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Introduction

Region-1 (N Alabama)
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e Despite being well calibrated and populated with good high resolution weather inputs, why
rainfed yields are not able to match NASS yields?

 What can be done to improve the performance of crop model at regional scale?

One potential solution is the use of remotely sensed (RS) observations into crop model —

particularly soil moisture (SM)



Soil Moisture Measurement — Remote Sensing

Microwave (MW) Remote Sensing

* Physically based and quantitative in nature

* Based on difference in dielectric constant

e Coarse spatial resolution 25-40 km

e Shallow SM estimation depth 0-5 cm (approx.)
 All weather capabilities

e.g. —Advanced Microwave Scanning Radiometer — Earth Observing
System(AMSR-E), Soil Moisture and Ocean Salinity (SMOS), Soil Moisture
Active Passive (SMAP) etc.

0-5 cm MW sensing

depth
Thermal Infrared (TIR)

Indirect SM retrieval through energy flux estimations
MW + TIR

Relatively better spatial resolution 1-10 km

Root-zone moisture retrieval capability _
TIR sensing depth =

Can not penetrate through clouds, hence data gaps. rooting depth

e.g. — Surface Energy Balance Algorithm for Land (SEBAL),
Atmospheric Land Exchange Inverse (ALEXI) etc.



Study Area

* Total 32 counties from 4 states
 Maize is one of the top three crops of these counties
e Region 2 and 4 were highly irrigated 30-50%
e Regions 1 and 3 are 0-6% irrigated
e 2006-2010 were used for analysis
e 2006 and 2007 was abnormally dry year Laon GEORGIA
e 2009 was relatively wet year
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Satellite Derived Soil Moisture Profile
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Profile Results
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Crop Model Assimilation

e Decision Support System for Agro-Technology Transfer - DSSAT
e Computer simulation model of the soil-plant-atmosphere system
e Widely accepted crop model — nearly 30 years with 28+ crops

Inputs: [soit Conditions |~ | weather duta
* Min/Max Temperature Mode
i PreC| pitatlon ‘ Crop Management l"/ ha Genetics
e |nsolation (sunshine)
* soil | |
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* Yield TN -7
L4 Drought StreSS Environmental Impact ‘ ' ‘ Natural Resource Use ‘
* Irrigation Demand etc. Net Income

e Agridded version of DSSAT (GriDSSAT: McNider et al., [2011]) is being used in this study
 The original code was modified to read in external SM profiles and a wrapper script was
developed for data assimilations (DA) computations.



GriDSSAT Simulations

Multiple GriDSSAT simulations will be made to assess the sensitivity of the satellite assisted model

runs.
a) Model run with all the known inputs (the current official form of GriDSSAT from UAH) as test

case - True Case (with optimal fertilization)
b) Simulations with rainfed and DA.

The yields will also be compared at the county level with National Agricultural Statistics services
(NASS) reported yields.
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Data Assimilation - Ensemble Kalman Filter (EnKF)

Data assimilation allows for optimal merging of model and observations by
statistically taking into account their respective errors.

The representation of model and observation error covariance is crucial for the
optimal performance of the filter.

Following Yin et al., [2015], this study uses 12 ensemble members.

Model ensembles were generated by randomly drawing data from 100 year historical
weather information.

Average triple collocation errors from 10 SCAN sites of remotely sensed profiles
(between SCAN, NOAH and POME profiles) was used as observation error at each
layer depth.

|
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(a)

DA Results

Open-loop DSSAT Simulation
(Rainfed only)

Region-1 Region-2 Region-3 Region-4 (b)

2006

2007

DA DSSAT Simulation (Rainfed+
Satellite SM Profile)

Region-1 Region-2 Region-3 Region-4

2008

2009

g * Mean yield =
o
S S 4266 kg/ha

7463 kg/ha
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Compared to NASS reports, open-loop had nearly 39.2% errors
While DA model simulation had only 12.6% errors
There is a significant difference in yields for Region 2 and 4 between open-loop and NASS

2008 2010

Year

2007 2009



Overall result
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e Qur results show that the assimilation of RS profile improved the yield estimates in
regions dominated with irrigated cropland (Regions 1,2 & 4) 30-60% to 10-20%

 Non-irrigated (region 3) —-model forced with gridded precipitation showed some
improvement with DA 18% to 14.4%

* In non-irrigated regions, the assimilation of noisy RS profiles added to the overall model
error.

