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Presentation Outline
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• Orion background, radiation requirements, and design for ALARA

• AstroRad individual radiation shield

• Matroshka AstroRad Radiation Experiment (MARE)
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Orion MPCV
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• The Orion Multipurpose Crew Vehicle (MPCV) is NASA’s next generation 
spacecraft for human exploration of the solar system

• Exploration Flight Test 1 (EFT-1) successfully executed December 2014

– High eccentricity high altitude orbit to 3600 mi

• Exploration Mission 1 (EM-1) scheduled 2019

– 21-42 days mission to Cis-lunar space

• Exploration Mission 2 (EM-2) first crewed flight scheduled 2022

– Gateway elements (Power and Propulsion Element PPE) will begin launching in 2022

Image Credit: NASA
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Orion Radiation Requirements
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• Hardware radiation protection (survivability)

– “Orion shall meet its functional, performance, and reliability requirements during and after exposure 
to the mission radiation environment” (Systems Requirements Document SRD)

– Further decomposed in the Ionizing Radiation Control Plan (IRCP)

• Crew radiation protection

– First NASA spacecraft on which Crew radiation protection is levied as a design driving requirement

– Human Systems Integration Requirements, Design Specification for Natural Environments

– Spacecraft design “shall provide radiation protection  consistent with ALARA and not to exceed 
crew exposure of E = 150 mSv for design reference environment” 

• Aug 1972 Solar Particle Event (King parameterization)

• Evolution of radiation protection requirements beyond Orion

– Townsend et al., Life Sciences in Space Research 17 (2018) 32–39

– BFO limit of 250 mGy-equivalent for the design SPE chosen as Oct 1989

– ALARA, storm shelter availability within 30 min of event onset 
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Orion Requirement Verification
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• Radiation Analysis

– Manufacturing quality Orion CAD model

• 20,000 parts & assemblies, 100 GB

• Mass/density and material properties

– Vehicle shielding by ray tracing 

• 4 origin points/crew member, 10k directions

– Body self-shielding from anatomically correct 
human models (~600 organ points)

– Ray-by-ray total converted to 3-material 
equivalents (Al, HDPE, H2O)

– Point dose equivalent calculations by 
deterministic transport software HZETRN

• Definition of design reference environment

– Integrated to obtain organ dose equivalent

– Effective dose calculated w/ tissue weighting 
factors per NCRP Report 132 (2000)
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Orion Design for Crew Radiation Protection
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• Matured throughout the vehicle design

– Early in the program MEL included 254 lbm of HDPE radiation shield

– Dedicated shielding mass was progressively reduced and ultimately eliminated

– Current baseline relies on operational reconfiguration of cabin in case of SPE 
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Cabin Configuration Optimization
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• Definition of cabin reconfiguration that maximizes crew radiation protection

SPE response
configuration(s)
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– Consistent with ALARA

– Large number of variables renders closed solution difficult

– Semi-analytical method example: visualization of additional 
shielding location required to achieve predefined target shielding 
thickness endpoint
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• 2016 Human In The Loop testing in the NASA JSC Orion med-fidelity mockup

Radiation Shelter Evaluation

Image Credit: NASA Image Credit: NASA
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• Central stowage bays designated as radiation shelter

Cabin Reconfiguration for SPE (nominal)

Image Credit: NASA
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• Central stowage bays designated as radiation shelter

Cabin Reconfiguration for SPE (reconfigured)

Image Credit: NASA
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Radiation Analysis Verification by Measurement
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• Exploration Flight Test 1 (EFT-1) opportunity to validate radiation analysis

– High energy re-entry trajectory traversed the core of the Van Allen belts

– Passive (GFE RAMs, EDC OSLDs) and active (GFE BIRD) on-board radiation detectors 

– Measurements correlate well with predictions based on planned trajectory and AP-8 model

EFT-1 Flight Data
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• Dynamic radiation environment

