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Introduction

* Line chill-down is an important process in cryogenic tank
propellant management, storage, and usage

 Complex flow dynamics during these processes:
— boiling heat transfer (film, transition, and nucleate)

* Understanding boiling phenomena can lead to efficient line
chill-down systems that use less propellant, propellant stored,
reducing cost for space missions



Current Work

* Line Chill-down heat transfer was modelled using
SINDA/FLUINT version 5.8 (SF)

* Multiple chill-down tests were modelled using:
— heat transfer correlations readily available in SF using HTN/HTC
TIES

— heat transfer empiricisms developed by the University of Florida
(UF) based on a series of liquid nitrogen chill-down tests using
SF HTU TIES

e Chill-down tests modelled:

— liquid nitrogen tests conducted by the University of Florida

* horizontal flow, upward flow, and downward flow (Reynolds
Numbers ranging 850 — 231,000)

— liquid hydrogen tests conducted by NASA Glenn Research Center

 vertical upward flow (Reynolds Number range of 18,400 —
433,000)



Heat Transfer

SF Heat Transfer Methodology

if Twall > Tdfb, then

Use h = hib
Else
Calculate Tleid
if Twall > Tleid, then
Use h = hib
Else
SINDA FLUINT Bolling Heat Transfer Calculation Summary for HTN Ties:
Calculate g"chf
X is the flow quality (may or may not be lump quality), and FR Is the mass flow rate
Calculate q"nb based on hnb
Calculate hnb, the nucleate boiling coefficient, using the CHEN correlation at a quality of MIN(X,Xnb)
1f g"nb > q"chf, then
Calculate hvap, the vapor film coefficient, at a flow rate of X*FR using Dittus-Boelter correlation
Use h = htb based on Twall, Tleid, Tchf
Calculate hib, the film boiling coefficient using hvap if it is greater than hib
Else
Calculate Tdfb, departure of film boiling temperature, roughly 0.9*Ter
Use h= hnb
End if
End if
tnd UF Heat Transfer Methodology
hboil =h
If subcooled boiling (Twall > Tsat but T < Tsat and X=0), then Calculate Twer prediction for the given mass flow rate and local pressure
Calculate hlig, the liquid film coefficient based on all liquid (full FR) and Dittus-Boeltes A If Tw = Twet then i = b
Update h by interpolation between hboil and hlig based on B If Tw = Twet, t]] 211
Else if Dry (X > Xnb), then 1. If Tw = Tsat, then:
Update h by interpolation between hboil and hvap based on X a) Calculate g CHF prediction
End if b) Calculate " "nb prediction
1) If g"nb = " CHF then h = hub
i) If ¢g"nb < g"CHF then & = hnb
2. If Tw < Tsat then h = hDB

Figure 1: Heat Transfer Methodology



Heat Transfer

UF Film Boiling Correlation:
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SF film boiling uses a correlation by Bromley for low quality flows*:
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*For higher quality flows a correlation by Groeneveld is used making sure the minimum is a least vapor Dittus-Boelter



Heat Transfer

UF Nucleate Boiling Correlation:
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UF Transition Boiling Correlation:
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SF nucleate boiling uses the Chen correlation, and transition boiling is a
nonlinear interpolation between nucleate and film boiling



Liquid Nitrogen Line Chill-down

Test section upstream and
downstream wall temperature
measurements

LN, pool cooler used to

preserve subcooling from the Dewar

LN, was pressurized, subcooled, and

supplied from a storage Dewar Yoo e Qir?
rore S 2 1 Vost
Presesre rogualas % I._.1 l l -
o “-Ll = :f\ s Subooolmg pool cooler L‘; R}
T8 Vet Vatve Do = I | _".-1 Laquid nizogen msade f):.
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—— model outlet
S
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Red lines: nitrogen gas lines
Blue lines: liquid nitrogen transport lines

Black lines: air lines

Figure 2: Liquid Nitrogen Chill-down Test Schematic



PIPE LENGTH 22.5IN (572 CM)
PIPE OD 0.5IN (1.27 CM)
PIPE ID 0.46 IN (1.168 CM)
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Liquid Nitrogen Line Chill-down Model AssIUmip'tio‘ﬁ‘s'

The flow rate was measured far downstream of the test section,
near the system exit. Where to set the flow rate?

SF was highly sensitive, and sometime unstable, setting the test
flow rate downstream (the outlet) of the test section model and
setting the test pressure upstream (the inlet) of the test section
model

— higher flow rate oscillations at the entrance of the model’s test section

SF was more stable setting the test flow rate upstream (than the
downstream flow rate set case)

— test pressure was used as an inlet (SF plenum) to set the
thermodynamic state (temperature and quality) coming into the
system

— setting the appropriate downstream pressure was the unknown



Liquid Nitrogen Line Chill-down Model AssIUmip'tio‘ﬁ‘s'
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Liquid Nitrogen Line Chill-down Model AssIUmip'tio’ﬁ‘s' .

