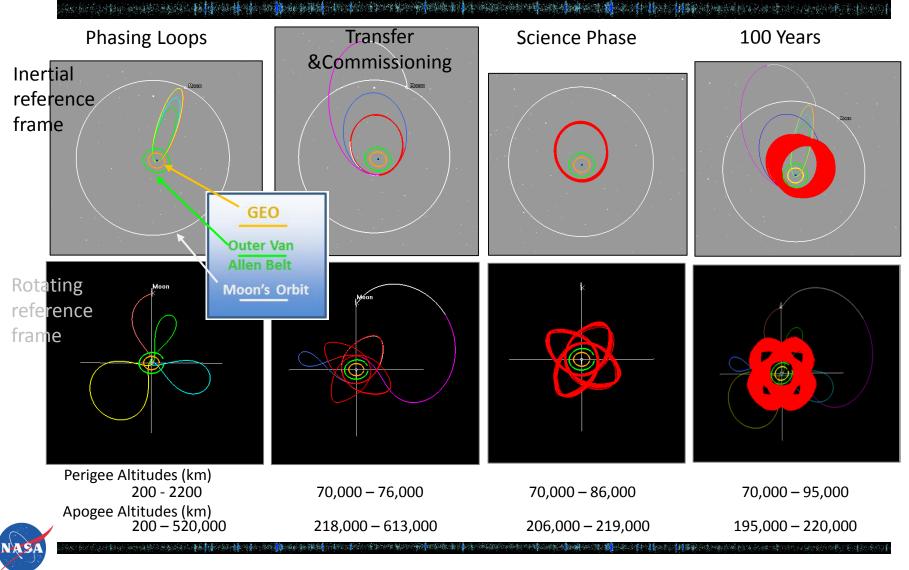
- Soft X-ray grating spectroscopy
- Understanding the formation and evolution of clusters of galaxies, black holes, and stars
- Find and characterize the universe's missing matter


Arcus uniquely opens the soft X-ray bandpass



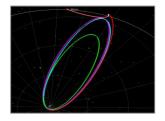
Arcus Spacecraft and Instrument

- X-ray telescope cannot use a conventional mirror
 - X-rays pass through
- Silicon Pore Optics (SPO): gratings deflect X-ray photos slightly, to enter detector

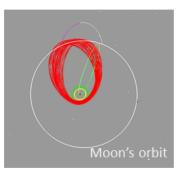

• The Arcus investigation places very little demand on the orbit design, needing only to be in space, above the Van Allen Belts, and with access to data downlink

	Requirement	Design Reference Mission	Notes
Minimum science orbit altitude above outer Van Allen belts (km)	60,000	71,124	
Science orbit stable for Science Phase duration (yrs)	2	100	Covers 5 yr extended mission
Maximum eclipse duration (hrs)	4. 5	3.5	Some control with launch dates, maneuver tuning
Maximum Earth range (Re)	110	98	For link budget
Maximum delta-V burn (m/s)	175	130	3-thruster configuration
Delta-V budget	373	373	Full tanks
Minimum angle between the Sun vector and the thruster pointing direction (degrees)	> 20	22 – 163	Mitigated with launch date selection
Minimum altitude 300 km above GEO altitude for at least 100 years (km)	38,786	70,000	NASA-STD-8719.14A, §4.6.2.2
Moderate equatorial inclination for good DSN coverage (degrees)	<~40	31 - 36	Investigating refinements

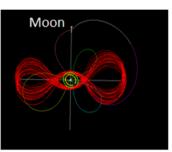
Arcus Trajectory Design in Earth-Moon System