Highest improvements were observed for irrigated regions where rainfed model

simulation failed to register additional water supply but remotely sensed profiles were

able to detect such supplements.



Conclusion

The open-loop simulation yields in comparison with the reported NASS yields showed an
overall absolute relative error of nearly 39.2% whereas the data assimilation mode yields on
the other hand had an absolute relative error of 12.6%.

Assimilating satellite SM profiles into the crop model improved the yield estimation most in
irrigated regions (2 and 4) with average relative errors (< 2%) whereas for the relatively non-
irrigated regions (1 and 3) the mean relative error was nearly 8%.

Overall, taking all regions together, the data assimilation yield errors were less than 1/4t of
the open-loop yield errors.

The results indicate that the assimilation of RDSMP data into the crop model was effective in
improving yield estimates compared to open-loop (rain-fed only) simulations. The results also
highlight the effectiveness of TIR-based SM estimates in sensing irrigation applications on a
reginal scale.

Further improvements can be made through modifying the application of the EnKF, where a
variable error term can be applied to the remote sensing SM profiles taking into account the
error in the sensors related to vegetation coverage.
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POME Profiles

The POME based SM profiles were compared with SCAN site (2078) observations under various

conditions:
Additional Inputs
i s . e Location of inflection point

| A . . . . .

Inputs for POME model- f \ e Soil moisture at inflection point
*  Surface Soil Moisture
*  Bottom Soil Moisture

. Mean Moisture content

(’, )/ﬁ ------ Point of inflection
/ i
1
1
1
\ 4

(z) wpdep prog

Derivation of Inflection Point

e By redistribution of moisture above field capacity (tipping bucket)

e Uses information such as: irrigation/precipitation amount, ET, drainage etc. to redistribute
moisture content

e  First layer to reach field capacity is usually the location of inflection point -

e Initial SM content at inflection point was assumed to be as field capac ** " °" B

10 +

Infiltration/drai
nage from top

ET
i If W > FC, drainage h

to lower layer




EnKF

A* = A7 + K(D; — HAT)
_ Pe
~ HP,HT+R,

H — measurement operator, here = unity

P, and R, are model and observation error covariances,respectively

|
"~ HT(N-1)

P, N_(Af — AN)(HAT — HANT

AT is ensemble mean



SM Difference (Vol.)
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Correlation
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Profile Results

Constant (50% AWC) lower boundary condition

With increase in layer depths, the POME profile error
statistics tend to improve in terms of bias and RMSE.

Whereas, Noah LSM tends to show reverse trend with
increase in errors with depth.

Calibrating bottom boundary condition with rainfed GriDSSAT SM data, a further

improvement in profile results were observed.

P* - uncalibrated POME profiles

P — Calibrated POME profiles

S —SCAN Profiles
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Introduction

ALEXI

e Atmospheric Land EXchange Inverse model (Anderson et al., [1997])

 Based on ‘Two Source Energy Balance’ model.

 The rate of temperature increase of either a soil or canopy component is related to
an increase or decrease in evapotranspiration (ET), which in turn is related to soil
moisture. In general, dry soil or stressed vegetation heats up more rapidly than
wet soil or unstressed vegetation.

. . . ;‘:k\’ Source: Anderson et al., [2007]
* Cloud-free constraint limits data Aol elosure SN 2 ABLclosure
availability. Al /
e Gridsize : 0.04 degrees R
e Fractional PET is functionally related to
fraction of available water content Biending |/
T. / height | /{Hj @ T
— Tn: 'Irmm T:Azl‘rnnnz
fomn = AET o = (Barexr — Owp)
PET — ppom AW —
PET (Orc — Bwp) —
Source: Hain et al., 2009

Relation between fpgr and f4:
e Linear

* Piece-wise 5 |
e Non-Linear
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