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ABSTRACT 

We present an overview of the pixel-level calibration of flight data from the Kepler Mission performed within the Kepler 
Science Operations Center Science Processing Pipeline. This article describes the calibration (CAL) module, which 
operates on original spacecraft data to remove instrument effects and other artifacts that pollute the data.  Traditional 
CCD data reduction is performed (removal of instrument/detector effects such as bias and dark current), in addition to 
pixel-level calibration (correcting for cosmic rays and variations in pixel sensitivity), Kepler-specific corrections 
(removing smear signals which result from the lack of a shutter on the photometer and correcting for distortions induced 
by the readout electronics), and additional operations that are needed due to the complexity and large volume of flight 
data.  CAL operates on long (~30 min) and short (~1 min) sampled data, as well as full-frame images, and produces 
calibrated pixel flux time series, uncertainties, and other metrics that are used in subsequent Pipeline modules. The raw 
and calibrated data are also archived in the Multi-mission Archive at Space Telescope at the Space Telescope Science 
Institute for use by the astronomical community. 

Keywords: Kepler, Space Telescope, Transit Photometry, Calibration 

1. INTRODUCTION  
The primary goal of the Kepler Mission is to detect Earth-size planets transiting Sun-like stars outside of the Solar 
System.  In order to obtain the precision needed to detect such small photometric signals, the flight data is subject to 
numerous data processing steps that are performed in a complex automated pipeline which was developed in the Kepler 
Science Operations Center (SOC).  The SOC Science Processing Pipeline1,2 (hereafter referred to as the Pipeline) is 
composed of a number of modules that operate sequentially (Figure 1), including calibration (CAL), photometric 
analysis3 (PA), pre-search data conditioning4 (PDC), transiting planet search5 (TPS), and data validation6 (DV).  
Additional modules operate in parallel to monitor the instrument performance7,8 and provide target management9.  The 
flight data are processed monthly and quarterly10, and are subject to continuous reprocessing throughout the length of the 
mission as the Pipeline algorithms continue to improve.  Once each data set is processed through the Pipeline, the SOC 
provides a list of planetary candidates to the Science Team for further analysis. 

Herein, we describe the first component of the Pipeline, CAL, which processes original flight pixel data provided by the 
Data Management Center at the Space Telescope Science Institute (STScI).  Various data types are collected and differ 
by the number of integrations that compose each sampling time (or “cadence”), and also by the number and location of 
pixels that are collected.  The raw data include photometric (target and background) pixels, along with a subset of the 
CCD termed “collateral data” which includes masked and virtual (over-clocked) rows and columns that are used 
primarily for calibration.  Three types of data sets are processed within CAL: (1) select pixels from >150,000 long 
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cadence (LC) targets that are collected every 29.4 minutes (with 270 exposures per cadence); (2) a smaller set of pixels 
from 512 short cadence (SC) targets that are sampled more frequently at 0.98 minute intervals (with 9 exposures per 
cadence); and (3) full-frame image (FFI) data which contain all available pixels for a single long cadence.  These data 
types are processed separately in the Pipeline, and the differences will be noted herein. 

 

 
 

Figure 1. An overview of the science data flow in the SOC Pipeline is shown (left), along with a description of the primary 
functions of each component (right).  

This article describes the data flow within CAL and the methodology and reasoning behind the individual corrections 
that are applied to the different pixel types.  Many of the primary corrections use external models11 of each CCD that 
were developed from pre-flight hardware tests and FFI data taken during commissioning12 (prior to the dust cover 
ejection).  We discuss how these models are applied within CAL to correct for 2D bias structure, gain and nonlinearity 
of the conversion from analog-to-digital units (ADU) to photoelectrons, local detector electronics effects (undershoot 
and overshoot), and flat field (variations in pixel sensitivity).  Other signals that are corrected include excess charge from 
saturated stars that leak into the masked and virtual regions, cosmic ray events, dark current and smear.  Note that CAL 
does not include any time or motion corrections or coordinate transformations.  We present an overview of the focal 
plane CCD components and the pixels that are calibrated in the next section.  Section 3 describes the individual 
calibration steps, presented in the order that they are performed, along with the additional functionalities of CAL.  In 
Section 4, we present a summary of the CAL module and discuss future work that will help to improve the quality of the 
data. 