The pressure drops predicted by SF for the downstream set flow
rate boundary condition were much smaller than test section
measured pressure drops

 The multiphase pressure drop correlations used internally in
SF may need to be adjusted

 Models with an upstream flow rate set assumed a pressure
drop that was small
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Figure 4a-4b: Wall
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Figure 5a-5b: Wall
Temperatures for Liquid
Nitrogen Horizontal Chill-
down Test Case Reynolds
Number = 23677
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Figure 7: Liquid Nitrogen Horizontal Chill-down Test Case Reynolds Number = 132597
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Figure 9a-9b: Pressures through the Test Section (Upstream and Downstream Flow Rate
Boundaries) for Nitrogen Horizontal Chill-down Test Case Reynolds Number = 23677
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Figure 10: Pressures through the Test Section (Upstream and Downstream Flow Rate
Boundaries) for Nitrogen Horizontal Chill-down Test Case Reynolds Number = 23677
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Figure 11a-11b: Wall
Temperatures for Liquid
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Chill-down Test Case
Reynolds Number = 4164



Liquid Nitrogen Line Chill-down Results (Vertical
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Nitrogen Horizontal Chill-
down Test Case Reynolds
Number = 13350
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Figure 13a-b: Wall
Temperatures for Liquid
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Chill-down Test Case
Reynolds Number = 126423



Liquid Nitrogen Line Chill-down Results.(Vertical Upward

Flow)
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Figure 14a-b: Wall
Temperatures for Liquid
Nitrogen Vertical Upward
Chill-down Test Case
Reynolds Number = 3454
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Flow)
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Figure 16a-b: Wall
Temperatures for Liquid
Nitrogen Vertical Upward
Chill-down Test Case
Reynolds Number = 113303



Cryoshroud
Sides

T I ] Vertical

Line

Vacuum Chamber Lid

)

SECTION OF LINE MODELED

LH2 Storage
Tank

(7] (=]

Valve Ma

p- }J I Horizontal Line

Line OD 0.012700025 [m]
Line ID 0.01021 [m]
Length from inlet to skin temperature SD17 0.37148 [m]
Length from inlet to skin temperature SD18 1.285875 [m]
’ Length from inlet to skin temperature SD19 2.06375 [m]
-] Length from inlet to stream temperature SD23 229 [m]
Length from inletto P3 0.30798 [m]
Length from inlet to P4 229 [m]
Length (approximate) from SD23/P4 to Vent 31 [m]
Total length of straight, vertical section of transfer line 229 [m]
Length of $G can/housing 0.15 [m]
Resultant Length of SS pipe 2.14 [m]
Density of 304SS 8030 [kg/m"3]
Mass of flow control manifold (4 orifices, 6valves, 6 blocks) 11.4 [kg]

Total mass of Sight glass can/housing
Effective mass of Sight glass can/housing
Mass of SS tubing

1.931818182 [kg]
0.579545455 [ke]
0.769925224 [kg]

Total mass of transfer line 4.110743406 [kg]

Total effective mass of vertical transfer line 2.758470678 [kg]

o
A set flow rate (from test data) at SD16
No pressure data at SD16 so the inlet pressure was
assumed to be the value taken at location PT3
where the pressure was measured
Outlet location was PT4 (pressure from test data)
Since a set inlet flow rate was specified as the
boundary condition:
o PT3 as well as the quality equal to zero were
used to determine the thermodynamic state
coming into the system

Figure 17: Liquid Hydrogen Chill-down Test Schematic



Liquid Hydrogen Line Chill-down

WALL 1Y -> S0
' \
WALL 30 >SD 19 PRESSURE
FIRST SAGMT GLASS NODE LUNP 9999
r 1 SMTTO M1a
TEST DATA
*  FLOW RATE AT PATH 1 SET [TEST DATA) —

*  PRESSURE LUMP 9999 SET TO TEST PT4 (TEST DATA)
*  UPSTREAM PRESSURE (LUMP 2) CALCULATED BY SINDA/FLUINT

Figure 18: SINDA/FLUINT Flow Schematic of the Liquid
Hydrogen Test Section Showing Fluid LUMPS, Flow PATHS,
Wall NODES, Heat Transfer TIES, and Pipe Axial

CONDUCTORS



Liquid Hydrogen Line Chill-down Results (Vertical Upward '

Flow)
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Figure 19a-b: Wall
L Temperatures for Liquid
=N THE PRESSURE BOUNDARY RUNS INCLUDE Hydrogen Vertical Upward
LOSSES FROM TWO VALVES .

