Characterization of On-Orbit GPS Transmit Antenna Patterns for Space Users

ION GNSS+ September 27, 2018

Jennifer E. Donaldson, Joel J. K. Parker, Michael C. Moreau NASA/Goddard Space Flight Center

Philip D. Martzen, Dolan E. Highsmith The Aerospace Corporation

Agenda

- Introduction
- History of High Altitude GPS
- GPS ACE Overview
- GPS Receiver Design
- Generation of Antenna Patterns & Results
- Uses of Antenna Pattern Data
- Conclusions & Future Work

Introduction

- Problem Statement
 - Vehicles operating in Space Service Volume (SSV, 3000-36,0000 km alt) have very limited visibility of GPS main beam
 - Expanding GPS usage to side lobes greatly enhances availability and accuracy of GPS solution
 - Side lobes are poorly characterized
 - Unknown side lobe performance results in lack of confidence in usage
- GPS ACE Contribution
 - GPS L1 C/A signals from GEO are available at a ground station through a "bent-pipe" architecture
 - Map side lobes by inserting advanced, weaksignal tracking GPS receivers at ground station to record observations from GEO

Brief History of High-Altitude GPS

- Bent-Pipe GPS
 - First applications in early 1980's were transponded
 - GPS signal is captured at the spacecraft and relayed to the ground on an intermediate frequency
 - GPS signal is then sent to a remote processor on the ground
 - Kronman described a bent-pipe architecture in 2000
- Notable flight experiments to record GPS in SSV
 - Air Force Academy Falcon Gold
 - NASA Goddard / AMSAT OSCAR-40
 - ESA EQUATOR-S
 - ESA GIOVE-A
- Missions using GPS in SSV
 - In-flight: ANGELS, SBIRS, Magnetospheric Multiscale (MMS), GOES-R, SmallGEO, and more
 - Upcoming: cubesats in GEO, lunar exploration

Limited pattern coverageNo azimuthal resolution

GPS ACE Project

- IR&D collaboration between NASA Goddard Space Flight Center (GSFC) and The Aerospace Corporation
- Goals:
 - Characterize GPS transmitter gain and pseudorange performance in side lobes
 - Perform real-time OD experiments from GEO platform
- Record bent-pipe GPS signal measurements
 - Record output GPS data (C/N_0 , pseudorange, carrier phase)
 - Post process GPS measurements to recover GPS side lobe gain and measurement quality
- Interest to GPS community
 - Exhaustive dataset provides insight into performance and limitations of GPS side lobe signals, permitting improved performance modeling
 - Extensive measurements of IIF antennas previously not available
 - Provide operational platform for conducting real-time navigation experiments

GPS ACE Implementation in Bent-Pipe Architecture

- GEO vehicle transponds GPS L1 spectrum to ground
- Digitized data is sent over network to GPS receivers
- Two versions of receivers installed:
 - NASA Navigator receiver
 - Aerospace Mariposa GPS receiver
- Record GPS pseudorange and signal level observations
- Gather daily measurement files over time for batch processing
 - Full transmit gain patterns
 - Pseudorange residual assessment

GPS ACE Receiver Implementations

Two Versions: Flight and Ground

- NASA software GPS receiver common software base with NASA's flight Navigator GPSR
 - Designed to operate on-board in real-time
 - Acquisition to ~25 dB-Hz, tracking to ~22 dB-Hz
 - Coherent integration times up to 20 ms (no data wipe-off)
 - Hardware implementation of receiver also deployed via FPGA development board installed in workstation
- Aerospace implemented ground-based, aided weak-signal tracking GPS receiver algorithm
 - Mariposa GPS Receiver (MGPSR) uses bit and ephemeris aiding with adjustable long integration times (1 msec to 120 sec)
 - GPS RF baseband data stored in 24 hour FIFO with 3-hr delayed processing to accommodate latent aiding data
 - Tracking to < 0 dB-Hz with 30-sec integration
 - All-in-view tracking, pseudorange, carrier phase
 - This paper uses MGPSR C/N $_0$ and pseudorange for results generation