• Radiation transport modeling

• Detector efficiency vs Z/LET

• Body self-shielding

• Internal body dose mapping

• Biological Z/LET susceptibility

• Biological endpoints

Analysis validation continues 
on future flights toward 

improved astronaut safety
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Radiation Vest for Astronauts: AstroRad
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• Collaboration between Lockheed Martin Space and StemRad Israel

– Portable radiation protection for astronauts

– Provides preferential protection to stem cell rich organs and tissues

– Designed for flexibility and ergonomics

– Ergonomic evaluation planned aboard International Space Station
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AstroRad
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Matroshka AstroRad Radiation Experiment (MARE)
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• Lockheed Martin invited feedback as part of Orion radiation protection efforts

– Interest was expressed in continuation & scope expansion of the ISS MATROSHKA experiment on 
board the Orion vehicle

– Resulted in the Israel Space Agency (ISA) and the German Aerospace Center (DLR) proposing 
the Matroshka AstroRad Radiation Experiment (MARE) 

– MARE has been approved by NASA in May 2017 and is currently manifested as an international 
science payload aboard the EM-1 flight.

– MARE consists of two tissue-equivalent radiation phantoms 

– Positioned inside the Orion cabin at seat 3 & 4 locations

– One phantom is fitted with the StemRad-manufactured AstroRad vest

– Both phantoms are fitted with both active and passive radiation 
detectors

– MARE is managed by DLR and ISA, with NASA as a co-PI

– Lockheed Martin personnel co-located with Orion support 
development of MARE science objectives and efficient payload 
integration aboard Orion’s vehicle
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ISS Matroshka
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• Series of radiation measurements in radiation therapy phantoms on ISS

– Body internal dose mapping using radiation detectors on the surface of, and inside 
radiotherapy phantoms. Both extra- and intra-vehicular.

MTR-1 539 days
(2004−05)

MTR-2A 337 days
(2006)

MTR-2B 518 days
(2007−09)

MTR-2 KIBO 310 days
(2010−11)

http://www.cirsinc.com/file
/Products/701_706/701%
20706%20ATOM%20PB
%20050418.pdf
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ISS Matroshka
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MTR-1

(2004-05)

MTR-2A

(2006)

MTR-2B

(2007-09)

MTR-2 KIBO 

(2010-11)
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MARE Aims and International Participation
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• Experiment Aims:

– To perform radiation measurements that help refine risk projections 

• Skin- and internal body organs dosimetry

• During Van Allen belt transit & in cis-lunar space

• Intravehicular environment specific to Orion

– To validate the protection provided by AstroRad

– To expand the ISS MATROSHKA international participation

– Demonstration of science opportunities aboard Orion

• International Participation: 

– One phantom provided by DLR, one by ISA. 

• AstroRad provided by ISA

• Installation bracketry provided by DLR

– Most radiation detectors are provided by DLR and NASA 

– Additional baselined detectors by DOSIS 3D community and the European Space Agency

– Exploring addition of detectors from the Canadian Space Agency / BTI, and Thessaloniki 
University Greece
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MARE: CIRS Phantoms
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• ATOM® 702 Female model

– Avis 36.42 kg / Helga 36.48 kg

– Tissue equivalent material

– Artificial bone

– 38 slices with TLD/OSLD holes

• 3 cm custom grid

http://www.cirsinc.com/products/modality/33/atom-dosimetry-verification-phantoms
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MARE: CIRS Phantoms Internal
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• CT scan performed on each phantom

• CT scan data are used to generate CAD models

• CAD models are used for AstroRad vest 
customization and radiation analysis
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MARE Baselined Radiation Detectors
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• Radiation Detectors Overview: Actives & PDP

# Helga Detector Org # Avis

2 M-42 Compact DLR 4

5 M-42 Split DLR 5

6 CPAD NASA 12

1 EAD-MU-O ESA 2

4 DOSIS PDP DLR 8
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DLR M42
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• Silicon Detector

• Mass: 108-120 g

• 1 cm2 area, 300 µm thickness

• Energy range 0.06-20 MeV (Si)

