Global Assimilation of Loon Stratospheric Balloon Observations

Lawrence Coy1 Mark Schoeberl2 Steven Pawson1 Salvatore Candido3 and Robert W. Carver3
1NASA Goddard Space Flight Center, Greenbelt, MD, USA; 2Science and Technology Corp., Columbia, MD, USA; 3Loon, Mountain View, CA, USA

The Problem
Verification of global data assimilation system (DAS) output fields by independent observations insures the quality of these products for scientific studies and can highlight the need for additional observations to improve the quality. This is especially important for middle atmosphere winds where there are few “in situ” observations available to constrain the DAS. Here we use constant pressure balloon derived winds to evaluate the lower stratospheric winds in the NASA GEOS DAS.

Loon Balloons

Goal: launch and maintain a fleet of balloons to provide Internet coverage to users on the ground.
Status: over 25 million km of test flights since the project began.
Flight Duration: up to 190 days in the stratosphere.
Winds: Derived from Loon Balloon GPS determined locations.

https://loon.co/

Methodology

NASA GMAO MERRA-2 Data Assimilation System
Two Experiments:
1. Control Experiment (assimilation of standard observation set)
2. Loon Experiment (assimilation of Loon balloon derived winds + standard observation set)
Test Time Period: June-August 2014 (large number of Southern Hemisphere Loon Balloons)

Loon Balloon Distribution (June-August 2014)

Southern Hemisphere Loon Balloons 70-50 hPa (18-21 Km) Altitude 60°S to 10°N Latitude

Balloon Altitudes are adjusted while in flight

Examples of Loon Balloon Coverage

6-Hour Assimilation System Data Window
Loon balloons can fill in wind observations over the oceans.

14 Days Tropical Coverage
Tropical observations provided some of the largest DAS adjustments when assimilating the Loon winds.

Forecast Improvement (o-f) RMS Summary

Assimilated Loon Balloon Winds greatly improves the tropical background forecast
Note: o-f denotes the difference between the observation and the short background forecast

Analysis Improvement (o-a) RMS Example

Analysis winds interpolated by the DAS in space and time to the Loon position
Note: o-a denotes the difference between the observation and the DAS analysis

Analysis Differences (RMS) August 2014

Control and Loon Balloon differences found mainly at Loon Balloon Altitudes
Evidence of some influence extending into the troposphere, below the Loon Balloon altitude.

Additional Test Time Period (June-August 2016)

Sample Trajectories (~100-70 hPa Altitude Range) Western Hemisphere Concentration
Confirmation of 2014 Results O-F RMS Improvements at all latitudes, more significant improvement in tropics

Conclusions

1. Additional wind observations can improve data assimilation products in the lower stratosphere, especially in the tropics
2. Current tropical wind analyses in the lower stratosphere can have errors larger than 10 ms⁻¹
3. Some of the stratospheric wind analysis improvement may be accompanied by improvements in the upper troposphere wind analysis (further investigation is planned)