NASA GSFC OD Toolbox (ODTBX) Framework

Antenna Pattern Reconstruction Geometry

Data: collect GPS L1 C/A C/N0 and pseudorange observables *Geometry*: capture problem geometry and calculate GPS transmit antenna-relative (az, el) for each measurement

Visualization of Data Collection

- Trace path of GEO vehicle in antenna frame of each GPS vehicle
- Reconstruct full gain pattern after months of tracking

View from GPS Antenna Frame

- Shows path of GEO vehicle in azimuth & off-boresight angle relative to GPS frame
- Path changes due to Sun-relative yaw of GPS vehicle attitude
- Azimuth is from SV +X-axis about SV +Z-axis

GPS Yaw Geometry

Link budget: reconstruct the transmit antenna gain value from a received C/N_0 measurement

Antenna Pattern Reconstruction Pre-Editing

Pre-editing: use problem knowledge to detect and remove outlier measurements

Data Editing: GPS SV Attitude

Eclipse Periods

- Data was removed during noon and midnight turns
- Yaw model accurately predicts when the turns will occur based on sun angle, spacecraft position, and the beta angle.

Data Editing: GPS SV Attitude Yaw Excursions

- Automatic editing was implemented to catch anomalous tracking data.
- In this case, the SV was commanded to an unexpected yaw attitude.

Aggregation

0: Aggregation: collect PRN-specific data into SV-specific and block-average datasets

Smoothing

- Smoothing
 - Binned and averaged data is noisy, used a low-pass filter to smooth

Normalization

Reconstructed vs. Ground: Azimuth Cut

- Reconstructed main lobe data is aligned to vendor ground measured data
- Shallow nulls
 - Some of these nulls are steep and narrow (in azimuth). Yaw modeling errors contribute to averaging them out
 - Possibly temporal effects (temperature, power variations, multipath)
- Most GPS receivers cannot track into the nulls so this information is not needed for accurate simulations

Reconstructed vs. Ground: Elevation Cut

• Good agreement in azimuth

Products

Average Transmit Gain -- Block IIR In-Flight vs. Ground

• In-flight averaged over all SVNs in block in 1 deg x 1 deg bins

• Remarkable similarity between average flight and ground measurements

Average Transmit Gain -- Block IIR-M* In-Flight vs. Ground

• In-flight averaged over all SVNs in block in 1 deg x 1 deg bins

* IIR-M signifies modernized antenna panel flown on all IIR-M vehicles and some IIR

Average Transmit Gain -- Block IIA/IIF

First Characterization of Full Transmit Patterns

- Averaged over all SVNs in block in 1 deg x 1 deg bins
- IIF side lobes are shifted 45 deg in azimuth from other blocks • Reconstructed Transmitter Gain Pattern Averaged for Block IIA 15

Block Average vs. Individual SVN

Block IIF vs. SVN 70 Gain

• Close match between reconstructed block average patterns and individual patterns

Variation in Individual SVN Gain

Mean Gain Difference

- There are mean differences in gain between patterns (before normalization)
 - Transmit power was applied uniformly to each block in the link budget
- These differences represent both the uncertainty in the link budget as well as differences in transmit power between individual satellites in a block

SV-SV mean differences within block Nulls < -20 dB ignored

Pseudorange Deviation Analysis

- Evaluate pseudorange accuracy in side lobes
- Create residuals from pass-through process:
 - Use Aerospace TRACE high fidelity orbit determination tool
 - Pass through external post-fit ephemeris
 - Compute residuals at all signal levels
 - Plot mean and standard deviation as a function of C/N₀ for each block
- Mean shows values < 1 m at all but extreme C/N_0
 - General negative trend at lower C/N₀
 - Spread in main beam likely due to atmosphere
- St. Dev. shows remarkable agreement across blocks
 - Noise function determined for relative weighting