• 1024 channels

• Autonomous operation

– Launch detection (accelerometer)

– Run time > 42 days

• Two versions

– Compact

– Split
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DLR M42 DUS-NRT and return
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DUS-NRT: 20.56 ± 0.78 µGy in Si
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DLR M42 HIMAC Exposure
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DLR M42 MAPHEUS testing
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• MAPHEUS is a DLR research rocket

– Max Altitude = 260 km

– Flight Time = 14 min 10 s (6 min microgravity)

– Launched from the European Space and 
Sounding Rocket Range, Kiruna, Sweden  
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NASA CPAD
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• Crew Personal Active Detector

• Direct Ion Storage (Mirion Technologies)

• Mass <35 g, volume = 5.4 x 3.4 x 1.8 cm3

• Battery life >10 months (configuration dependent)

• Display for crew information includes dose rate 
and cumulative dose 

• Additional CPADs to be flown on EM-1 outside of 
MARE

• Variable storage rate, no load detector needed

• ISS Tech Demo currently in progress



2018 COSPAR Razvan Gaza & MARE team         ©2018 Lockheed Martin, StemRad, DLR. All Rights Reserved

ESA Active Dosimeter (EAD)
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• Provided by the European Space Agency

• Also referred to as EAD Mobile Unit –
Orion (MU-O)

• Based upon the existing ISS EAD MU

– ISS EAD system also includes docking station

– MU-O requires upgraded battery lifetime

– Additional instances of the EAD MU-O baselined to 
fly on Orion EM-1 outside of MARE

• Mass 150 g, volume 6x10x3 cm3

• Thin/Thick Silicon Detector

• Instadose®

• RadFET
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DOSIS 3D PDP
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• Dose Distribution Inside the International Space Station - 3D

– DLR lead effort to dose map all the ISS segments (2012 – 2018)

– Passive Dosimeter Package (PDP) includes TLDs + OSLDs + CR-39 PNTDs

– Large international participation includes:

• Technical University Vienna, ATI, Austria

• Institute of Nuclear Physics, IFJ, Krakow, Poland

• Centre for Energy Research, MTA EK, Budapest, Hungary

• Belgian Nuclear Research Center, SCK•CEN, Mol, Belgium

• Nuclear Physics Institute, NPI, Prague, Czech Republic

• Oklahoma State University, OSU, Stillwater, USA

• National Institute of Radiological Sciences, NIRS; Chiba, Japan

• NASA JSC, Houston, TX, USA
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Phantom Embedded Dosimeters
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• Passive dosimeters located on the phantoms grid

– 6000 TLDs provided by DLR (750 measurement points/phantom, 4 TLDs/measurement point

– 2000-3000 TLDs/OSLDs provided by NASA JSC (1000-1500 /phantom)

– 10 organ point passive dosimeter packages provided by DLR (5 /phantom)

• Containing TLDs and CR-39 PNTDs 
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Exploration Mission 1 (EM-1)
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• First Orion test flight beyond Earth orbit scheduled for 2020

– Uncrewed flight on Distant Retrograde Lunar Orbit (DRO)

– Trapped protons, GCR, possibly SPE

EM-1 Expected Trapped Proton Mission Fluence
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Preliminary MARE exposure projections
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• MARE at relevant locations inside Orion vehicle. Limitations:

– Conceptual Flight Profile 

– Solid phantom of constant density / material

– Preliminary AstroRad design

– Time resolved measurements from active detectors to separate environment contributions
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Path Forward
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• International collaboration framework 

• MARE System Requirements Review

– Validation of design requirements

• Payload integration design and verification efforts

– Safety certification

– Design reviews

• Dose projections refinement

• Late stow vehicle installation

• Post-flight data processing, consolidation and publication 
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Conclusion
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• MARE is among the first Orion payloads

• Benefits from large international collaboration support

• Example of science research opportunities on board Orion as the first 
Exploration architecture component 

Our goal is to improve astronaut safety and enable Exploration