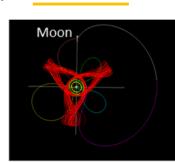


Transfer Trajectory & Science Orbit

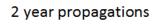


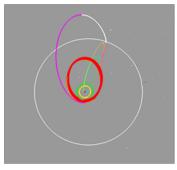
Comparisons and early trades

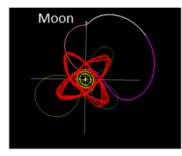



LADEE Phasing loops to lunar capture

Example concept trajectory

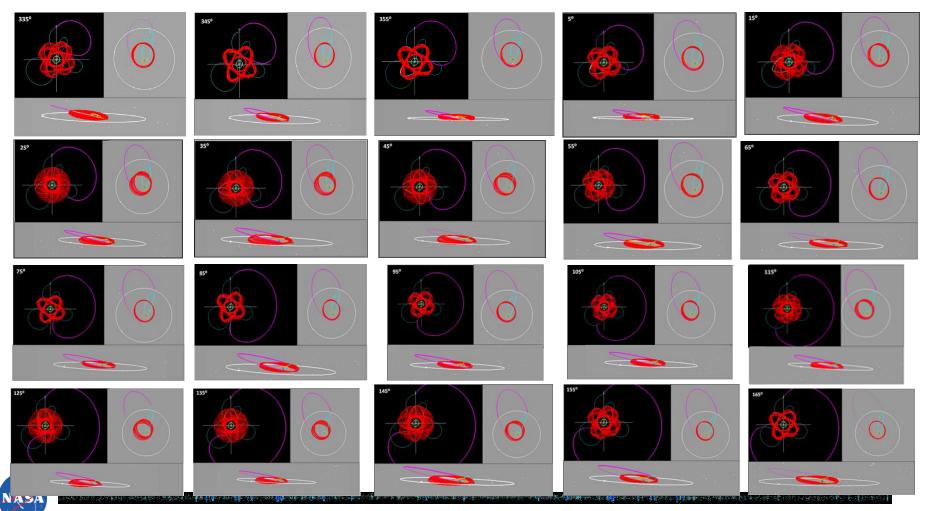



2:1 Resonance TESS-like Phasing loops to lunar swingby 67,000 x 404,000 km

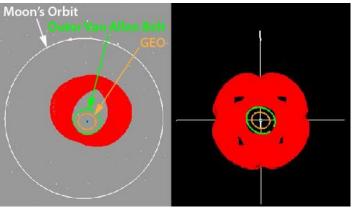

GEO

3:1 Resonance IBEX-like Phasing loops to lunar swingby 78,000 x 284,000 km

Outer Van Allen Belt 60,000 km

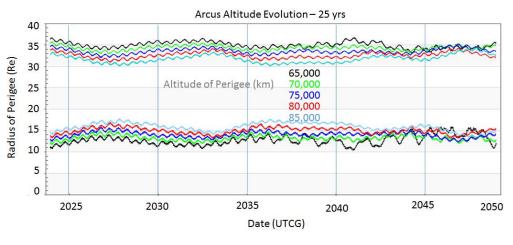

4:1 Resonance Arcus baseline Phasing loops to lunar swingby 72,000 x220,000 km

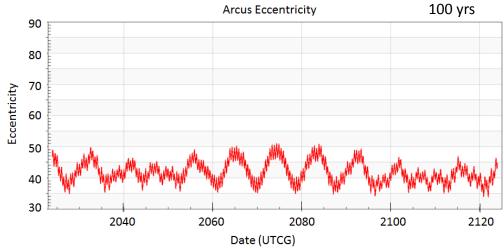
Stable HEO with and without Resonance


• Targeting accesses the post-swingy perigee orientation relative to the Moon's position

8/20/2018

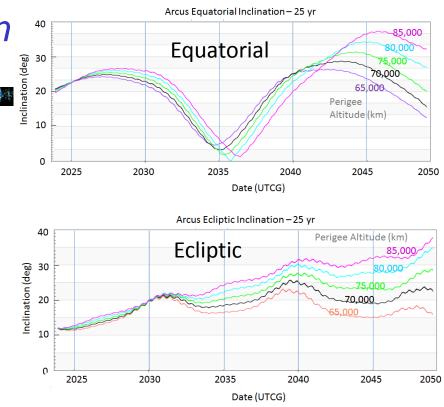
- Orbit precesses but stays resonant
- One measure of stability shows in long term propagation
- Additional stability investigations of
 - SMA
 - Inclination
 - Line of nodes
 - Line of apsides