Conclusions & Future Work

- GPS ACE architecture permits tracking of extremely weak signals over long duration
 - MGPSR produces signal measurements well into back lobes of GPS vehicles
 - 24/7 GPS telemetry provides near continuous tracking of each PRN
- First reconstruction of full GPS gain patterns from flight observations
 - Block averages of IIR, IIR-M show remarkable consistency with ground patterns
 - Demonstrates value in extensive ground testing of antenna panel
 - Characterized full gain patterns from Blocks IIA, IIF for the first time
 - Patterns permit more accurate simulations of GPS signal availability for future HEO missions
- Pseudorange deviations indicate usable measurements far into side lobes
- Future analyses include
 - Signal level and measurement stability / variability over time
 - Comparison to GPS signals received by the highly elliptical NASA MMS Mission
 - Characterization of GPS Block III transmit antennas

Thank You

Dataset available at: https://esc.gsfc.nasa.gov/navigation

Backup

NASA GSFC OD Toolbox (ODTBX) Framework

- **Geometry:** capture problem geometry and calculate GPS transmit antennarelative (az, el) for each measurement
- Link budget: reconstruct the transmit antenna gain value from a received C/N₀ measurement
- **Pre-editing:** use problem knowledge to detect and remove outlier measurements
- *0: Aggregation*: collect PRN-specific data into SV-specific and block-average datasets
- 1: Post-editing: perform outlier detection and removal at the pattern level
- 2: Binning: Transform scattered measurements into a regular az/el grid

- **3: Filling:** interpolate to fill isolated missing bins
- 4: Smoothing: Reduce noise in final pattern
- **5: Normalization:** Calibrate the final patterns against known independent sources (e.g., ground-measured data)

Link Budget

- Link Budget
 - Knowledge of C/N0 and estimate of receiver noise temperature gives an estimate of the RX power, R_p
 - Estimate or calculate the R_X antenna gain , A_r , the space loss, A_d , the GPS transmit power, P_{sv} , and other losses, A_s and L_r , to find the TX antenna gain, A_t

$$A_t(\theta, \varphi) = \frac{C}{N_0} - N_0 - A_r + L_r + A_s - P_{sv} - A_d$$

MGPSR Data Collection Histograms of Single Day of Observations

- Plots show MGPSR data collection over 24 hours from GEO vehicle
 - Demonstrates spectrum of observations available **daily** for **months**
- Left plot shows sensitivity into back lobes (> 90 deg off-nadir / off-boresight)
- Right plot shows received C/N_0 sensitivity to < 0 dB-Hz

- Link Budget
 - Knowledge of C/N0 and estimate of receiver noise temperature gives an estimate of the RX power, R_p
 - Estimate or calculate the RX antenna gain , Ar, the space loss, Ad, the GPS transmit power, Psv, and other losses, As and Lr, to find the TX antenna gain, At
- Smoothing
 - Binned and averaged data is noisy using a moving window filter
- Normalizing
 - The patterns are matched to ground measured data

GPS ACE Applications

- GPS ACE Data
 - Mission design/requirements verification
 - Confidence in predicted signal availability and performance
 - Mission operations / satellite selection augmentation
 - Improved operational navigation efficiency and accuracy
- GPS ACE System/Concept
 - SSV monitoring
 - Continuous monitoring of signal performance, including new launches
 - GPS III antenna pattern verification
 - Comparison to requirements

Azimuth Cuts for Blocks IIR & IIR-M

jennifer.e.donaldson@nasa.gov

Azimuth Cuts for Blocks IIA & IIF

jennifer.e.donaldson@nasa.gov

Pseudorange Deviation vs. GPS Off-Boresight Angle

Block IIF Results

- Azimuth cuts every 15 deg show variation, but reflect general trend to small negative bias in side lobes
- Average at each elevation across all azimuths
- Consistent behavior a different minimum signal levels

- Side lobe pseudoranges show small biases and predictable noise
- Clearly useful for high altitude space missions