2. KEPLER DATA FORMATS 
The Kepler focal plane array is composed of 42 charge-coupled device (CCD) detectors (Figure 2).  A CCD “module” 
refers to a pair of CCDs that share a field flattener and are read out simultaneously by the detector electronics.  Each of 
the 21 modules is composed of four CCD “outputs” that are each read out by a separate analog signal chain.  The CAL 
software component operates on a single CCD module/output, or “channel”, at a time.  

 

 

 
 

 

 

 

     Figure 2. A celestial view of the Kepler focal plane (left), the first light image (middle), and a calibrated FFI from Q4 data       
     (right, in units of 106 electrons/cadence) of module/output = 17/2 (channel 58) are shown.   

CAL Calibrate pixels (collateral, background and target) for 
long cadence, short cadence, and full frame images 

PA Extract raw flux and compute photocenter (centroid) for 
each target and cadence from associated target pixels 

PDC Correct systematic and other errors in raw light curves, 
remove excess flux due to aperture crowding, and 
condition light curves for the transiting planet search 

TPS Perform transiting planet search and return Threshold 
Crossing Events (TCEs) for detections 

DV Fit transiting planet model to light curves with TCEs, 
search for additional transiting planets, and perform 
statistical tests to validate candidate planets 



 
 

 
 

 

2.1 Pixel Collection  

Each CCD channel consists of an array of pixels with 1070 rows and 1132 columns, of which only a subset (1024 x 
1100) is photometric (Figure 3).  The full (1070 x 1132) array of pixels is downlinked for FFI data, whereas only select 
target and background pixels are downlinked for LC and SC data due to limitations in memory, bandwidth, and the 
design of the flight software9.  For LC, an upper limit of 170,000 stellar targets and 1125 background targets are 
collected across the focal plane (with additional limitations on the number per channel and the total pixel count).  In 
addition, LC collateral data (black, masked smear, and virtual smear pixels, which are described in the next section) are 
collected for calibration.  For SC, a maximum of 512 stellar targets across the focal plane are collected, along with a 
subset of the collateral pixels: the black rows and smear columns that lie in the projection of the photometric pixels onto 
the collateral region (Figure 3), in addition to the black pixels that lie in the projection of the masked and virtual smear 
pixels (used to calibrate the smear). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. A schematic of the pixel regions in a single CCD channel (left) shows the location of photometric pixels, along 
with the collateral pixels on the perimeter of the CCD that are collected for calibration.  Only a subset of collateral data 
(black columns and smear rows) is collected and co-added onboard the spacecraft13.  For LC data, all black rows (and a 
subset of columns) and all smear columns (and a subset of rows) are collected (gray region in right panel), whereas for SC 
only collateral data in the projection of pixels are collected. 

 

2.2 Photometric and Collateral Data  

The photometric pixels include all available target and background pixels on a CCD channel.  In PA (the Pipeline 
module that follows CAL), the photometric pixels are packaged into individual stellar and background targets to create 
target flux time series.  Within CAL, however, the target and background pixels are indistinguishable and the calibration 
steps are processed on the individual pixel flux time series. 

