Prospectilg for Habitable Planets

$$
\begin{aligned}
& \text { y } 7 \text {, On M. Jenkins } \\
& \text { HASA Ames Research Center } \\
& \text { Moiday March 27, } 2017 \\
& \text { KL-Tencor Corporation } \\
& \text { Mipitas, CA }
\end{aligned}
$$

What fraction of sun-like

stars in our galaxy host potentially habitable Earthsize planets?

BRIGHTNESS

TIME IN HOURS

Exoplanet Discoveries Over Time

- Back illuminated CCDs (20 ppm photometric precision)
- Sophisticated algorithms
- Computational infrastructure

Kepler Candidate KOI-351

First Light Image

First Light Image

Key Science Results

Kepler's Greatest Hits

- Kepler-10b,c
- Kepler-11b,c,d,e,f,g
- Kepler-16b
- Kepler-47c
- Kepler-22b
- Kepler-62e,f
- KIC-12557548

And Many Others!

HAT-P-7B

Another Star

Stars are large resonant cavities that ring like bells

We've measured acoustic modes for >15,000 solar-like stars

Asteroseismology gives unprecedented precision in size, mass

Frequency [mHz]
Temperature

Chaplin et al 2011, Science

Inset - Stellar oscillation Detections before Kepler.

Main: Kepler's 4 years of study show the stars amplitudes (ppm) as color coded points. Extended study provides -

- Stellar ages and radii
- Internal differential rotation
- Convection zone depths ages
- Rotation axis orientation
- Heliophysics-like results ...for many thousands of stars

Désert et al. 2011 AJS 197, 14

A Possibly Disintegrating Planet?

Multiple Transiting Planets

Every time there's an 'Earth 2.0^{\prime} exoplanet announced.

What Joe Public sees.
What conspiracy theorists see.
What we actually see.

Kepler-452b

KIC: $\mathbf{8 3 1 1 8 6 4}$ Candidate: $\mathbf{1}$ of $\mathbf{1}$ Period: $\mathbf{3 8 4 . 8 4 6} \mathbf{d}$

DV Fit Results:
Period $=384.84625[0.00754] \mathrm{d}$ Epoch $=314.9787[0.0146]$ BKJD $\mathrm{p}^{+}=0.0129[0.0248$ $\mathrm{b}=0.30$ [25.06] $\mathrm{Teq}=221 \mathrm{~K}$ $\mathrm{Rp}=1.12 \mathrm{Re}$ $\mathrm{a}=0.9888 \mathrm{AU}$

DV Diagnostic Results:
Epoch-sig: 92.0\% [0.100] ShortPeriod-sig: N/A ModelChiSquare2-sig: 91.6% Bootstrap-pfa: $4.79 \mathrm{e}-14$ Centroid-sig: 1.1\% Centroid-sig: 1.1% arcsec [1.630] Centroid-so: $1.832 \operatorname{arcsec}[1.630]$
ootOffset-rm: 1.664 arcsec [3.000] KicOffset-rm: $1.649 \mathrm{arcsec}[3.61 \mathrm{o}]$ OtOffset-bf: N/A KicOffset-bf: N/A

A Window Into Time

Searching for Habitable Worlds

KEPLER-20e
DECEMBER 2011

KEPLER-452b JULY 2015

KEPLER-22b DECEMBER 2011

KEPLER-186f
APRIL 2014

Kepler-452 System
$\stackrel{\rightharpoonup}{*}$
Kepler-186 System

Kepler-452b

Kepler's Small Habitable Zone Planets As of May 10, 2016

KEPLER

SCIENCE DATA•PROCESSING PIPEMNE

N459 Short Timescale Instrumental Errors

Signature of a heater cycling on the reaction wheels $3 / 4$

Correcting Instrumental Effects

We apply a Maximum A Posteriori approach as per Stumpe et al. 2014

Is stellar variability stationary?

No!
We must work in a joint time-frequency domain

Wavelets are a natural choice

A Wavelet-Based Approach

Filter-Bank Implementation of an Overcomplete Wavelet Transform

The time series $x(n)$ is partitioned (filtered) into complementary channels

$$
\begin{aligned}
W_{x}(i, n) & =\left\{h_{1}(n) * x(n), h_{2}(n) * x(n), \ldots, h_{M}(n) *\right. \\
x(n)\} & =\left\{x_{1}(n), x_{2}(n), \ldots, x_{m}(n)\right\}
\end{aligned}
$$

Stellar Variability + Transits

 Time to First Transit

Keeping Up with the Data

Some fast code; Some slow code

Step 1: Parallelize all code

Step 2: Make slow code fast(er)

64 hosts, 712 CPUs,
3.7 TB of RAM,

148 TB of raw disk storage

5.34 Pflop/s peak cluster 211,872 cores
 724 TB of memory
 15 PB of storage

 Planets

6 Clusters:

4 Operations Clusters:
Flight Ops, Quarterly, Monthly \& Archive)
2 Test Clusters:
LAB \& TEST

Science Processing Pipelines
Long Cadence Photometry Pipeline
「 $\overline{\mathrm{P}} \overline{\mathrm{P}} \bar{A}^{-}$

Short Cadence Pipeline

Beginning early in the next decade, the LSST will collect over 50 PB of raw data, resulting in over 30 trillion observations of 40 billion astronomical sources. It will measure the positions and properties of over 20 billion stars, or 10% of all stars in the Milky Way.

Eagle: Nebula

Kepler Search Space
+1 mia

3,000 light years

Kepler
100 deg 2 FOU

- Northlamerica

SUN

Nebula : rocks hus Loop

Crab Nebula Orion Nebula

Coss TESS Sky Coverage

Comparison of Host Star Brightness

TESS Will Discover Earths \& Super-Earths Orbiting Bright Stars

EDss Predicted Science Yield from TESS Mission

TESS Will Discover ~300 Earths \& Super-Earths

Etess

Coss TESS Flight Hardware

Hess TESS Spacecraft

TESS Enables Atmospheric Characterization

- TESS will identify the best and smallest exoplanet targets for characterization of atmospheres using:
- JWST
- Extremely Large Telescopes (ELTs)
- Future Exoplanet Explorers, Probes, and Large Missions

Etess

Detecting Biomarkers through Transit Spectroscopy

Transiting planets provide opportunities to determine the bulk planetary density and to characterize their atmospheres

Exoplanet Missions

- We now know of $\sim 2,300$ planets orbiting other stars
- 20 of these planets are less than $2 X$ the size of Earth in the habitable zone of their star
- Kepler-452b is the first small, possibly rocky planet in the habitable zone of a G2 star like the Sun
- TESS is NASA's next mission to find Earth's nearest neighbors

