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Cart3D Aerodynamic Analysis & Design Package

* Automated multilevel Cartesian mesh generation
with adjoint-driven adaptive refinement

e Cut-cell approach in cells that include model
surface

* Finite volume, 2nd-order accurate Euler solver
with explicit Runge-Kutta time stepping and
multigrid

e Steady or time-accurate

* Part of a design framework allowing for gradient-
based aerodynamic shape optimization of user-
specified functional

* Shown to be highly effective for analysis and
design of low boom aircraft
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Motivation for New Boundary Conditions

Current sur £BC inflow/outflow boundary condition requires user to
specify an entire state (p, u, v, w, p) at the boundary (Pandya, 2004)

* Riemann solver is applied to compute flux at the boundary and thus boundary
condition is always well-posed

» Robust and flexible since it can be used for both inflow and outflow, subsonic
and supersonic

* |Inconvenient when user wants to specify inflow or outflow with minimal
information

 for subsonic flow through inlets, a common boundary condition is back pressure

 for subsonic flow into nozzles, a common boundary condition is specifying total
pressure and total temperature (and flow direction)

 very difficult to specify mass flow rate, particularly in cases where nonlinear flow
features are prevalent
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Cart3D Surface Boundary Conditions

Solid walll

Specify full flow state and use Riemann
solver (Sur£BC)

e Pandya, Murman, Aftosmis, 2004

o for all inflows and outflows

Subsonic Outflow
e back pressure @

e constant normal velocity

new

Subsonic Inflow

« total pressure and total temperature New

» mass flow rate and total temperature @
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Subsonic Outflow Boundary Conditions

e One flow quantity
specified at
boundary

e back pressure

e normal velocity

* Four flow quantities
extrapolated from
Interior




Back Pressure Outflow

* Most other CFD solvers have this common interior bou ndary
option -
- _ n <— Pset
* Pressure set to specified value at boundary !
< +
» Entropy and tangential velocity extrapolated Ci _ J
from interior J g
e Riemann invariants used to compute boundary Vt, iT
state
Vn’ i .
« Safeguards — § —

* if flow reverses back into interior (back pressure too high), solid wall boundary enforced

* if interior flow goes supersonic, compare back pressure to pressure after normal shock
occurring at boundary

* if set back pressure is higher, use after-shock state at boundary, forcing subsonic flow in the interior

* if set back pressure is lower, extrapolate all flow attributes from interior (supersonic outflow)

» Can be difficult to obtain specific mass flow rate for nonlinear flows
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Constant Normal Velocity Outflow

Allows for robust mass flow rate steering Interior

* Might better represent flow in fror\t of an S A <
engine fan face (Pearson ’59, Reid '69) i
+
* Normal velocity set to specified value at C = J

boundary J” - -

* Entropy and tangential velocity V. .
extrapolated from interior I, 1

* Riemann invariants used to compute Z
boundary state

» Safeguards

* when interior flow is subsonic but boundary flow is supersonic (bad input velocity), flow is
forced to be sonic (choked flow)

* when interior and boundary flow are both supersonic, supersonic outflow is enforced (all
interior quantities extrapolated)
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Subsonic Inflow Boundary Conditions

e Four flow quantities
specified at boundary

e velocity set to be
normal to boundary
(two flow quantities)

e total pressure and
total temperature

 mass flow rate and
total temperature

e One flow quantity
extrapolated from
Interior
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Stagnation Property Inflow

* Most other CFD solvers have this common bou ndary \ interior
option §
N A
* Total pressure and temperature set to Pt set § >
specified value at boundary ’ N H., .
- - - Tt set N |
* Tangential velocity set to zero, forcing ’ < N J-
inflow to be normal to surface §
N
* Enthalpy is extrapolated from interior Vt b= 0 g
’ N
* Riemann invariant used to computed N

v

boundary state

» Safeguards
* when flow tries to reverse back into boundary, solid wall boundary enforced

* inflow Mach number is limited to sonic, adjusting stagnation properties accordingly

» Cannot explicitly set a mass flow rate
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Mass Flow Rate and Total Temperature Inflow

» Allows for explicit mass flow rate bou ndary \ interior
control R
m =
* Mass flow rate and total set 0.
‘o /
temperature set to specified value at T, _ \
boundary ’
V., =0 X
« Tangential velocity set to zero, L, b
forcing inflow to be normal to Vn S—>
surface

* Density is extrapolated from interior
* Boundary flux computed from boundary state
e Safeguard

* inflow Mach number is limited to sonic, adjusting boundary values accordingly

5/14/18  DLRodriguez 10



Mass Flow Rate Control

* Constant velocity outflow boundary
condition can be steered to obtain

specified mass flow rate out of the domain [ Moutfiow is
steered

e average density over surface is computed

e velocity out of domain is set based on desired
mass flow rate

* repeat every few iterations until solution
converged and mass flow rate within
tolerance
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Mass Flow Rate Control