The collateral data includes the following: 12 “leading black” pixels that represent virtual (non-physical) pixels, which 
are read out before the photometric pixels in each row; 20 “trailing black” pixels, which are read out after the 
photometric pixels in each row; 20 “masked smear” pixels, which are physical pixels closest to the serial register that are 
covered with an opaque aluminum mask; and 26 “virtual smear” pixels, which are read out after all of the photometric 
pixels are clocked out.  Only a subset of these pixels are downlinked for calibration, however, and are designated by the 
ground segment in a configuration map that is uplinked to the spacecraft.  To estimate the black level correction, a subset 
of the trailing black region (columns 1119-1132) is collected, and the pixels in each row are co-added onboard the 
spacecraft prior to downlink.  Each ‘black pixel’ that CAL receives is therefore the sum of 14 black pixel values per row 
per cadence.  The leading black pixels are not used for calibration due to the presence of image artifacts in those regions.  
Likewise, a subset of masked smear (rows 7-18) and virtual smear (rows 1047-1058) pixels is collected, resulting in 12 
co-added masked smear and 12 co-added virtual smear pixels per column per cadence.  For SC data, only a small 
number of targets are collected from each channel, and the rows/columns of each target determine which collateral 



 
 

 
 

pixels are collected.  Two additional pixel types are collected for SC: “masked black” pixels, which are the sum of the 
pixels in the cross-sections of trailing black columns and masked smear rows, and “virtual black” pixels which are the 
sum of the overlapping virtual smear rows and trailing black columns.  Each masked black or virtual black pixel is the 
sum of the number of black pixels (14) times the number of smear pixels (12), or 168 co-adds per cadence.  For FFI data, 
all pixels are downlinked, but CAL uses the spacecraft configuration map to determine which collateral pixels should be 
used in calibration, and the data is processed as if it were a single long cadence. 

   

2.3 Processing order  

Data for each CCD channel are calibrated individually. Regardless of cadence type, the collateral pixels are always 
processed first to estimate the bias, smear, and dark levels.  The photometric pixel calibration follows, using results 
calculated from the collateral data output.  For FFIs, the collateral regions are also processed first to obtain the black, 
smear, and dark level estimates, and then the entire array (collateral plus photometric) is calibrated using these values. 

 

2.4 Data Gaps 

All pixel data is accompanied by logical arrays (the same size as the pixel arrays) of spatial and temporal gaps, and only 
the available pixels are calibrated.  In some calibration steps, such as the black and dark level estimation, CAL 
interpolates across missing cadences.  The only cases for which data may be gapped within CAL include (1) cadences 
that occur during a momentum dump,  (2) cadences that occur when the spacecraft is not in fine point (when the 
spacecraft attitude is not precisely controlled by the fine guidance sensors12), and (3) masked or virtual columns that 
have excess flux due to saturated stars that bleeds into those columns. 

 

3. CALIBRATION 
A schematic of the data flow in the CAL module is shown in Figure 4, and the primary calibration steps are described in 
this section.  The boxes in Figure 4 with dashed lines show the steps that can be disabled in the Pipeline if desired.  All 
cadence types (FFI, LC, and SC) and pixel types (collateral and photometric) are processed separately, but use the same 
MATLAB code base (with the exceptions noted in this section).  For each cadence type and channel, the first invocation 
processes collateral (black and smear) pixels for all cadences.  The outputs to this first pass include calibrated black and 
smear pixels, collateral and cosmic ray metrics, and more importantly the estimates for black, smear, and dark current 
for the specific channel that are needed to calibrate the photometric pixels.  Due to the large volume of data, the 
photometric pixels are subdivided by rows for LC processing, since the undershoot correction operates on pixel rows.  
For SC data, there are typically only 2-5 SC targets on a given channel but far more (30x) cadences than LC data, so we 
divide the pixels into cadence chunks.   

 

3.1 Models 

Some of the calibration steps rely on external models that characterize each CCD.  These focal plane characteristics (FC) 
models11 were developed during extensive ground-based tests, were updated in flight while the spacecraft dust cover was 
still in place, and are continuously monitored by the FC Pipeline module.  These time-dependent models include (1) a 
read noise model, which gives the read noise per channel; (2) a 2D black model, which provides a 2D map of the 
black/bias structure per channel; (3) a gain model, which gives the ADU-to-photoelectrons conversion factor per 
channel; (4) a linearity model, which provides a set of polynomial coefficients used to correct for any nonlinearity in the 
gain transfer function; (5) an undershoot model, which includes filter coefficients that are used to correct for 
undershoot/overshoot artifacts induced by the CCD local detector electronics (LDE); and (6) a flat field model consisting 
of a 2D map of values that are used to correct for pixel-to-pixel sensitivity.  