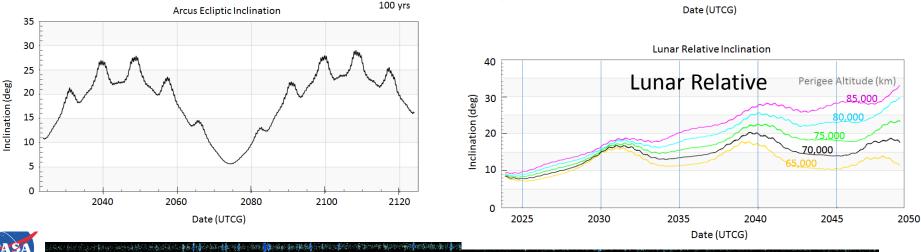



AAS/AIAA Astrodynamics Specialist 2018, Snowbird UT, AAS18-271

Resonance persists for at least 100 years

- Most of the trade space of P/4 solutions appears to hold altitude similarly to P/3 and P/2 results.
- Higher apogee altitudes have larger perturbations

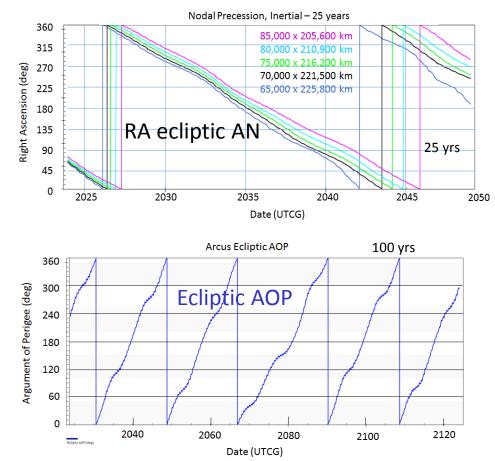




Trends in Inclination

se her sterre werde sekoles hit fordet ein die her die sterre in her die sterre her ein her her her her her her

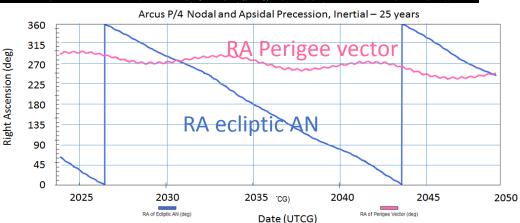
- Short and long cycles
- Reference planes
 - Equatorial
 - Ecliptic
 - Moon's orbit plane

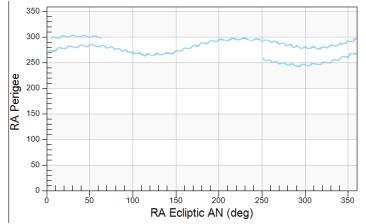

8/20/2018

ARCUS

Stability – Nodal & Apsidal Precession 1

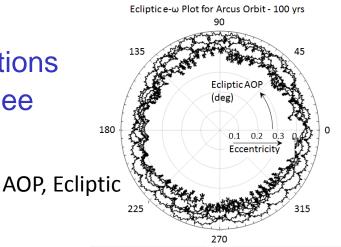
- Ascending node wrt the ecliptic plane
 - Using RA
 - Ecliptic longitude more appropriate for higher ecliptic inclinations
 - Precession varies with eccentricity, probably due to apogee altitude
- Argument of perigee has a long term secular trend
- Inertial direction of perigee is stable
 - (next slide)