Chill-down Test (Includes
Shah Modification for SF TIES,
and Pressure Inlet and Outlet
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3 \ boiling on the default Dittus-Boelter correlation
Wl @ for gas convective heat transfer as a
5 multiplication factor:
2 :% \ THE PRESSURE BOUNDARY RUNS INCLUDE
2 \\ LOSSES FROM TWO VALVES S —0.046 F I:LT 055
% F =8.53 (L/D) ¢ L/D <=30.0
F=10 LD =>=30.0
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Liquid Hydrogen Line Chill-down Results (Vertical U_p\)va}d . v

Flow) oA
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Figure 20: Flow Rates and Pressure for Liquid Hydrogen Vertical Upward Chill-down
(Includes Pressure Inlet and Outlet Boundary)



Liquid Hydrogen Line Chill-down Results (Vertical U_p\)va}d , v

Flow) B
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Figure 21: Void Fractions and Qualities for Liquid Hydrogen Vertical Upward Chill-down

Nominal Tank Pressure T Sat Initial LH2 Flow
kPa K Rate
207 21.4HIGH



Liquid Hydrogen Line Chill-down Results (Vertlcal UpWard ,'

Flow)

Upstream Location

Downstream Location

Figure 22a-b: Inner and Outer
Wall Temperatures for Liquid
Hydrogen Vertical Upward
Chill-down Test (10 Radial
Nodes)

Nominal Tank Pressure T Sat Initial LH2 Flow

kPa K Rate
207 21.4HIGH



Liquid Hydrogen Line Chill-down Results (Vertical U_p\)va}d -..*-

: N

Flow)

WALL TEMPERATURES

SF WALL 3 (UF)

v—a— TEST SD17
SF WALL 3 (SF TIES)

SF WALL 3 (SF TIES WITH SHAH)

Upstream Location

WALL TEMPERATURES

- TEST SD18
SF WALL 17 (UF)
SF WALL 17 (SF TIES)

SF WALL 17 (SF TIES WITH SHAH)

Downstream Location

Figure 23a-b: Wall
Temperatures for Liquid
Hydrogen Vertical Upward
Chill-down Test (Includes
Shah Modification for SF TIES)

Nominal Tank Pressure T Sat Initial LH2 Flow
kPa K Rate
207 21.4MED

The Shah modification is used during film
boiling on the default Dittus-Boelter correlation
for gas convective heat transfer as a
multiplication factor:

F=8.53 (L/D) & L/D <=30.0

F=10 L/D>=300



Liquid Hydrogen Line Chill-down Results (Vertical U_p\)va}d , v

Flow) B
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Figure 24: Void Fractions and Qualities for Liquid Hydrogen Vertical Upward Chill-down

Nominal Tank Pressure T Sat Initial LH2 Flow
kPa K Rate
207 21.4AMED



Liquid Hydrogen Line Chill-down Results (Vertical U_p\)va}d -..*-
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Flow) o ca o

WALL TEMPERATURES
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SF WALL 3 (SF TIES)

SF WALL 3 (SF TIES WITH SHAH)

i Figure 25a-b: Wall
Temperatures for Liquid
Upstream Location Hydrogen Vertical Upward
Chill-down Test (Includes

' Shah Modification for SF TIES)

Nominal Tank Pressure T Sat Initial LH2 Flow
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SRALL 7 (SF e WO e ' The Shah modification is used during film
boiling on the default Dittus-Boelter correlation
for gas convective heat transfer as a
multiplication factor:

F=8.53 (L/D) & L/D <=30.0

Downstream Location
F=10 L/D>=30.0




Liquid Hydrogen Line Chill-down Results (Vertical U_p\)va}d __'.'
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Figure 26: Void Fractions and Qualities for Liquid Hydrogen Vertical Upward Chill-down
Nominal Tank Pressure T Sat Initial LH2 Flow
kPa K Rate
345 24 2HIGH



Liquid Hydrogen Line Chill-down Results (Vertical U_p\)va}d -..*-
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Figure 27a-b: Wall
Temperatures for Liquid
Hydrogen Vertical Upward
Chill-down Test (Includes
Shah Modification for SF TIES)
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Liquid Hydrogen Line Chill-down Results (Vertical U_p\)va}d __'.'
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Figure 28: Void Fractions and Qualities for Liquid Hydrogen Vertical Upward Chill-down

Nominal Tank Pressure T Sat Initial LH2 Flow
kPa K Rate
345 24.2MED



Results Conclusions

University of Florida’s film boiling correlation can over predict
heat transfer to the wall due to flow rate oscillations

SINDA/FLUINT’s correlations can either over predict or under
predict the film boiling heat transfer to the wall, but is less
sensitive to flow rate oscillations

— high Reynolds numbers under predict film boiling (~ 100000)
— low Reynolds numbers over predict film boiling (~ 5000)

— Reynolds number (~ 10000) “just about right”
Along with heat transfer correlations for multiphase flow,
pressure drop correlations need to be addressed and/or
modified since the pressure drops in all the cases did not

correlate to test data, whether upstream or downstream set
flow rates were employed



Results Conclusions

* Test cases with hydrogen showed that radially discretizing the

wall did not significantly impact the model temperature
results

 Sometime SINDA/FLUINT did better, other times the UF
correlations faired better