 
 

 
 

 
Figure 4. Data flow for calibrating collateral and photometric pixels.  Dashed boxes indicate corrections that can be disabled 
in the Pipeline. 

 

3.2 Fixed Offset, Mean Black, and Spatial Co-adds 

Before the pixels are calibrated for black (bias) level, they are corrected for a “fixed offset” and “mean black” value.  
These values (which vary for SC and LC and across channels) were introduced to deal with spatial variations in bias and 
gain across the focal plane array, and to address issues with the pixel requantization scheme12.  Prior to downlink, all 
pixels are subject to requantization in which each pixel value is mapped to a discrete value in a pre-generated table in 
order to control the quantization noise (the round-off error resulting from digitizing the voltage signals) to within ¼ of 
the intrinsic measurement uncertainty15.  Because collateral pixels are spatially co-added and fall on a different part of 
the requantization table, the mean black and fixed offset work by adjusting all channels to a common zero point to 
ensure proper requantization.  Given a pixel array P (in this case, for either collateral or photometric pixel data), the first 
correction performed within CAL for the available rows (row), columns (col), and cadences (t) is: 

 

€ 

Pall (row, col, t) = Pall (row, col, t) − ( fixed offset) + (mean black(t))  
 

Note that MATLAB is used for all of the CAL science algorithms, so the operations are often performed on full or 
partial (nrows x ncols x ncadences) pixel arrays rather than looping over any particular dimension.  The (row, col, t) notation 
here is meant to help the reader understand which pixels are processed in each step along with the dimensions of the 
pixel arrays and/or corrections.  CAL only operates on the available (non-gapped) rows, columns, and cadences.   

 

The original photometric pixels are in units of ADU/cadence.  The collateral pixels, however, need to be normalized by 
the number of spatial co-adds to convert to the same units: 

 



 
 

 
 

€ 

Pblack (row, t) =
Pblack (row, t)
nblack cols

(LC + SC data)

Pmasked smear(col, t) =
Pmasked smear(col, t)
nmasked smear rows

(LC + SC data)

Pvirtual smear(col, t) =
Pvirtual smear(col, t)
nvirtual smear rows

(LC + SC data)

Pmasked black (t) =
Pmasked black (t)

nblack cols ⋅ nmasked smear rows
(SC data only)

Pvirtual black (t) =
Pvirtual black (t)

nblack cols ⋅ nvirtual smear rows
(SC data only)

 

 

3.3 Black Correction 

The “black level”, or bias, in each CCD channel is an electronic offset that has been added to the CCD voltage to ensure 
that positive signals are input into the analog-to-digital converter (ADC).  In addition, the black level has a 2D structure 
which includes various artifacts that were discovered in each channel during ground testing of the CCDs.  These features 
are characterized in a 2D black model developed during ground testing and with reverse-clocked images (which omit 
starlight).  Some causes of the image artifacts include heating of the readout electronics, start of line (SOL) transients, 
and FGS frame transfer and parallel transfer clocking crosstalk signals that are injected into the photometric region as 
the image is read out13.  Figure 5 shows an example of a 2D black model (left panel) which displays SOL features near 
the leading black region, and a close-up view (right panel) shows frame transfer (horizontal bands) and parallel transfer 
crosstalk (diagonal bands) signals.  A 2D black model (in ADU/exposure) is extracted within CAL for each cadence and 
channel, scaled by the number of exposures, and is simply subtracted off all collateral and photometric pixels: 

 

€ 

Pall (row, col, t) = Pall (row, col, t) − 2Dblack(row, col, t)  

 

 

Figure 5. An example of a 2D black model (left, in units of ADU/exposure), and a close-up (right), that show the 2D bias 
structure that is subtracted from all pixels. 

