# **Prospecting for Habitable Planets**

Jon M. Jenkins NASA Ames Research Center

Monday March 27, 2017

KLA-Tencor Corporation Milpitas, CA



#### All the Known Planets In 1994



A Search for Earth-size Planets









https://xkcd.com/1071/

# TO SCALE

(46 OF TIME 2001)

ALL 786 KNOW

Search for Earth-size

THIS IS OUR SOLAR SYSTEM.

THE REST OF THESE ORBIT OTHER STANS AND WERE ONLY DISCOVERED RECENTLY MOST OF THEM ARE HUSE BELAUSE

THOSE ARE THE KIND WE LEARNED TO DETECT FIRST, BUT NOW WERE FINDING THAT SMALL ONES ARE ACTUALLY MORE OMMON.

A DEPARTMENT OF A DEPARTMENT OF A



#### NASA's 1995 ExNPS Report



#### Transit Photometry not Recommended!







## What fraction of sun-like stars in our galaxy host potentially habitable Earthsize planets?



TIME IN HOURS







Radii estimated for non-transiting exoplanets Discovery data dithered randomly within discovery year





### **Exoplanet Discoveries**







- Back illuminated CCDs (20 ppm photometric precision)
- Sophisticated algorithms
- Computational infrastructure





















## First Light Image



Planets





## First Light Image



Planets



# **Key Science Results**





Kepler's Greatest Hits

- Kepler-10b,c
- Kepler-11b,c,d,e,f,g
- Kepler-16b
- Kepler-47c
- Kepler-22b
- Kepler-62e,f
- KIC-12557548 And Many Others!



## **Kepler's First Science Result**



HAT-P-7B



#### **Another Star**





uminosit



Stars are large resonant cavities that ring like bells

We've measured acoustic modes for >15,000 solar-like stars

Asteroseismology gives unprecedented precision in size, mass of stars



Chaplin et al 2011, Science

### Asteroseismology with Kepler





Inset – Stellar oscillation Detections before Kepler.

Main: Kepler's 4 years of study show the stars amplitudes (ppm) as color coded points. Extended study provides –

- Stellar ages and radii
- Internal differential rotation
- Convection zone depths ages
- Rotation axis orientation
- Heliophysics-like results ... for many thousands of stars



#### Kepler-17b: Stroboscopic Spots



**Planets** 





#### Kepler-17b: Spot Lifetime





Désert et al. 2011 AJS **197**, 14



#### **A Possibly Disintegrating Planet?**



A Search for Earth-size Planets





#### **Multiple Transiting Planets**









#### Every time there's an 'Earth 2.0' exoplanet announced.





What Joe Public sees.



What conspiracy theorists see.



What we actually see.

#### Kepler-452b

ARTISTIC CONCEPT

## **Data Validation Summary**



DiffImageQuality-fgm: 0.75 [3/4 of 4]

#### KIC: 8311864 Candidate: 1 of 1 Period: 384.846 d



Software Revision: svn+ssh://murzim/repo/soc/branches/integ/ksop-1993@55984 — Date Generated: 11-Jul-2014 01:49:44 Z This Data Validation Report Summary was produced in the Kepler Science Operations Center Pipeline at NASA Ames Research Center

#### A Window Into Time



### **Searching for Habitable Worlds**



#### KEPLER-20e DECEMBER 2011



KEPLER-22b DECEMBER 2011



KEPLER-452b JULY 2015



KEPLER-186f APRIL 2014



ARTISTIC CONCEPT



# Kepler's Small Habitable Zone Planets

As of May 10, 2016



# KEPLER SCIENCE DATA PROCESSING PIPEINNE



**Science Operations Center Architecture** 



**Kepler** A Search for Earth-size Planets





Search for Earth-size Planets







Kepler is sensitive to its thermal environment



## **Correcting Instrumental Effects**



A Search for Earth-size Planets











We apply a Maximum A Posteriori approach as per Stumpe et al. 2014







Planets

















A Search for Earth-size Planets



**Detecting Transits Against Stellar Variability** 



Is stellar variability stationary?

No!

We must work in a joint time-frequency domain

Wavelets are a natural choice





# **A Wavelet-Based Approach**



A Search for Earth-size Planets

Filter-Bank Implementation of an Overcomplete Wavelet Transform

The time series x(n) is partitioned (filtered) into complementary channels

 $W_{X}(i,n) = \{h_{1}(n) * x(n), h_{2}(n) * x(n), ..., h_{M}(n) * x(n)\} = \{x_{1}(n), x_{2}(n), ..., x_{m}(n)\}$ 





**Stellar Variability + Transits** 













# **Single Transit Statistics**



Planets







Planets















Improving the Throughput of Kepler's Science Pipeline A Search for Earth-size Planets



#### Some fast code; Some slow code

#### Step 1: Parallelize all code



#### Step 2: Make slow code fast(er)





#### Hardware Architecture: Kepler Science Operations Center





64 hosts, 712 CPUs,3.7 TB of RAM,148 TB of raw disk storage



Hardware Architecture: NAS Pleiades Supercomputer



5.34 Pflop/s peak cluster211,872 cores724 TB of memory15 PB of storage













## **SOC Cluster Architecture**











Beginning early in the next decade, the LSST will collect over 50 PB of raw data, resulting in over 30 trillion observations of 40 billion astronomical sources. It will measure the positions and properties of over 20 billion stars, or 10% of all stars in the Milky Way.



#### Kepler Search Space — 3,000 light years –

Kepler 100 deg<sup>2</sup> FOV

North America Nebula Cygnus Loop

California Nebula

Cone Nebuta

**Gum Nebula** 

Crab Nebula Orion Nebula

SUN

**Rosette Nebula** 

Portrait of the Milky Way © Jon Lomberg www.joniomberg.com







# **Comparison of Host Star Brightness**



Discovering New Earths and Super-Earths in the Solar Neighborhood

## Predicted Science Yield from TESS Mission

SS



#### **TESS Will Discover ~300 Earths & Super-Earths**





**S**SS

# **TESS Flight Hardware**



**TESS Spacecraft** 





- TESS will identify the best and smallest exoplanet targets for characterization of atmospheres using:
  - JWST
  - Extremely Large Telescopes (ELTs)
  - Future Exoplanet Explorers, Probes, and Large Missions



### **Detecting Biomarkers through Transit Spectroscopy**



Transiting planets provide opportunities to determine the bulk planetary density and to characterize their atmospheres



Kaltenegger, L. and Traub, W. (2009) Transits of Earth-Like Planets, ApJ

# Exoplanet Missions

Hubble

Spitzer

Ground-based Observatories



Kepler

2001 Decadal Survey

TESS

New Worlds, New Horizons

JWST



2010 Decadal Survey

New Worlds

Telescope

ASA

WFIRST-

AFTA





- We now know of ~2,300 planets orbiting other stars
- ~20 of these planets are less than 2X the size of Earth in the habitable zone of their star
- Kepler-452b is the first small, possibly rocky planet in the habitable zone of a G2 star like the Sun
- TESS is NASA's next mission to find Earth's nearest neighbors