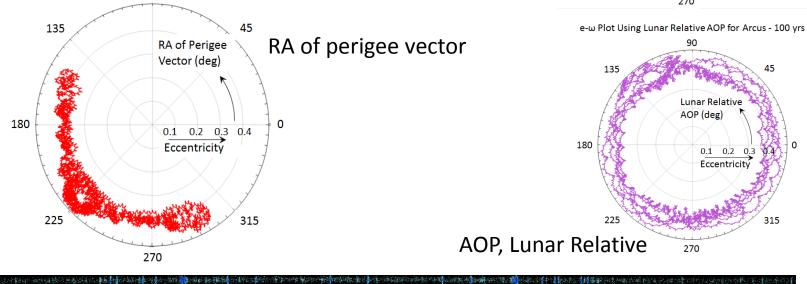




Stability – Nodal & Apsidal Precession 2

- Inertially, the line of nodes precesses significantly while the line of apsides has a slower trend
 - Measured in Right Ascension
 - 25 year example




Stability – e-ω Plots

- P/4 is low enough in relation to the Moon that it starts to show characteristics of two-body perturbations
- AOP precesses 0-360° but the perigee vector varies less
- 100 year propagations

Orientation (RA) and Eccentricity of Arcus Orbit - 100 yrs 90

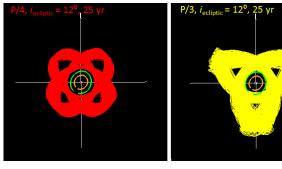
nsion (deg)

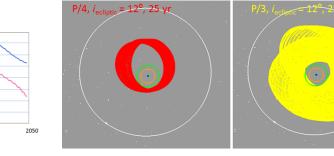
Precession Comparison, P/3 and P/4

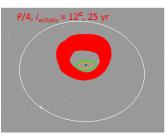
P/4

RA of Ediptic AN Idea

P/3 Nodal and Ansidal Precession, Inertial - 25 years


Similar starting orientation


P/4


RA of Perigee

Arcus P/4 Nodal and Apsidal Precession, Inertial – 25 years

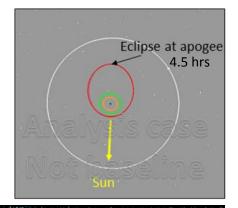
- 25 year propagations
- Apogee altitude difference between P/3 and P/4 orbits is enough to change the precession of the perigee vector RA
- 7/2 solutions exist between P/3 and P/4. Still to investigate. •

Right Ascen **RA ecliptic AN** The state of the state 2035 1091 RA of Ecliptic AN (deg Date (UTCG) Date (UTCG Arcus P/4 Stability-25 years Low Inclination P/3 Stability - 25 year Vector (deg) ം 315 **Ecliptic Inclination** deg) min **RA of Perigee** RA of Apo Apo 0 RA of 2035 (UTCG Date (UTCG) Date (UTCG)

8/20/2018

- NASA DSN 34-m antennas
 - Selected for high data rate
 - Two-way coherent Doppler & sequential range
 - Three 1-hour TT&C contacts per 6.8-day orbit
 - ascending side, apogee, descending side
 - Fourth DSN support at perigee for science data downloads
- NASA Ames Multi-Mission Operations Center
 - Flight Dynamics System (FDS) based on STK & ODTK
 - Same MMOC & FDS as LADEE mission

Orbit Determination


- With science targets at infinity, the Arcus investigation places very little demand on estimation accuracy.
- Prediction accuracy requirements
 - Maneuver planning
 - DSN acquisition and scheduling
 - No accuracy requirements for science activity planning requirements
- Definitive accuracy requirements
 - Maneuver reconstruction & trending
 - No accuracy requirements for science data processing

OD approach reflects goals to simplify mission ops

- Lunar resonant HEO can offer advantages for science missions
 - Stays above Van Allen Belts
 - ~Weekly operations cadence
 - Most days at high altitude for data collection
 - Perigee altitude supports data downlink weekly
 - Moderate equatorial inclination provides good DSN coverage
 - Thermal stability for spacecraft and instrument
 - Few eclipses
 - Max shadow duration ~4.5 hrs
 - No deorbit maneuver needed
 - Arcus Phase A delta-v budget: 373 m/s