 



 
 

 
 

Once the 2D black level is removed, a fit to the residual bias is used to estimate a 1D black correction.  The polynomial 
model order for the best fit is determined in an iterative fashion using the Modified Akaike Information Criterion14.  A 
robust fit is first performed to protect from outliers (neglecting charge injection rows in the virtual smear region), and a 
least squares with known covariance method is used with the computed best polynomial order to produce the fit, or 
“black correction”.  For each cadence, the black correction in a given row is subtracted from all available pixels in that 
row: 

 

€ 

Pall (row, t) = Pall (row, t) − 1Dblack(row, t) 
 

Following the 1D black correction, the black pixels are corrected for cosmic rays and saved for output to the Multi-
mission Archive at Space Telescope (MAST) at STScI, as they are no longer needed for calibration.  Note that CAL only 
corrects LC and SC collateral pixels for cosmic rays, but uses the same methodology as the photometric pixel cosmic ray 
correction that is performed within PA3. 

 

3.4 Nonlinearity and Gain Correction 

The gain and nonlinearity describe the transfer function from photoelectrons (e-) in the CCD to ADU coming out of the 
ADC.  Gain is the average slope of the transfer function, and ranges from 94 to 120 e-/ADU across the focal plane13,15.  
Nonlinearity is a measure of the deviation from a linear transfer function at each ADU signal level.  The nonlinearity 
model provides polynomial coefficients (Figure 6) for each exposure, and the correction can be estimated by evaluating 
the polynomial at the black-corrected pixel values.  The range of this correction across the focal plane is within +/- 3%.  
The nonlinearity model is valid up until the full-well level, which is the maximum number of electrons a pixel can hold 
before saturation occurs (~106 e-).  The gain model provides the gain value per channel and cadence in e-/ADU, and all 
pixels are simply multiplied by the gain following the nonlinearity correction.  At this point, Pall now represents either 
smear arrays (in which the rows can be ignored since these are essentially just functions of columns and cadences) or 
photometric pixel arrays: 
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Pall (row, col, t) = Pall (row, col, t) − polynomialnonlin (Pall (row, col, t))
Pall (row, col, t) = Pall (row, col, t) ⋅ gain(t)

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The nonlinearity correction, shown for a sample CCD channel, is the fractional deviation from the linear electrons-
to-ADU transfer function at each pixel value.  

 



 
 

 
 

3.5 LDE Overshoot/Undershoot Correction 

Overshoot and undershoot are signal distortions that were discovered during ground testing of the CCDs, and result from 
operating a clamp circuit in the local detector electronics (LDE) with insufficient bandwidth16. The impulse response 
artifacts are most noticeable after light-to-dark (undershoot) and dark-to-light (overshoot) transitions, resulting in spikes 
in the pixel row time series of the affected targets (Figure 7).  The undistorted image can be reconstructed by modeling 
these artifacts as a linear shift-invariant (LSI) system, which can be described by a set of difference equations that 
transforms an input signal x(n) into an output signal y(n):  

 

  

€ 

a(1) ⋅ y(n) = b(1) ⋅ x(n) + b(2) ⋅ x(n −1) +…+ b(nb +1) ⋅ x(n − nb)
− a(2) ⋅ y(n −1) −…− a(na +1) ⋅ y(n − na)

 

 

Here n-1 is the filter order, and a and b are the feedback and feedforward filter coefficients, respectively, that determine 
the z-transform system response H(z):  

  

€ 

H(z) =
b(1) + b(2) ⋅ z−1 +…+ b(nb +1) ⋅ z−nb

a(1) + a(2) ⋅ z−1 +…+ a(na +1) ⋅ z−na
 

 

The undershoot model provides a set of 20 filter coefficients for a, and an inverse filter is applied (with b = 1) to each 
row per cadence to correct for any undershoot/overshoot:  

 

€ 

Pall (row, t) = filter(b, a, Pall (row, t)) 
 

where filter is a built-in MATLAB function based on the above difference equations.  Note that an extra column to the 
left (lower column number) of each target aperture is collected and downlinked to perform this correction. 