* Constant velocity outflow boundary
condition can be steered to obtain
specified mass flow rate out of the domain

e average density over surface is computed

e velocity out of domain is set based on desired
mass flow rate

* repeat every few iterations until solution
converged and mass flow rate within
tolerance

* Constant mass flow rate inflow boundary

condition explicitly sets mass flow rate into
the domain
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Adjoint-Driven Adaptive Mesh Refinement

* All boundary conditions now implemented in adaptive mesh refinement process

e Updates to adjointCart, xSensit, adjointErrorEstQuad, etc.
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Application of New Boundary Conditions

* Ducted fan in near-hover (subsonic)

* verification of back pressure outflow and mass flow rate inflow boundary conditions
* mesh convergence through adaptive refinement
* mass flow rate steering example

 Turbofan with both fan and turbine exhaust streams (transonic)

* verification of constant velocity outflow and stagnation property inflow boundary
conditions

* mesh convergence through adaptive refinement
* mass flow rate steering example

* Turbojet with 2-D ramp inlet (supersonic)
* mesh convergence through adaptive refinement
* mass flow rate steering example

e Scramjet (hypersonic)

* Low boom demonstrator

» Validation cases
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Ducted Fan in Hover

e Duct and center body
housing motor to drive fan

* Very low freestream Mach
number (0.001) to simulate
near hover

* No angle of attack -
axisymmetric flow

* Fan modeled as annular
disk

* Inflow / Outflow boundary
conditions enforced on disk
to model fan effects
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Ducted Fan - Example Solution

Back Pressure
Outflow

Stagnation
Property Inflow
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Ducted Fan - Example Solution

Back Pressure
Outflow




L, norm of Pressure Error
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Ducted Fan - Example Solution

Constant
Velocity Outflow

Constant Mass
Flow Rate Inflow
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Ducted Fan - Example Solution

onstant
locity O

Constant Mass
Flow Rate Inflow

e

[\

[

\

M~ =0.001, a = 0°, 160M cells
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Ducted Fan - Mesh Convergence

e Good convergence of functional (drag)

» Steady reduction in error estimate
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Ducted Fan - Adaptively Refined Mesh

» Colors represent cells of same level of refinement

* Mesh was refined at surface, at shear layer of exhaust flow,
and near attachment point

Attachment .
Point
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Ducted Fan - Mass Flow Rate Steering

e |Inflow mass flow

rate (Minflow) SEt Or—  Mesh 114
through boundary - (SO
condition 4L V// \] 113
X l. L
* Outflow mass flow g | , i - 112
rate (Moutfiow) "E 2r .
steered to match i 11
* Mass flow rate 3r e 14
quickly converges j
and continues to 7 T S R 1,9
converge through ° P eration o

each refined mesh
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Ducted Fan - Example Solution

Matched Mass
Flow Rates

M~ =0.001, @ = 0°, 180M cells
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Turbofan in Transonic Flow

e [ransonic diffuser with fan hub

e [wo stream exhaust with cone
nozzle for turbine flow

* Mach 0.8 freestream, no angle of
attack (axisymmetric flow)

* Fan / Compressor face modeled
as annulus, outflow boundary
condition applied

e Fan and turbine exhaust planes
modeled as annuli, inflow
boundary conditions applied
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Turbofan - Example Solution

Back Pressure M== 0.8, a = 0°, 170M cells Stagnatlon
Outflow Property Inflow

2

(R
1\..1.51 )

Mach Number: 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
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Turbofan - Example Solution

M-=08,a=0° 170Mcels|  Stagnation
°“"’° Property Inflow

NNy
)x\Q"Jl»‘HL “ V]

Mach Number: 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
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Turbofan - Example Solution

Constant Constant Mass
Velocity Outflow Flow Rate Inflow

Mach Number: 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
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Turbofan - Example Solution

Constant

Velocity Outflow

Constant Mass
Flow Rate Inflow

Mach Number: 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
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Constant Velocity B.C. Mesh Convergence
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Turbofan - Mesh Convergence

e Good convergence of functional (drag)

» Steady reduction in error estimate
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Turbofan - Adaptively Refined Mesh

» Colors represent cells of same level of refinement

* Mesh was refined at surface, at shear layer of inlet and exhaust
flow, near attachment point, and at shock structures

Shock
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Turbofan - Mass Flow Rate Steering

e |Inflow mass flow

rate (Minflow) SEt 4T 11-20
through boundary 02 41.15
condition g 11 10

* Outflow mass flow s __I. | 1105 ¢
rate (Moutflow) % : — 1100 Eg

c . . 1 %
steered to match 2 ™| —% loes .
06 s :

* Mass flow rate : 1090
quickly converges 0.8 Jo.8s
and continues to I S S S ST PP
converge through 0 1000 2000 3000 4000 5000

