

Assessing Torso Shape and Posture Variations with Flexible Strain Sensors

Linh Vu¹
Elizabeth Benson¹
Han Kim, PhD²
Sudhakar Rajulu, PhD³

¹MEI Technologies, Houston, TX

²Leidos, Houston, TX

³NASA Johnson Space Center, Houston, TX

Background

- Human movement inside a spacesuit is largely unknown
 - Kinematic and geometric measurements are required for suit fit and biomechanical analysis during EVA-related tasks
- Constraints of the spacesuit prohibit the use of conventional motion capture or 3-D scanning techniques to capture internal movement
 - Volume restrictions
 - Ferrous magnetic interference

Xsens MVN suit

Fabric Strain Sensors

 A newly developed technology using fabric strain sensors can provide useful kinematic information based on overall skin deformation patterns

StretchSense Fabric Stretch Sensor

- 90 mm × 10 mm surrounded by 2 mm sewable area
- 80 mm extension available (180% extension of active area)
- Sensitivity: 1.38 pF/mm

Advantages

- Low profile
- Can be adhered to the body or integrated into a garment

Objective

Develop and test a method for measuring torso shape and posture variation using StretchSense strain sensors

Specific Aims

1. Estimate upper body posture

2. Estimate upper body shape

Study Participants and Setup

- 12 active and healthy male participants
- Within healthy BMI ranges (23 24.9)
- Age 21 52 years
- Setup
 - Blue paper stickers are placed on anatomical landmarks
 - Sensors are adhered with Kinesotape

Body Scanning

3dMDbody System

12 full-color camera units ~0.8 seconds capture speed Error: <0.5 mm RMS

Sagittal Flexion

Lateral Bending

Axial Rotation

Complex

192 total scans were collected (12 participants × 8 postures × 2 replications)

Sensor Activation Patterns are Characteristic to Posture Variations

120 (Ld) 100 80 80 0 1 2 3 4 5 6 7 8 9 10 sensor

120 (£d 100 80 80 40 20 1 2 3 4 5 6 7 8 9 10 sensor

Sagittal Flexion

Lateral Bending

Axial Rotation

Complex

Statistical Modeling Lumbar angle measurements Goal: Use sensor patterns to from 3D scans predict joint angles and body Dimension shapes reduction Multivariate Lumbar angle regression angle Dimension model prediction reduction via PCA Stretch sensor recording Multivariate **Body shape** shape regression prediction model Dimension reduction Body shape from 3D scans

Posture Prediction

Posture		Average Lumbar Angle Estimation Error
Flexion		6.1°
Lateral Bending		5.7°
Rotation		12.4°
Complex	Flexion	8.5°
	Lateral Bending	11.6°
	Rotation	14.9°

Flexion Example

51.1° Measured 43.5° Predicted

Upper Body Shape Prediction

- Predicted torso shape showed overall good agreement to the scan geometry
- Estimation accuracy was greatest at lumbar subregion (between S1 and T12)
- Shoulder and pelvis regions showed lower prediction accuracy

	Torso	Lumbar
Flexion	2.20	0.56
Lateral Bending	2.01	0.51
Rotation	1.95	0.49
Complex	2.26	0.50

Unit: cm

National Aeronautics and Space Administration

Unit: cm

Demonstration

Possible Limitations

- Sensors could be affected by geometric and biomechanical variations of skin and garment surface
- The model was constructed using specific body types
 - Estimation accuracy may vary for females or individuals with more adipose tissue
- How the sensors would interact with a spacesuit needs investigation
 - High temperature and humidity
 - Physical contact and pressure
 - Sensor robustness

ICA Project Overview: Wearable Sensor Garment

- Objectives and procedures are similar to the previous work
- Sensors are embedded into a wearable garment to measure internal suited motion
- A real-time software tool is created to collect sensor data
- Model is constructed to predict lumbar joint angles and body shape

Sensor integration

Real-time Software Tool

Future garment implementation

Wearable Sensor Garment Materials

- SUGOI™ triathlon compression garment
 - 71% nylon, 29% spandex
- StretchFABRIC Sensing Element sensors
 - Stretch Sensor
 - 80 x 10 mm silicon sensing zone with Lycra fabric backing
 - Sensitivity: 9.5 pF/mm
 - Greater precision and robustness in comparison to previous sensors

Wearable Sensor Garment Design

- SUGOI™ triathlon compression garment
- Multiple sensor placements were simulated in order to maximize sensor signal variance between postures

3D Scan Data Collection with Garment

Virtual Sensor Placement

Wearable Sensor Garment Construction

- Sensors were attached to the garment via clasps
- Sensor configuration and data collection software were tested
- Sensor reliability results were encouraging

StretchSense Sensor with Clasps

Sensor Garment Pilot Testing

Posture	Average relative SD across all sensors
Flexion	6.8%
Lateral Bending	4.2%
Rotation	12.5%
Complex	7.6%

Unit: µF

Wearable Sensor Garment Testing

- Scan and sensor data from five subjects was collected from 16 different static postures
- Post-processing, model development, and data analysis is still ongoing

Sensor Configuration

Sensor and Scan Data

Contact Information

Linh Vu

linh.q.vu@nasa.gov

Sudhakar Rajulu PhD

sudhakar.rajulu@nasa.gov