      

     Figure 7. A close-up stretched image of two saturated target stars that show pixel undershoot signatures resulting from bright-to-
     dark pixel transitions in the direction of the serial readout (left panel), and the calibrated image (middle).  The mean of 3 pixel rows 
     is shown for one target (right) with the undershoot response (the negative spike) along with the corrected pixel values. 

 

Both collateral and photometric data are corrected for undershoot/overshoot, and the median value across the focal plane 
array15 is ~0.34%.  In the collateral data invocation, the LC and SC masked and virtual smear pixels are next corrected 



 
 

 
 

for cosmic rays and saved for output.  They are still used to estimate the smear and dark current levels that are needed to 
correct the photometric pixels (as described in the next section), but the “calibrated smear” pixels that are output to the 
MAST consist of the calibrated pixels up to this point. 

 

3.6 Smear and Dark Correction 

The target and background pixels are corrected for both smear and dark current levels.  The Kepler photometer is 
operated without a shutter, so stars smear along columns as the CCD is read out and are clearly visible in FFI data 
(Figure 8).  Dark current is a thermally induced signal in each physical pixel during an integration period, which includes 
the exposure time (texposure ~ 6.02 s) and readout time (tread ~ 0.52 s).  Because the focal plane is maintained at such a cold 
temperature (-85 degrees C), the dark current is very low with a median value of ~0.25 e-/pixel/sec across the focal 
plane15.  The smear and dark corrections are grouped together here because they can be estimated from linear 
combinations of the virtual and masked smear pixels. 

 
Figure 8. A portion of an uncalibrated FFI (in units of ADU/cadence, left) and the calibrated image (in photoelectrons per 
cadence, right) demonstrate the removal of smear from several columns. 

 

The masked smear pixels, which are shielded from star flux, detect dark current during an integration (texposure + tread) and 
collect smear signal from the photometric and over-clocked virtual pixels during readout.  The virtual pixels contain dark 
current that is accumulated during tread only, but collect smear as they are clocked through the image.  The dark level per 
cadence is computed by taking a robust mean of the masked and virtual smear differences from the common columns: 

 

€ 

dark level(t) = mean Pmasked smear(col, t) − Pvirtual smear (col, t) ⋅
texposure + tread
texposure

 

 
  

 

 
  

 

 
  

 

 
   

 

We interpolate dark level values over missing cadences to ensure that a dark level is available for all cadences.  To 
compute the smear level, the dark level is first removed from the masked and virtual pixels.   Ideally, both masked and 
virtual pixels are available for each column and cadence, but either may be used if only one is available.  If neither is 
available, however, the smear correction cannot be performed for the entire column.  We use the (ncols x ncadences) logical 
gap indicator arrays G (where gaps = true) that are provided with the smear pixel arrays to estimate the smear levels: 

 



 
 

 
 

€ 

Pmasked smear(col, t) = Pmasked smear(col, t) − (dark level(t)) ⋅Gmasked smear(col, t)

Pvirtual smear(col, t) = Pvirtual smear(col, t) − (dark level(t)) ⋅Gvirtual smear(col, t) ⋅
tread

texposure + tread

 

 
  

 

 
  
 

 

The available smear pixels for each column are tracked using the following logic: 

Available Masked Available Virtual Cmasked smear Cvirtual smear 
True True 1/2 1/2 
True False 1 0 
False True 0 1 
False False 0 0 

 

Cmasked smear and Cvirtual smear are coefficients in the linear combination of the dark-corrected masked and virtual smear 
pixels (where G’ are logical arrays with gaps = false): 

€ 

Cmasked smear(col, t) =
1
2

Gmasked smear(col, t) ⋅ (1+ ′ G virtual smear(col, t))

Cvirtual smear(col, t) =
1
2

Gvirtual smear(col, t) ⋅ (1+ ′ G masked smear(col, t))
 

 

€ 

smear level(col, t) = Pmasked smear(col, t) ⋅Cmasked smear (col, t) + Pvirtual smear(col, t) ⋅Cvirtual smear(col, t) 

