

Human Mars Entry, Descent & Landing Architecture Study (EDLAS) *Rigid Decelerators*

Tara Polsgrove, Thomas Percy, Jay Garcia NASA Marshall Space Flight Center

Alicia Dwyer Cianciolo, Jamshid Samareh, Rafael Lugo NASA Langley Research Center

Ed Robertson, Chris Cerimele, Ron Sostaric NASA Johnson Space Center

AIAA SPACE 2018 September 17-19, Orlando, FL

Study Objectives

- Develop two evolutionary rigid vehicle concepts to deliver human scale payloads (20 metric ton) to the surface of Mars
 - Capsule
 - Lifting body, mid-range lift-to-drag ratio (Mid L/D)
- Determine vehicle configurations for various mission flight phases
- Determine vehicle performance:
 - Integrated system mass
 - Ability to meet landing constraints
 - Payload packaging and surface access
- Provide technology investment recommendations to NASA's Space Technology Mission Directorate

Cargo Elements for Long Duration Surface Stay

10 m diameter SLS fairing; 300 day stay; Crew of 4; Four 20 t payloads

Lander 1

- Surface Power Units
- Unpressurized Rovers
- Cargo Off-loading
- Logistics Module
- Science Payloads

Lander 2

- Mars Ascent Vehicle
- Atmosphere ISRU
- Crew Access Tunnel

Lander 3

- Pressurized Rover
- Logistics module
 - Crew consumables
 - Fixed system spares
 - Mobile system spares
 - EVA spares
- Surface Mobility

Lander 4

Habitation

Vehicle Summaries: Capsule

EDL Concept of Operations

Launch to Mars Landing Vehicle Configurations

Capsule Mass

Subsystem	Component	Quantity	Unit Mass (kg)	CBE (kg)	MGA %	MGA (kg)	MEV (kg)
Aeroshell	Heatshield Structure + TPS	1	1,893	1,893	35%	663	2,556
	Backshell Structure + TPS	1	3,310	3,310	35%	1,158	4,469
	TOTAL						7,025

CBE = Current Best Estimate MGA = Mass Growth Allowance MEV = Maximum Expected Value

Capsule Vehicle Configurations

Capsule Payload Packaging

Design impacts of adding landers

- More launches (est. 5)
- Larger landing zone
- Modular Habitat; need way to connect them on surface
- Different payload masses per mission

- Additional architecture element (taxi)
- Extended delivery schedule

Capsule Performance

Vehicle Summaries: Mid L/D

9

Vehicle Configuration

Sizing Assumptions:

- 5 G axial, 2 G lateral load at launch on all concepts
- Payload element structures need to be redesigned for horizontal launch orientation
- 9.1 m max diameter in 10 m SLS fairing
- No Jettison events during EDL
- Ballistic coefficient = 380 kg/m²

EDL Concept of Operations

Launch to Mars Landing Vehicle Configurations

Mid L/D Mass

CBD = Cargo Bay Doors MGA = Mass Growth Allowance

		Without cargo bay door			With CBD		D
ID	System	Basic (kg)	MGA (%)	Predicted (kg)	Basic (kg)	MGA (%)	Predicted (kg)
1.0	Structure	12318	20.0%	14782	12970	20.0%	15564
1.1	Primary Structure	10698.4	20%	12838.1	11482.4	20%	13778.9
1.2	Secondary Structure	1619.7	20%	1943.6	1487.7	20%	1785.2
2.0	Propulsion	4241	24.1%	5263	4241	24.1%	5263
3.0	Power	953	27.7%	1217	953	27.7%	1217
4.0	Avionics	269	23.7%	333	269	23.7%	333
5.0	Thermal	675	25.0%	844	475	25.0%	594
6.0	CobraMRV	4487	22.5%	5499	4027	22.5%	4901
6.1	Thermal Protection System (TPS)	2526.8	20.0%	3032.2	2526.8	20.0%	3032.2
6.2	Aerosurfaces	400.0	30.0%	520.0	400.0	30.0%	520.0
6.3	Mechanisms	740.0	30.0%	962.0	280.0	30.0%	364.0
6.4	Landing Gear	820.5	20.0%	984.6	820.5	20.0%	984.6
DRY		22943	21.8%	27937	22935	21.5%	27871
7.0	Cargo	20000	0.0%	20000	20000	0.0%	20000
8.0	Non-Propellant	911	6.0%	966	911	6.0%	966
INERT		43854		48902	43846		48837
9.0	Usable Propellant	15018		15018	14998		14998
9.1	Usable Propellant (MPS)	9886.2		9886.2	9873.0		9873.0
9.2	Usable Propellant (RCS)	4905.3		4905.3	4898.7		4898.7
9.3	Engine Start/Stop Transient (MPS)	226.6		226.6	226.6		226.6
GROSS		58872		63921	58845		63835