Iteration

each refined mesh —
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Turbofan - Example Solution

Matched Mass
Flow Rates

Mach Number: 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
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Turbojet in Supersonic Flow

2-D ramp inlet design for normal terminal shock
Converging-diverging duct with cone nozzle

Mach 1.5 freestream,
1° angle of attack

Qutflow / Inflow
boundary conditions
applied to annuli

32



Turbojet - Mesh Convergence

e Good convergence of functional (thrust + lift + plume sensor)

» Steady reduction in error estimate
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Turbojet - Adaptively Refined Mesh

* Colors represent cells of same level of refinement

 Mesh was refined at surface, within Mach cone of influence, at
shock and expansion structures, and at plume shear layer
Influencing pressure sensor

Mach :
Cone i
—
N s
A\ i | Pressure | |
B _ »z Sensor . J—
&—— . i & !
;\ g % § ; o -
S ) t'\
o AN
e I A
e S hock | ]
B, | Shoc Expansion
et Structures Structures
‘ 3 W—-———w
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Supersonic Inlet - Mass Flow Rate

» Usually need to specity mass flow rate through an inlet
o Often desirable to match nozzle mass flow rate if modeled

e Highly nonlinear flow features can make mass flow rate steering difficult
IN supersonic and even transonic inlets
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Turbojet - Mass Flow Rate Steering

e |Inflow mass flow

rate (Minflow) SEt 'Q'OH 1"
through boundary
condition 250

e ————————] 1 (

. :
* Qutflow mass flow g | & | &
rate (moutﬂow) ‘§ 30 - S | ?%’
steered to match & | 1,4
* Mass flow rate 5T |
quickly converges 5 |
and continues to qobe e g
0 1000 2000 3000 4000
converge through lteration

each refined mesh

5/14/18  DLRodriguez 36



Ms= 1.5, a = 1°, 120M cells

/A

<
N\

Mach Number: 0.2 0.4 0.6 0.8 1.0 1.2 1.4 16 1.8 2.0 22 2.4




Scramijet in Hypersonic Flow

Multiple ramp inlet and outlet, flow through burner remains supersonic

Mach 5.0 freestream, 2° angle of attack

Subsonic inflow / outflow boundary conditions not applicable

Original full state with Riemann solver (Sur £BC) boundary condition applied

Mesh was refined at surface, within Mach cone of influence, shock and expansion structures, and
plume shear layer influencing pressure sensor

O N A A THE -
Shock RS Mwo= 5.0, a = 2°, 220M cells
Structures
T
| = )
v/ ﬁ%ﬁ T e
) i h”“*ph

Mach Number: 2.0 2.4 2.8 3.2 3.6 4.0 44 48 5.2
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Low

» Realistically complex Maill;lIExI;ausTr
ozzle
geometry

e Mach 1.4 freestream,
2.15° angle of attack

3 inlets and 3 exhausts

Under Nozzle

1 ' Exhaust Port
-

. Cooling
Air Inlet

Main InIe;tJ
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Low Boom Aircraft - Adaptively Refined Mesh s

e Functional was aircraft drag
e Colors represent cells of same level of refinement

e Mesh was refined at surface, within Mach cone of influence, and at

shock and expansion structures
' ' EEEEEE 1 -t d: ; ? HHE H W:_ |
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™ Y. " Structures
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. . A
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s i aE:
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Low Boom Aircraft - Example Solution

Mo= 1.4, a =2.15°,
70M cells (half-body mesh)

— ———

Mach Number: 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1.0 1.1 1.2 1.3 1.4 1.5 1.6

* Underwing inlet geometry is not fully
realized

» Safeguards were active in these inlets
(solid wall to not allow reverse flow)
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Validation Case - 2-Shock Inlet

e Same validation case was run with SurfBC (Pandya, 2004)

i
BRI
T

LTI
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Verification Case - Low Boom Demonstrator Signature

* Low boom aircraft was analyzed original Sur£BC and again new boundary conditions

* Near field signatures compared

h/L=3, Odeg

0.008|
0.006|
0.004|

0.002|

Q. i
SN B
Q

< O-

-0.002{

-0.004 |

-0.006 |

-0.008 -

Distance along sensor
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Summary and Ongoing Work

Four new subsonic inflow/outflow boundary conditions implemented to improve
modeling of propulsion systems

Robust mass flow rate control implemented for both inflow and outflow

Demonstrated on notional propulsion systems in flight regimes ranging from
subsonic to hypersonic

* adjoint-driven mesh refinement demonstrated with all propulsion boundary conditions

* new boundary conditions verified mesh convergence studies on notional examples
Demonstrated on realistically complex low boom aircraft
Some validation completed
Ongoing work

* Implement additional functionals appropriate for propulsion systems

* Extend design framework to include new propulsion boundary conditions and functionals
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