 

The above smear and dark level estimates are computed during the collateral data calibration, resulting in a mean dark 
level value per channel and an array of smear levels per column per channel.  These are later subtracted from the 
photometric pixels in each column: 

 

€ 

Pphotometric(col, t) = Pphotometric (col, t) − (dark level(t)) − (smear level(col, t))  

 

An additional complication to the smear level estimate is bleeding charge from saturated targets into the masked or 
virtual smear regions that are clearly visible in FFI data.  CAL currently detects and gaps columns that are corrupted by 
bleeding charge in LC masked or virtual smear data (there are typically only one or two bleeding columns per channel). 

 

3.7 Flat Field Correction 

The flat field is the final major calibration step, and operates on photometric pixels to correct for spatial and temporal 
variations in pixel sensitivity to a uniform light source.  Differences in pixel response can be due to variations in 
quantum efficiency or throughput changes in the field flattener lenses or anti-reflection coating of the CCD.  The flat 
field model includes a geometric large-scale map combined with a small-scale (pixel-to-pixel) flat field map that is 
computed using a 9x9 pixel high pass filter13. The values represent the percent deviation from the local mean (with a 
median value across the focal plane15 of ~0.96%), and the 2D flat field model is divided from the appropriate 
photometric pixels for each cadence: 

 



 
 

 
 

€ 

Pphotometric(row, col, t) =
Pphotometric (row, col, t)
flat field(row, col, t)

 

 

3.8 Additional Functionality in CAL 

At the end of the last invocation of CAL for each CCD channel, the theoretical and achieved compression efficiency of 
the data are computed.  These metrics, along with time series of black, smear, and dark level metrics also computed 
within CAL, are used by the photometer performance assessment (PPA)8 module to track and trend data.  The 
uncertainties can be computed within CAL by the propagation of uncertainties (POU) module17.  The primary noise 
sources for Kepler include read noise, which is an additive noise source due to the readout process, quantization noise 
that is stochastic and results from quantization in the ADC and pixel requantization, and Poisson-like shot noise.  The 
uncertainties in the raw pixel data are computed at the start of CAL, and (if enabled) POU runs in parallel with CAL and 
the uncertainties are propagated at each transformation step.  If POU is disabled, the outputs to CAL are the raw 
uncertainties corrected only for gain.  

 

4. SUMMARY AND FUTURE WORK 
We have described the pixel-level corrections that are performed in the CAL Pipeline for LC, SC, and FFI flight data.  
The data corrections include: 2D and 1D black, gain, nonlinearity, undershoot and overshoot distortions from the LDE 
electronics, cosmic rays, bleeding charge, dark current, smear, and flat field variations.  The algorithms were validated 
using simulated flight data from the End-To-End-Model18 (ETEM) that was developed in the SOC, which simulates 
every layer of the data – from CCD and instrument artifacts to transit light curves – and has proven to be a powerful tool 
in the development and testing of the Pipeline modules.  Output from CAL that is exported to the MAST includes raw 
and calibrated black, smear, and photometric pixels, along with the associated gap indicators and uncertainties. 
Additional metrics for cosmic ray detection, black level, smear level, and dark current level estimates are also provided. 

Some issues that may be addressed in future versions of CAL include incorporating a more detailed time-varying 2D 
black model, refining the cosmic ray algorithms, and addressing bleeding charge in SC data.  Due to the large volume of 
data that is processed each quarter (Q1, for example, yielded ~2TB for LC and SC CAL output alone), and the fact that 
the SOC will be reprocessing data throughout the duration of the mission, improving the performance of the algorithms 
is a high priority in order to maintain reasonable data processing times. 

CAL has been successful at calibrating the flight data to high standards15.  With data from just the first 10 days of flight, 
the Kepler Mission has detected and confirmed eight giant extrasolar planets to date19 (including three that were known 
to exist in the Kepler field of view).  The CAL algorithms and performance will continue to improve throughout the 
lifetime of the mission to support the search for smaller Earth-size planets. 
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