Mid L/D Vehicle Configurations

49% scale version in the Delta IV Heavy long and short fairings precursor payloads up to 10t

Mid L/D Payload Packaging

, rework

Design impacts

- Habitability of horizontal habitat orientation has not yet been assessed. May require more or less volume.
- Launch and landing loads on payloads are in different directions

Lander 4 Habitat volume reconfigured to horizontal orientation

Mid L/D Performance

NASA

- Landing Constraints2.01- Within 50 m of a target2.005- At 0 km above reference areoid1.995- 8-100 kN engines91,995Guidance Approach:1.98- Bank angle Control with Alpha Modulation (BCAM)1.97- With thrust factor 1.2 (BCAMTHR12)1.96
- Results

Launch Vehicle Integration

• SLS Launch Fairing Options

- 10m diameter x 19 m or 27 m

Impacts of Flying Without a Fairing

- Launch vehicle aerodynamics & loads
- Fairing subsystems carried all the way to Mars

ID	Subsystem	No CBDs No SLS PLF Predicted Mass (kg)	No CBD with SLS PLF Predicted Mass (kg)		
1.0	Structures	16,066	14,782		
1.1	Primary Structure	12,838	12,838		
1.2	Secondary Structure	1,944	1,944		
1.3	Structural Adjustment for Eliminating the PLF	1,284	0		
2.0	Propulsion	5,263	5,263		
3.0	Power	1,217	1,217		
4.0	Avionics	333	333		
5.0	Thermal	844	844		
6.0	Aero decelerator	6,790	5,499		
6.1	TPS	3,032	3,032		
6.2	Aerosurfaces	520	520		
6.3	Mechanisms	962	962		
6.4	Landing Gear	985	985		
6.5	SLS PLF-Specific Components	1,292	0		
Dry Ma	155	30,513	27,938		
7.0	Cargo	20,000	20,000		
8.0	Non-Propelled Fluids	966	966		
Inert Mass		51,479	48,904		
9.0	Used Propellant	15,797	15,018		
9.1	Usable Propellant (MPS)	10,407	9,886		
9.2	Usable Propellant (RCS)	5,163	4,905		
9.3	Engine Start/Stop Transients (MPS)	227	227		
Total S	tage Gross Launch Mass	67,276	63,922		

3.3 t heavier without fairing

Integrated Vehicle Mass

ID	Subsystem	Capsule	CobraMRV	
1.0	Structures	5,422	14,836	
2.0	Propulsion	5,215	5,190	
3.0	Power	1,568	1,568	
4.0	Avionics	333	333	
5.0	Thermal	218	844	
6.0	Aero decelerator	7,025	5,499	
Dry Mass		19,781	28,270	
7.0	Cargo	20,000	20,000	
8.0	Non-Propelled Fluids	1,965	1,523	
Inert Mass		41,746	49,793	
9.0	Used Propellant	26,531	16,399	
Total	Stage Gross Launch Mass	68,277	66,192	

Recommendations

- Down select to one rigid vehicle design: Mid L/D
 - Payload Packaging
- Determine the effects of different launch and landing load paths on payload structural design
- Perform extensive CFD analysis on SRP initiation and surface interaction
 phase
- Define EDL GN&C sensor requirements matrix (performance and software requirements and vehicle accommodation)

JOIN US ON THE JOURNEY